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wWstract
Guantitative anaivsis of the period-3 cararophe is devejoned ror
the standard map anag  for the stochastic heatring map as itiitusirarive
examplies of two-dimensional area preserving mappings. AnRal!Tic expres-
ston  of the diffusion coefficient is derived ior iie stochastic
heating, and compared to resuits of numerical observation. Here, as [or
“he case of the standard map, the muiti1-periodic acceleraior moges give

rise Lo anomalous enhancement of the diffusion rare.
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1. Introduction

Stochasticity in  the iow dimensional Hamiitonian svstems has been
one of the central problems not only in the field of fundamental
physicsi’, but also gnder the lisht of practical interests of plasma
contfinement. in the masnetic fusion devicesZt3), of piasma heatineg by
the radio - frequency wavei! and of the long time behaviour of particle
beam in hish energy accelerators??®) . Two-dimensional area-preserving
mappings have been widely empioved as a useful model of the nonlinear
Hamiltonian svstems. in a recent paper by Lichtenbereg and Lieberman??,
calline ones attention to the fact that these model mappings can be
smooihly transformed into dissipative mappines by variation of a
parameter, they examined chaotic hehaviour of both of the noniinear
conservative and dissipatibe svstems. In order to explore statistical
properties of the low dimensional Hamiitonian systems, we have been
investisat ing various properties of the two-dimensional area-preserving
maps in a series of papersbi-ily,

Here. extending our analysis ou the standard map, we want to
discuss the period-3 catastrophe and enhanced diffusion in two-dimen-
sionai Hamiitonian syvstems. Summarizing our previous results obtained
for the standard map, we discuss mechanism of the period-3 catastrophe
in details in the next section. In order to illustrate the generic
aspect of our analysis, we examine the stochastic heating of ions by
the lower hybrid wave along the line of Karney's investigation?? in the

section 3 and 4. We present concludine discussions in the last section.

9. Period-3 Catastrophe in the Standard Map



The standard map,

P= P + f‘-sm(zern) Lmed 1]
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describes a dynamical svstem of particie motion under repetitive action

of impulsive kicks, for which rthe Hamiitonian is given as

H :_;_PZ_ i cOs(an) 2. encp(a‘zvrm?:) 2)
27T m

Here, T 1s a continuous time, normalized to the period of kicks. The
remarkable properties of the standard map are its double periodicity in
the action and phase variables.

The statistical property assoclated with the standard map is

characterized by the diffusion coefficient of the action variahie P,

D=tm ~{[P)-P ()] "

T 27T

where the averase < > is taken over the initial ensemble of i-th
particles. Applvine the Fourter path integral method, Meiss et ai.i2)
have derived an analytic expression for the diffusion coefficient eq.3)

as

D | = 23,(evp) —Ji(2mA) + 2T, (27A)
Dy (/+J;[zrr,q))2

where Jn{x} 1is the n-1h order Bessel function and Do = AZ/4. Comparing




eq.d4) with the observed diffusion coefficient in numerical experiments,
we have identified that the enhanced deviatlion from the theoretical
diffusion coefficient eq.4) is due to the multi-periodic accelerator
modes. For the specific wvalue of A = 1.1, we have shown that the
periocd-3 step-3 accelerator mode gives rise to the resonant enhancement
of the diffusion.

Here, it may be worth to notice that Lichtenberg et al.!3) have
meastured stable area of the first accelerator mode of the standard map
as a function of A, and identified the deep drop at A = (6.95/2n) =
1.106 as the period-3 catastrophe. We should call ones attention to the
similarity between Fig.l of the referrence 12) and result obtained by
harneyl4?) (Fig.2 a) of the referrence 14)). Lichtenberg et al. noticed
that the first dip at A = (6.62/2w) = 1.053 is due to the occurence of
the period-4 step-4 accelerator mode (the 4:1 resonancel.

Referring {o symmetry structure of the standard map, we have
examined the bhirth process of the period-g accelerator mode out of the
tirst accelerator mode {the period-l step-1 accelerator mode)l3!. Its

threshould is given as

AlP/3)= {l + —izs&n*(?i)}uz °)

T %
where p and g are the prime integers. For p=1, we have A{1/5) = 1.0238
and A{1/4) = 1.0494, which are consistent with our observation of birth
of the period-5 and period-4 accelerator mode, respectively. Now,
takine =3 in eq.5), we get A{i/3) = 1.108, where we observed not the

birth of the period-3 accelerator mode, but that the unstable period-3
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accelerator mode squeezed to the origin. This is rthe phenomena calied
the period-3 catastrophe by Lichtenberg et1 ai..

Determining explicitly the coordinates of the period-3 accelerator
mode, we have identified the threshold of the onset of the period-3

accelerator modes as

YY)

A (113) = (, +—p = 1.07¢7 6

while the squeezing condition of the unstaibe period-3 acceierator mode

as

A (1/3) = {/ + (3‘-:;)2 " j.108/

which is nothing but the value <given by the Poincare-Birkhoff muiti-
furcation condition, eq.5}. Our analysis gives quantitative details of

what Lichtenberg et al. called the pericd-3 catastrophe.

3. Stochastic Heating by the Lower Hybhrid Wave

Stochastic heating of plasmas by radio-frequency wave has been
regarded as one of the critical +tool to heat confined plasmas in the
magnet.ic fusion devices. Extending the earlyv works of Fukuvama ef al.
187 and Karney et. al.!7), Karney*) has examined throughiy the process

by introducing the two dimensional map

uj“ = uJ- + 218 — 2wy cos 2};

U:jﬂ p— U’J' + 2§ + 2wh cos lljﬂ 8)




The Larmor radius of lons }D is given hy

p=zy-u) ”

and the phase of ion orbits 6 is given by
b=~ (v +u) 0
2

Constructing a tansential map of eq.8), we can reduce the stability

condition of fixed point or accelerator point at (uo, vo) as

AQ<A <Au i1}

with

Ay = Max{1m=51,n+51] "
and
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The coordinates us and vp are determined by

3+Ac:>sua:m, S -Acs U, = -1 14)

with m and n the integers. Since we have
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f),:fi+(m+n)7c i5)
the point ({uo,ve} with m+n=0 is the fixed point, while the point (ue,
vo) with m+n=1 is the fundamental accelerator mode. The threshold of a
Poincare-Birkhoff period-g multi-furcation around the point {up,vo) is

given by

A(p/g): -,—2 (m—~S)Z+ (’Z -I*S)l1

/2 g

(("?"3) (VH‘S)) —;S‘m( —")
T
with p and g the prime nregers.
Now, the sfatistical properties ¢f the heating process wiii be

best characterized by the diffusion coefficient

D= lim — <[/o.r(a) —Pa(c‘)_f> 17)

T e 2
Approximate evaluations of eq.17) have been carried out bv Antonsen et
ai.!% and Karney et al.!9). Here, we have carried out ithe renormaliza-
tion analyvsis alons the same lines of Meiss et al.t2), to obtain

{setting Do = nia</2)£0,

D | = JoZ(ZTCA')

Dy |- 2T (2TA) cos 2m§ + J‘;z(z?r/-})

4.,]"2(7,7\:,4) Cos 2T 18)
[1= 2T (2%4) cos 2= + J;z(zttA)Jz
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We show the observed diffusion ceefficient D for a value of &§ = 0.47
together with the anlytical result of eq.18) in Fig.1. We notice that
for the value of 6§ = 0.47, the first fixed point for (m=0, n=0) at vo =
tcos~1{8/4), wo= F cos 1 (&/A)+(2 ¢ +1)m, with 0 the integer, is stable

in the region of

Aé: 820.47 < /4 <A¢:JSZ+ __:_[:2 = 0 85476 19)

while the second fixed point for (m=1, n=-1) at ve = *cos~1(8-1/A), uo=
Fcos 1{(6-1/A)+(2 f +1)m, with é the integer, is stable in the region

of

_ gt
A=1-8-083<A A8 L =0disz

As.for the accelerator mode, the (m=1, n=0) mode and (m=0, n=-1) mode

are stable in the region of
1) )
A; (1si=1)=053< A< Alisl=1) =059713¢ a1

and the {(m=0, n=1) mode and {(m=-1, n=0) mode are stable in the region

of

(2}

Ap st =1) =147 < 4 <,qf'as1:/) =1F70774 4,

while the (m=2, n=-1)*mode and {m=1, n=-2) mode are stable in the

region



3

2)
Ajlisl=1) =153 <A< A;usl=t)= [.83162¢

Furthermore, having the step size !s|:2, the (m=%1, »n=%1) modes are

stable 1n the region of

Az)(/$l=?-)= [4+1< A< Azj(/s/ =2) = [.+7188)

and the (m=2, n=0) mode and (m=0, n=-2} mode are stable in the recion

of

2 (2}
A;)“Sl =2)=/.43 <A CALIs]=2)=183/578 )

while the (m=0, n=2) mode and (m=-2, n=0) mode are stable in the region

of

3
A;(.'sl =2) =247 < A <A(:)(ISI=2)= 2470353 26)

in Fig,1, we indicate the stable regions given by egs.21},22),23),24),
and 25) to show the enhancement of diffusion coefficient due to the

presence of various accelerator modes.

4, Multi-periodic Acceierator Modes in the Stochastic Heating Map
Referring to our previous analysis of the diffusion process 1n the
standard map, we expect that multi-periodic¢ accelerator modes around

the fundamenta! accelerator modes in the region of eg.21} are responsi-
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ble for the enhancement of diffusion process observed in Fig.l.

Setting (a=1 and n=0) and (p=0 and n=-1) in eq.l16}, we obtain

A( 1/6 ) = 0.538668
A( 1/5 ) = 0.544979
A( 1/4 ) = 0.556576 27)
A( 1/3 } = 0.576713
A( 1/2 ) = 0.597134

as the threshold of Poincare-Birkhoff pericd-q multifurcation around

the fundamental accelerator modes located at

As for the onset of the period-6, period-5 and period-4 accelerator
médes, our numerical observation confirms the values given in eq.27).
With regard to the period-3 accelerator modes, however, we observe
clearly the period-3 islands structure even at the smaller value of A -
(.5740 in Fig.2. Increasing the stochastic parameter upto the values of
A - 0.5760 - 0.5775, we observe the squeezing effect in Fig.3.

In order to determine the exact values of the onset and the
squeezing condition, wWe derive a reduced map around the accelerator

mode at (ua, va) by the following transformation.

]fa-:: UJ‘ — (u&+21f‘nj)

= U — V. — 21tm ]
2{3 d ( * J ) 29)
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Substitution of eq.29) into eq.8) gives rise to the reduced nap

. . o Y. ;
Go= X+ X4+ B,

%H = 33' -7 Iik’"

with the abbreviations of

I

30)

= 2m '\/Az“(g tn)? 31)
B= 7 (§+n) 32)

i3)
{ =) oS —np

Eq.30) determines one of the coordinates of the period-3 accelerator

mode as

x, =0

34)

(%) ’ 2
e EEE RN CTO 35
2 289
where y‘*’0 is the stabie period-3 accelerator mode, while vt~ g stands
for the unstable period-3 accelerator mode.
Thus, the onset condition of the pericd-3 accelerator mode (a)/ )<

> 8 determines

A,09)< [ H{in-37s s olm-a s 2, ] "
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while the squeeze takes place when y(-'o = 0, so that a )/ = 3 gives

rise to

2 2 2 %
A (5) = LA m - (n 8]+ f(m-5)"- (n 47+ I

Taking 6§ = 0.47 and (m=1 and n=0), egs.36) and 37) determine, for the

onset condition
Ao(l/3) = 0.573212 38)
and for the sgueeze condition

As(1/3) = 0.376713 39)

i
-1

respectively. Here, as was the case for the standard map, the squeeze
condition for the period-3 accelerator mode eq.37) agrees eq.16) with
p/g = 1/3.

To conclude the present section, we have carried out a detalled
measurement of the diffusion coefficient in the range of 0.5<A<0.65,
where the presence of multi-periodic accelerator modes is expecied to
give rise to the enhanced diffusion. 1In order to aveid the direct
contribution of the fundamental accelerator mode, we distribute 10%
particles uniformly along the u axis, setting v=0, and we measure
temporal evolution of the mean square average ([PT(i) - Po(i)iz>. Fig.4
shows the comparison between the theoretical curve of g{A)=4D/Dg given

by eq.18) and observed results. In the sequence of the birth of period-
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6 and period-5 accelerator mode, the diffusion coefficient grows over
the theoretical curve and passes a dip in the course of growth of the
period-4 accelerator mode and leads to a sharp dip before the onset of
the period-3 accelerator mode. Here, it 1is very important to observe
that even after the complete squeeze of the period-3 the observed
diffusion coefficient exceeds over the anaiytical values over a wide

range of the stochastic parameter.

5. Concluding Discussions

Here, referring to our analysis on the standard map, we have given
quantitative analysis of the period-3 catastrophe in the two dimensio-
nal area preserving map with the accelerator modes. Statistical
properties of the stochastic heating map have been examined in details.
Both of the standard map and the stochastic heating map confirm that
the multi-periodic accelerator modes give rise to the large enhanced
peaks in the diffusion coefficient. As for the stochastic heating map,
even after the squeeze of the period-3 accelerator mode 1s completed
the reminiscent of the stable period-3 accelerator mode gives rise {o
the enhancement over the analytic prediction.

In this regard, it wiil be worth to remark that Mori and his
collaborators extended their analysis of the q-phase transition
method?!) to the conservative system??), and foune that the contribu-
tion of the period-3 accelerator mode exhibits clear g-phase transition
assocliated, while the {ransifion associated with the higher periodic
accelerator modes 1is not observed. It would be important to examine

this aspect 10 explore the nphysical process associated with the so

14




cailed period-3 catastrophe.
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Fig.4

Captions of Figures
The normalized diffusion rate D/Dg for various values of A in
the stochastic heating map for the value of 6=0.47. The thin
curve represents the theoretical diffusion rate of eq.i8}).
The biark circies represent resuifs of our measurement, whiife
the crosses are taken from Fig.9 of the referrence 4. The
shaded re¢ion stands for eq.21), the vertical line at Ax1.47
stands for egs.22) and 24) and the vertical iine at Asi.53
stands for eq.23} and 23)
The period-3 accelerator modes at A=0.5740 for 6=0.47.
Squeezing of the period-3 accelerator modes at A=0.5770 for
6=0.47
The square root glA) of the normalized diffusion rate D/Dg as
a function of A for the value of 6=0.47. The vertical lines
tndicate vpositions of the onset of designated periodic
accelerator modes. The broken vertical line indicates the

value of A squeezing of the period-3 accelerater takes place.
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