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Abstract

Even though our primarv interest is concerned with stochastic
properties of the low dimensional nonlinear dynamical systems, identi-
fication of the fixed points and analysis of the periodic orbits are
necessary and unavoidable step in the studies of chaotic behaviour. For
the case of 2-D area preserving mapping, the symmetry properties of the
map porvides critical information on the island structure of the
mappings. In order to illustrate usefulness of Kknowledge of the
symmetry properties, the periodic orbits of the standard map are

discussed in detail by constructing the families of symmetry curves.
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§1. Introduction

Research frontier of the low dimensional nonlinear dynamical
systems are expanding to the wvast range of subjects in statistical
mechaniesl), celestial mechanies?), accelerator physics3), plasma
physies%), fluid dynamics and chemical physics®!). Restriction to the
conservative Hamiltonian system is not successful to squeeze the list
of relevant references down to countable numbers$). The method of
Poincare’s surface of section, or the method of iterative nonlinear map
have been proved to be useful to characterize the low dimensional
nonlinear dynamical systems.

In order to study motion of the non-integrable Hamiltonian systems
with the aid of the above nmentioned methods, we admit that numerical
and graphical analysis with computer aid is inevitable approach. Yet,
we emphasize that certain analytical information gives rise to critical
knowledge to resolve confusing aspect of numerical and graphical
analysis.

The purpose of present paper is to examine the symmetry property
of the two dimensional area-preserving map, and to discuss structures
of the islands of the standard map as an illustrative example. In the
second section, we present general discussion in determining the
synmetry curves of the two dimensional area-preserving map. We apply
the method to the standard map in the third section. The last section
presentis concluding discussion referring to generic case of the two-

dimensional area preserving map.

82. Symmetry of Two Dimensional Reversible Map




In the studies of nonlinear dynamical systems, even our interests
are focused on chaotic behaviouf, analysis of periodic orbits has the
primary importance to understand the global properties of the dynamical
systems. Applying Birkhoff’s symmetry analysis, dg Vogelaere?) develop-
ed a systematic analysis of periodic orbits in the conservative
dynamical system with two degrees of freedom. Pina and Lara8) presented
explicit analysis of the symmetry lines of the standard map. Extending
their analysis, we have carried out systematic analysis of stochastici-
ty of the standard map referring to the symmetry structure9).

Now, Quispel and Robertsl®) call our attention to the fact that
reversible dynamical systems can bear certain symmetry even 1if the
system is dissipative. A mapping T is called reversible if there is a

symmetric Io such that

T« Io -T=1Io 1)

and Io is an involution

Equations 1) and 2} lead to the relation that T is the product of two

involutions.

T=I1 - Ig o = Io =11 - I1 =1 3)

where 11=T-Io. The inverse transformation T-! is expressed as



T-1 = Ipg - T - 1o

For the j-th iteration of mapping T, we define

I =T - Io, Jj = integers

then, we have

4)

5)

6)

which confirms that I; is also an involution. For arbitrary integers j

and k, an ensemble of Ij and T¥ forms a discrete infinite

the following relationships.

T3 - Ix = Ij+x

Ij « Tk = Ij-x

For a vector R, with the minimum N, if

TR = R

valid, R represents the period-N orbit.

group with

7)
8)

9)

10)

The j-th order symmetry curve Sj consists of ensemble of the fixed

points of involuticn Ij, i.e.




S; : {R| I;R=R} 11)

Hence, eq.8) defines that the intersection of 8; and Sk determines the
periodic orbits of T, whose period N divides | J-k |.

For a 2-D area preserving map of the form given as

(K=r) m(3) -

if h{x) is anti-symmetric function, the following factorization is well

knownll},

-T(i)zlL.I°(é) 13)

with

Ix__—l,'o X\ ( -X
A\P)T\ R AP)TAPHRK))

X -1 I\[{X -X+P
I\ P 0, | P P 15)

A factorization into two involutions of the nonlinear map is not

unique. In order to analyze the dense distribution of pericdic orbits



in the standard map, Tanikawa and Yamaguchil2} have used the following

decomposition

T_);:lL_)P( 16)

with

X X-P
0 P -P

17)
YRS X~ 2P +4(X-P)
- 18
‘P - P+ A (X-P) |
for which we have
Joe = Jo=1 and J1 - J1 =1 19)

We notice here that the above decomposition holds even through h{x) is
not anti-symmeiric function.

Applying the above factorizations for the standard map, we have
discussed statistical properties of the standard wmap®’. Here, we
describe some details of construction of the symmetry curves for the
2-D area preserving map. For the first kind of involution factoriza-

tion, applying eq.5), we can write

X - X +nP 1 G,

In P - P+ Fn 20)
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where

Fn = Fn-1 + h [ -X + (n~-1)P + Gn-1 } 21.a)

Gn = Gn-1 + Fn 21.b)
with

Fo = h(X}) , Go = 0O 22.a)

F1=0, G =20 22.b)

Fz = h{-X+P) , Gz = h{-X+P) 22.c)

The n-th order symmetry curve I'n is determined from

1 (%)= (% "

n TD 73
which gives rise to
nP - 2X + Gn = 0 , Fn = 0 24)

With eq.21.b), we can reduce eq.24) as

nP - 2X + Gn-1 = 0 25)



Now, the requirement of Fn=0 with eqg.2l.a) and eq.25) leads to

Fn-1 = -h [ -X + {(n-1)P + Gn-1 ] = -h(X-P)

If the transformation function h(X) is anti-symmetric, i.e., if

h{(X} = -~ h (-X)

valid, we have

h{-X+P} = F2 = Gz

Fn-1

Using eq.21.b) again, we get

Gn-1 = Fz + Gn-2

Thus, for the expressicn of Tn, we get

nP - 2X + Gz + Gn-2 = 0

26)

27)

28)

29)

30)

For further reduction of eq.30), it is worth to notice that eq.30)

can be decomposed as

=X + {(n-2)P + Gn-2 = ~(-X+2P+32)

31)




Using eq.21.a) and eq.31), we can reduce eq.28) to

Fe-2 = G2 + h{ -X+2P+Gz ) 32)

Therefore, we can reduce eq.30) to

nP - 2X + 2G2 + h(-X+42P+G2) + Gn-3 = 0 33)

Here, it would be worth to illustrate the construction of symmetry

curves. With the definition of eq.14), we get simply

I''t : X=0 34.a)

Applying eq.25) with n=1, 2 and 3, we get

Ty : P~-2X=20 34.b)
'z : 2P~ 2X =0 34.¢)
I's : 3P - 2X + h(-X+P) = 0 34.4d)

N¥ow, for n=4, in applying eq.25), we need to express Gz in ferms of Gz.

Hence, using eq.30), we obtain

Fa ¢ 4P - 2X +2h(-X+P) = 0 35)

while in the previous report?’) we have presented an expression for I's

as



4P-2X+2h{-X+P)+h{(-X+2P+h{-X+P}) = 0 36)
which is nothing but the expression we get from eq.33) with n=4.
However, for n=4, eq.32) gives

h(-X+2P+G2) = 0 37)

Therefore, eq.38) is confirmed to be consistent with eq.35).

Taking n=5 in eq.33), we get for I's the following expression,

[s : 5P-2X+3h(-X+P)+h(-X+2P+h(-X+P)) = 0 38)

while in the previous report?), basing on the recurrence formulae

constructed by the expression of Tz, s and T4 with the redundant term,

we have usged the following expression,

5P-2%+3h(-X+P) + 2h(-X+2P+h{-X+P)) +

h{-X+3P+2h(~X+P)+h[-X+2P+h(-X+P)}} = 0 39)

We notice here eq.33) can be formally reduced to the following express-

ion

nP-2%X+3G2+2h{~X+2P+G2 }+h(-X+3P+2Gz +h{-X+2P+G2 ) )+Gn-4=0 44)

by using eq.32) with egs.2l.a) and b). Here, we have made use of a

10




relationship of

Fn-3 = Gz+h(-X4+2P+G2) + h{-X+3P+2Gz+h{-X+2P+G2)) 41)

Taking n=5 in eq.40), we reproduce eq.39). However, at the same time,

eq.41) with n=5 gives rise to the identity
h(-X+3P+2G2+h(-X+2P+Gz)) = -h{-X+2P+Gz) 42)
hence eq.39) is reduced to eq.38).
For n=6, eq.40) leads to the following expression
6P-2X+4h(-X+P) + 2h(-X+2P+h{-X+P)) +
h(-X+3P+2h(-X+P) + h(-X+2P+h(-X+P))) = O 43)
Now, for this case, eg.41) with Fz = F2 + h(-X+2P+G2) gives rise to

h(-X+3P+2G2 + h(-X+2P+Gz)) = O 44)

Hence, the last redundant term of eq.43) is shown to be identically

zero, and the expression for I's is reduced to
I : 6P-2X+4h(-X+P)}+2h(-X+2P+h{-X+P)) = O 45)

For n=7, eq.40) leads to
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TP-2X+3h{-X+P)+2h(-X+2P+Gz ) +h(-X+3P+G3 ) +G3=0 46)
while
G = Gz+F3 = 2G2+h(-X+2P+Gz) 47)
Thus, we get
F1 : TP=2X+5h{-X+P)+3h{-X+2P+h(-X+P})
+h{-X+3P+2h(-X+P)+h{-X+2P+h(-X+P) ) =0 48}
Expressing the left hand sides of equations for the n-th order
symmetry curves by [Izy and Tz2n+1, we can write down the recurrence
formula as
Fzw = 2l'zn-1 ~ Tan-2 49.a)

Tzn+1 = 2I'2n — P2n-1 + h(1/2Tz2N) 49.b)

Now, for the negative integer -n, n>0, using eq.9) with j=0, we

can construct a general expression

1? )( — o >('— P - é?n
AN o P+ F,

50)
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with the recurrence relations of

Gn ='E;-1 + Fa-1 51.a)

Fa = Fa-1 + h(X+nP+Gn) 51.b)
We have

G1 = h{X) 52.a)

F1 = G1 + h(X+P+G1) 52.b)

The symmetry curves I'-n is determined by
(%)= (} "
~N ’P P
as
nP +2X +Gn =0, Fn=20 54)
Equation 54) with eq.51.b) gives rise to
Fa-1 = -h{(X+nP+Gn) = -h(-X) = h(X) 55)

so that the -n-th symmetry curve is determined as

13



T-n : nP + 2X + h(X) '+ Gn-1 =0

Using eq.5l.a), for n>2, we can reduce eqg.56) to
nP+2X+h(X)+Gn-2+Fa-2 = 0

Since eqg.56) gives
X + (n=1)P + Gn-1 = -X-P-h(X)

eq.b5) is reduced to

Fn-2 = 61 - h(X+(n-1)P+Gn-1) = Gi+h(X+P+h(X)) = F1

For n=1, eq.b54) gives

T'-1 : P+ 2X + h{X) =0

and F1 vanishes identically. For n=2, eq.56) gives

-2 : 2P + 2X + 2h(X) = 0

We can verify the condition F2=0 as

Fa = ?§+h(x+2P+ﬁé) :'§}+h(x+2P+2E1+h(x+P¥§1))

14

56)

58)

59)

60)

61)




= Gi+h(X+P+h(X))+h(-X) = O

For n=3, eq.57) with eq.59) gives

T_og : 3P+2¥+3h{X)+h(X+P+h(X)) = 0

It is straight forward to confirm F3=0.

Now, for n=4, eq.57) with eq.59) gives

F-s : AP+2X+h(X)+Gz+G1+h(X+P+h(X)) = 0

where 42z is
T = GiaFL = 2h(X)+h(X+P+h(X))

Hence, eq.64) is reduced to

T-4 : 4P+2X+4h(X)+2h{X+P+h(X)) = 0

62)

63)

64)

65)

66)

In our previous report?), we have presented an expression with the

redundant term, which fails to account correctly the condition of Fa=0.

Expressing the left hand sides of equations for

the -n-th order

symmetry curves by [-2n and T'-(2zn+1), wWe can write down the recurrence

formula as
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T-2Nv = 2P-¢2n8-1y - T-(2r-2) 67.a)
[-(2¥+1) = 2I'-28 ~ [-(2N-1y + h(1/2F-2x5) 67.b)

In the above construction of the symmetry curves, the use has been
made fully the anti-symmetric property of the transformation function
h(X). For a general function h(X), we have the second type of involu-

tion factorization as defined by eqgs.17) and 18). We find that

X —(n=-0DP t3n
(=" p s o

with the recurrence relations

fn + h(X-(n+1)P+gn) 69.a)

fa+s1 =

En+1 = gn + fn+1 ) . 69.b}
and

fo = go = O 70.a)

f1 = g1 = h(X-P) 70.b)

The n-th order symmetry curve 1f+n is determined by

16




which gives rise to

~-{n+1)P + gn = 0

-2P + fn =0

We have for n=0 symmetry

For n=1, egs.72.a) and b) give rise to

h(X-P)

-,
1
'
0o
"o
I

For n=2, we have

1
<

=3P + g2 =

-2P + 12

1
<

Hence, we get

P=gz - f2 = g1 = h{X-P)

17

71)

72.a)

72.b)

73)

74)

75.a)

75.b)

76)



namely,

Y,, ¢ 20 = 2h(x-P) 77)
Equation 75.a) with egs.69.a) and b) leads to

3P = g1 + f1 + h{X-2P+h{X-P)) 78)

which turns out to be consistent with eq.77). For n=3, we have

-4P + g3 = 0 79.a)

-2P + fa = 0 79.b}
Hence, we get

2P = ga-fs = gz = gi+fz = 2f1+h(X-2P+f1) 80)
namely,

Y., @ 2P = 2h(X-P) + h(X-2P+h(X-P)) 81)

Equation 79.b) requires that the right hand side of eg.81) should be

identical with fa. Equation 69.a) gives

18




fa=fz+h(X-3P+gz )=f2+h (X-P)=2h{X-P)+h(X~-P+h(X-P}) 82}

For n=4, we have

-5P + g4 = 0 83.a)

~-2P + f4 =0 83.b)
Hence, eqs.83.a) and b) lead to

3P = ga - f4 = g3 = g2 + f3 84)

while eg.83.b) itself gives

2P

f4 = fa+h(X-4P+g3) = f3+h(X-P) = fz+h(X-3P+g2 )+h(X-P)
= 2h(X-P) + h(X-2P+g1) + h(X-3P+gz) 85)
On the other hand,
h(X-3P+gz2) = h{X-f3) = h(X-2P+g1) 86)
Therefore, finally we get for };*_as

Yiq i 2P = 20(X-P) + 2R(X-2P+h(X-P)) 87)
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Straight forward calculation for n=5 and n=6 gives

Y.e : 2P = 2h(X-P) + 2h(X-2P+h(X-P))
+ h(X-3P+Zh(X-P) + h(X-2P+h(X-P)))
YZ; : 2P = Zh(X-P) + 2h(X-2P+h(X-P))

+ 2h(X-3P+2h(X-P) + h(X-2P+h(X-P)))

Turning to the negative integer -n, n>0, we obtain

X X+ (n-nP +§n
" P - }D - 3?1

with the recurrence formula

~ ~
= gn-1 + fn-1

(:):q
I

Tn = Fn-1 + h{X+(n-1)P+gn)

and

'-h
-
B}

h{X)

20

88)

89)

80)

91.a)

91.b)

82.a)

92.b)



The -n-th order symmetry curve }f—n is determined by

L(5)- (2

which gives rise to

(n-1)P + gn = 0 94.a)
o~
2P + tn = 0 94.b)

For n=1, eqs.9%.a) and b) give rise to
X_’ : 2P + h(X) = 0 95)

For n=2, we have

P+32 =0 86.a)
2+ f2 = 0 96.5)

Hence, we get

P+hi{X)=0 97.a)

2P + h(X) + h(X+P+h(X)) = 0 97.b)
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namely,

Y., 2P+ 20(X) = 0 98)
For n=3, we have
2P +%93 =0 99.a)
20 = 3 = 0 99.b)
Equation 99.b) is reduced to
2P + Tz + h(X+2P+Z3) = 0 100)

hence, it is reduced to the expression for B’-s as
Yo, : 2P + 2h(X) + h(X+P+R(X)) = O 101)
For n=4, we have

3P + 2

1
<

102.a)

2P + fa

It
-]

102.b)

Equation 102.b) is reduced to
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2P + T3 + h(X+3P+&) = 0 103)
Making use of eq.102.a), we get

2P + h(X) + f2 + h(X+2P+E3) = 0 104)
Explicit form of eq.102.a) gives, however,

3P + B3 + Tz + h(X+2P+gs) = 0 105)
Combining egs.104) amd 105), we get

P+rE-h{X)=0 106)
which gives rise to the expression for y-4 as

Y., ¢ 2P+ 20(K) # 2h(X4P+h(X)) = O 107)

Carrying out similar analysis for n=5 and n=6, we can derive the

expressions for Y—s and }'-s as follows,
Yoo : 2P+2h(X)42h(X+P+R(X))+h(X+2P+2n(X)+h(X+P+h(X)))=0 108)

and
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Y., ¢ 2P+2h(X)+ZR(X+P+h(X))+2h(X+2P+2h(X)
+h(X+P+h{X)})=0 109)

To conclude the present section, we notice that the set of
symmetry curves Yin exists regardless whether the transformation

function h(X) is anti-symmetric or not.

§3. Island Structure of the Standard Map

In the course of extensive investigations of statistical propert-
ies of the 2-D Hamiltonian systems, it has been well recognized that
understanding of regular motions is unavoidable. Recent advancemeni of
studies of transport in Hamilfonian systems emphasizes important effect
of the island structure. Since the symmetric properties of 2-D area
preserving map characterize the periodic orbits, applying the results
obtained in the preceeding section, we investigate island structure of
the standard map.

We define the standard map eq.12) with the transformation function

h(X) = —-Jg- sin (2xX) 1103
b/

Now, when the point (Xn, Pn) is mapped to a point (Xn+1, Pns1), the

neighborhood point (Xn+8Xn, Pn+8Pn) is mapped to a neighborhood point
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{(Xn+1+8Xn+1, Pn+1+8Pn+1}. The tangent map BT transforms the displace-

ment (8Xn, 8Pn} into a displacement (3Xn+1, 8Pn+1) by

+4'
ool g7 ( 3K\ g [
SPn-H SPﬂ , &/ , | 111)

where h’ denotes a differential coefficient with respect to its
variable X. The eigen value of two dimensional matrix 8T is determined

as
A= 1- 2R+ 2(R(R-1)]1/2 112)

where the residue R is given by

Fz = 1/4 { 2-Trace(8T) } 113)
For the 2-D aea preserving map of eq.12), we have

R=-1/4 1’ 114)
When 0<R<1, the point (Xn, Pn) is an elliptic (stable) point, and the
tangential orbit (8Xn, 8Pn) encircle around this stable point. In this

case, the eigenvalue ) is expressed as

% = exp(iime)) . f) = 1/2n cos~1(1-2R) 115)
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where /3 gives an average rotation number.

Nonlinear map T may possess the pointsg which remain to be fixed
upon the iterative application of T. For the standard map with eq.110),
the fixed points are {0,0) and (1/2,0). The stability condition takes a

form of
-4 < -K cos (2uXt) < O 116)

Hence, the point (0,0) 1is stable as long as K remains in a range of
0<K<4, while the point (1/2,0) is unstable. When the rotation number{F

takes a value p/q with p and g the prime integers, the Poincare-
Birkhoff period-q islands are born around the stable fixed point (0,0).

Eg.115) gives the threshold for this process as
K(p/q) = 4sin? (mwp/q) 117)

First, we 1illustrate a typical structure of regular as well as
chaotic orbits of the standard map at K=1.300 in Fig.l. Eq.117) gives
K{1/8)=0.5858, K{1/7)=0.7530, K{(1/6)=1.000, K(1/5)=1.382. Therefore, at
K=1.300, we expect to observe the period-8, period-7 and period-6
Poincare-Birkhoff chain of islands. In Fig.l, we observe the large six
islands, the small fourteen islands and eight islands in the fringe of
the central island. We superpose the family of symmetry curves I n
given in the previous section for 0<n=7 in Fig.Z2.

The intersections of symmetry curves I';j and 'k determines the [j—

k| periodic orbits. This is confirmed for the period-§ and two sets of
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the period-7 orbits. Here, we remark that the intersection of symmetiry
lines '3 and Tk determines bofh of the stable and unstable even—period
orbits, yet the intersection of ['; and I'kx determines only the stable
odd-period orbits. The observed fourteen islands are classified to a
group of period-7 orbits, which go through the stable intersection of
F+7 and T o with P>0, and another group of period-7 orbits, which pass
the stable intersection of T#7 and To with P<O.

Now, we are led to a gquestion. What kind of symmetry does deter-
mine unstable odd-periodic orbits. Figure 3 illustrates the family of
symmetry curves Vim with 0<n<7. Here, we observe these symmetry curves
pass through unstable period-7 points. As for the even-periodic orbits,
these symmetry cbrves pass through both of the stable and unstable
points.

When we increase the stochastic parameter K, the Poincare-Birkhoff
cﬂain of islands with lower periodicity are born out of the fixed point
at the origin. For K=1.60, we observe in Fig.4 that the period-6
islands are now merging into the sea of chaos, while thin 22 islands
and clear ten islands are observed in the closed island. Superposing
the family of symmetry curves I#n, 0<n$é, as shown in Fig.5, we can
confirm that the ten islands are two sets of the period-5 orbits with
Ps>0 and Ps<0, where Ps is the intersection of Ig¢s and To.

As for the thin 22 islands, we can identify that T+s and [-s
intersect at the stable point in the first quadrungle and then pass
through the stable point in the third quadrungle, while I'+s and T-s
intersect at the stable point in the fourth guadrungle and then pass

through the stable point in the second guadrungle. Thus, we can
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recognize these 22 islands as two sets of period-11 orbits. For p=2,
q=11, eg.ii7; gives rise to a value of K(2/11)=1.169, these period-11
orbits were horn after the period-6 orbits and grew in size when K
increases further. Although we can observe these intersections in Fig.2
at K=1.30, the resonance was not so strong to make up the visible
islands. Figure 6 shows the family of the symmetry curves of X =+ n,
0<n<6, for K=1.50.

For much larger value of X, the central island is getting thinner
along the symmetry line Ts1, and the sea of chaos spreads over the
phase space. Figure 7 illustrates the case of K=3.10. We observe very
small six spcis around the stable fixed point at the origin, ten
islands and fourteen islands at the edge of the central island. Here,
we can iilustrate that the symmetry curves provide critical information
to define these obscure observation. In Fig.8, we superpose the
symmetry curves [ n with 0<n=7. Starting at the X-axis to the clockwise
direction in the first quadrungle, we can identify the intersections of
pairs of (T-7, Io),(l-3, T+a),(T-6, T+1), (-2, T+5),{(I-5, T+2) and
(I'-1, T+s). Since eq.117) gives K(2/7)=2.445 for p=2 and g=7, we can
identify these fourteen islands are two sets of the 7-2 resonance.

Similarly, for the ten islands, we can identify F+7 and -3
intersect at the stable islands, while T+4 and T-s pass through the
unstable point., then the symmetry line T'+1 passes through the stable
island and T'-2 passes through the unstable point. We see T-5 and T+s
intersect at the stable point. Since these symmetry curves intersect
both at the stable and unstable points, we can confirm that these are

even-periodic orbit. Now, as eqg.l17) gives K(3/10)=2.618 for p=3 and
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q=10, we can identify these ten periodic islands as the 10-3 rescnance.

Increasing the stochastic parameter K to 3.30, we see in Fig.9
that the two sets of the period 3 islands grow up in their size. Since
these symmetry curvses of T » pass through only the stable points, we
can confirm that these islands are not of the even period of 6 but that

of the odd period of 3.

g4, Concluding Discussions

We have shown in the previous section that the analysis based on
the symmetry curves provide critical information on the structure of
the islands formed by the Poincare-Birkhoff multi-furcation around the
stable fixed point. We have shown that not only the fundamental
resonance periodic mode but also the higher resonance mode such as the
11-2 resonance, the 7-2 resonance and the 10-3 resonance were identifi-
ed: With regard to these higher resonance mode, it would be worth to
recall the properties noticed by Pina and Lara. They have shown that
the symmetry curves are transformed by TN into other symmetry curves,

expressed as

TNk = T2N+k 118)

Here, making use of eq.118), we will determine the multi-periodicity
of these higher resonance orbits.

As has been discussed in the section 2, the periodicity g 1is
determined as |j-k| from the intersection of I'; and T'k. Take Ro(Xo,Po)

as the intersection of I'jo and T'xo. The point Ro is mapped to the next
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point R1 by a mapping T. According to eq.118), the symmetry curves T[jo
and T-kxo are mapped to I'jo+2 and I'ko+2. Hence, the point R1 should be
at the intersection of ['jo+2 and Iko:2.

Let us examine the period-10 orbits at K=3.10. Although we did not
determine T ¢, we can identify the point Ro in the £first quadrungle as
the intersection of ['+1 and F-9, which is mapped to R1 at ['+3a and -7,
leaving two points at the intersections of (F+5, T-5) and (Ts9, T-1}.
The peint Ri is mapped to the intersection at (I+7, T-3), and so on.
Since at each mapping the point proceed to the third point in the
ahead, the multi-periodicity p is equal to 3.

Turning to the very thin fourteen islands at K=3.10, we sitart from
the point Ro*(Pe>0) at the interaction of (fo, I'-7), which is mapped to
R1* at the intersecton of {I's2z, I'-5}. Then Ri* is mapped to Rz* at the
intersection of ([+s, [-3), apparently leaving three points between.
Héwever, we notice the two of them belong to the orbit started at Ro-
{(Pp<0) at the intersection of (To, I'-7). Thus, in this case the multi-
periodicity p is equal to 2.

The 22 1islands observed at K=1.60 were identified as two sets of
period-11 orbits. Taking Ro* at the intersection of (I'+s, -5} in the
first quadrungle, we can find that Ro* is mapped to Ri* through which
F-3 passes, leaving three points between them. Note that two of them
belong to the orbit started at Re- in the third guadrungle, which is
reflection of Ro* with respect to the origin. Therefore, the multi-
periodicity of this orbit is p=2.

Now, we consider the difference between odd and even periodic

orbits. Concerning the odd periodic orbit, we start from the peint Re*

30




with P>0 at the intersection of (To, TI'k) with k odd. Then, applying the
mapping with [k] iterations, we can obtain a complete set of stable
points. However, reflecting the Ro* with respect to the origin, we
always find Ro- with P<0 which belongs to another set of stable points.
We can regard Ro- as the intersection of (I'x, [o) which is the replace-
ment of (To, Tk). Therefore, intersections of I'; and I'k determine two
sets of stable points of odd-period. As for the even periodic orbit, we
first éonsider the intersection of (Fj, Tx) with j and k odd in the
first quadrungle, which determines a stable point Ro*. By iterating the
mapping by |j-k|, we can obtain a set of even periodic points. Now, the
reflection of Ro* with respect to the origin gives the point Ro~ in the
third quadrungle. We can also regard Ro- as the intersection of (Ik,
I';) which is the replacement of (['5, k). Unlike to the odd period
case, Ro- belongs to the set of periodic points generated from Ro*. The
difference of odd and even periodic orbits are as follows

the replacement of (Teven, ILoda) to (lodd, Teven) gives rise to the
reflection with respect to the origin and determines a point belonging
to another set of stable peoints. But the replacement of (Toad, Foaady
only causes the reflection and does not generate another pair of stable
points. Same things hold for the intersections of (Ceven, Feven).
Therefore, intersections of Feven and lodd determine two sets of stable
points of odd period, while intersections of I'odd and Todad determine a
set of stable points of even period and those of leven and leven define
a set of unstable points of even period. These distinctive natures come .
from the anti-symmetric property of the transformation function h{X}.

The analysis described in the above is sufficient to convince us

31



the usefulness of the information on symmetry curves in the studies of

island structure of the 2-D area preserving maps.
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Caption of Figures

Regular and chaotic orbits of the standard map at
The symmetry curves I'xn of the standard map at
0<n=<7

The symmetry curves X;n of the standard map at
0<n<7

Regular and chaotic orbits of the standard map at
The symmetry curves I'in of the standard map at
0<n<6

The symmetry curves J+n of the standard map at
0<n=<6

Regular and chaotic orbits of the standard map at
The symmetry curves T'sn of the standard map at
0<n=7

The symmetry curves T'yn of the standard map at

0<n=<6
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