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Abstract

Diffusion coefficient for stochastic ion motion in a lower hybrid
wave is derived analytically by use of the characteristic function
method. The renormalization calculation is carried out successfuly to
account for effects of the higher order correlation. Numerical observa-
tion of the diffusion process confirms the expectation that the
renormalized diffusion coefficient describes correctly the stochastic
properties of the systems even in the region of the small séochastic
parameter, except where the accelerator modes manifest their influence

upon the chaotic orbits.
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% 1. Introduction

Stochastic properties of the nonlinear wave-particle interaction
plays critical role in further heating of plasma by waves. Under the
action of external magnetic field, even a single mode of plasma wave
induces stochastic behavicur of plasma particles, and thus gives rise
to heating of plasma. Studies of such stochastic heating process have
been carried out by Fukuyama et.al [1] and Karney et.al {2]~~ [4] for
the lower hybrid wave. In particular, Karney has examined nonlinear
dynamics of plasma particle under the action of wave by the method of
nonlinear mapping, and has shown by numerical observation that the
diffusion coefficient in the velocity space oscillates around fhe value
predicted by the guasi-linear theory. Antonsen et.al [5]} have obtained
theoretical expression of the diffusion coefficient by applying the
Fourier path integral method. Karney et.al [6] carried out analysis of
the correlation function and reduced the diffusion coefficient with
correction terms for the guasi-linear term. Their theoretical analysis,
however, is valid only for asymptotically larger wave amplitude.

Now, in the recent years, statistical properties of the two
dimensional area preserving map have been investigated extensively for
the case of the standard map [7]ev [12]. Meiss et.al [9]1~/ 1107 have
carried out rencrmalization calculation for principal terms of the
characteristic function. Ichikawa et.al [12] have confirmed that the
renormalized diffusion coefficient reproduce the numerically observed
result fairly well even in the small stochastic parareter region,
except in the sharp region where the accelerator modes give rise to

anomalous enhanced deviation from the theoretical value.



In the low dimensional nonlinear dvnamical systems, coexistence of
the regular motion and chaos violates the perfect ergodicity of the
phase space. Transport process in such system has been the central
probiem in analyzing stochastic properties of the low dimensional
nonlinear dynamics. We have been studying the interplay of the accele-
rator orbits and the chaotic motions of particles in systems described
by the standard map.

Although the lower hybrid wave heating method has been well
established as one of the major technology to heat plasmas up to the
level of Lawson's criterion [13], still it stands as one of the basic
problem in the theoretical physics view point. The purpose of present
paper is to carry out the rencormalization analysis to provide the
theoretical expression of diffusion coefficient, which is valid in the
small wave amplitude region, and to compare the result with numerical
observation. Presenting the plasma wave heating map in the second
section, we will carry out the renormalization analysis in the third
section. We compare our theoretical result with numerical observation
in the fourth section and identify the enhanced contribution of the

accelerator modes. The last section present concluding remarks.

§ 2. The Lower Hybrid Wave Heating Map

We consider the electro-static wave
- A
E =Koy cos(kiy ~wt) 1)

travelling perpendicular to the externally applied static magnetic



-
field B = Bd@ in the z-direction. Motion of particle with mass M and

charge g is described by a Hamiitonian
H=1271% - sin(y-pt) 2)

where r, d and ) are the normalized Larmor radius, amplitude and

frequency of wave, given as

L\ ar 2y g2 ke E _ W
SIS S ~ AR

respectvely. The length and time are normaiized by kl'l and the ion
cyclotron freguency Qi=qBo/M.

Firstly, following Karney’s analysis, we reduce the lower hybrid
wave heating map to describe the present dynamical system. Introducing

normalized magnetic moment I and gyrophase of particle w as

he o, el

)

we can express the Hamiltonian 2) as

H = I = dmimjm(ﬁf)/\wfb(mﬁhl)t) 5

where Jn(x} is the m-th order first kind of Bessel function. Choosing n
as the closest integer to the wave frequency ;>, we carry out a

canonical transformation with a generating function



F= (nw'—vy) I 6)

which gives rise to the transformed Hamiltonian

H=-S]- o(i J (j).Tf)svrz ((—'ﬂ)&'r— ([— m)ut) 1)
- m n n

m=-ea
where 8 = P - n measures shift of the wave frequency from the cycle-
tron higher harmonics frequency. Considering the high frequency range
of n®l, we will examine the dominrant contribution from the neighborhood
of resonance m=n. Recalling an asymptotic expansion of the Bessel

function

l
casim ((-tln o~ 0() - ;7-:-

J( d ~ %
mmSGC ) (é—m?ttqnd)lz )

we obtain an approximate Hamiltonian
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where k is an integer, k=m-n&n, and
— )
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g = cos™1 (‘%) 10.¢)

Let us introduce simple transformation of variables as

R-VY=x - il.a)

=
i

@
1]

ne - W 11.b)

Assuming change of the Larmor radius is negligible during particie

interacts with wave, we may expand I into a Taylor series, and can

reduce eq.9) to
e T Y [ (T
Zw,ms(p--v*rr—krf) ~$4) sim (nm -§ ~kt)

.k:-—ao

Finally, changing the scale of energy, we obtain the Hamiltonian

M=-SP ~AD cos(p-vr-kp—gp)sn(nmb-ke)

=40

13)

- with

L "

Here, it should be noticed that change in the Larmor radius is account-
ed for only through /0. and the quantity r in the parameter A is
regarded as a constant. Furthermore, the summation over k is extended

over infinite sum under the assumption of smallness of nonresonnant



contribution. The dynamical variable’)o is an effective Larmor radius,
and the variable € is the phase of wave at the particle gyrophase w=r.
Lastly, it 1is convenient to introduce auxiliary variables i and Y

defined as

u:.a-f: ,v=e+f> 15)

The Hamiltonian equation for the variables u and v are

d . 3 = 4 _ 2=
IEU —IM , Zf:—u_'a'er 16)
with
M=2M=35u +A swm (LH.(W—@S)Z Cas L(t_cfv)
=0
_Sy LAsm (U (a—d)8) D cosk(Etd)
| IR )

Thus, we can immediately write down the Poincare map on the local

surface of section at the t = (2j~1)x as

Uip = ug + 2n8 - 2rAcos q; 18.a)

ﬁf*' = vj + 2ud + 2nAcos uiy 18.b)
with

jif = 1/2 (Yj - %}) 19.a)




Bi = 1/2 (Yf + %j) 19.b)
The two dimensjonal nonlinear map egs.18.a) and b) were firstly
introduced by Karney to study the stochastic heating by the lower
hybrid wave. The ranges of validity of egs.18.a) and b) are specified
by
l V3 (Tz_ vz)3/2.
y>»1, T—-v»(-{l’) , Ax 20)
Y
The lower hybrid wave heating map egs.18.a) and b) has peculiar
structure that it is not an expiicit map for the dynamical varijables
( f), 8 ) but a map for the auxiliary variables (u,v). The map depends
on the stochastic parameter A and the parameter &. Comparing with the
standard map, we find that the both variables of u and v are subject to
nonlinear evolution. In spite of such complex strdcture, however, it is
straight forward to confirm that the lower hybrid wave heating map

egs.18.2) and b) is area-preserving. We have simply,

1 A som T
g(l'(jq-l, v._.]‘ﬂ )

(u; U}.)

|I
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Furthermore, orbits for the regular motion of egs.18.a) and b) are



determined by
¢ -u = =2nt , Vv, -V = +2mn 22)
vwhich determine the coordinates of the stationary points (“O’Va) at

8+ Acos u, = m , & - Acos v, = -n 23)

Hence, the dynamical variable ﬂ, is given as

fa = /% + (m#n)n = f3 + ST 24)

The value s=0 determines the fixed point f% , while when s30 the
variable }0 increases with the amount sw at each step of the mapping.
Namely, f% with s=0 is the fundamental accelerator mode.

Stabibility of these regular motions are spedified by the tangent-

ial map of egs.18.a) and b). We obtain

Zﬁllj+, - zﬁ;T_ A Lﬂf
AY; AV

* d
! 2TtA s U, Auj
_ 25)
27 f sm U, /- 4-71—2/\25&:1 uos&n?}é A !5
of which residue R is defined as
R=1/2 - 1/4 trace { AT ) 26)
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The stability of the point (uu,rvo) is determined by the condition of
0<R<l. We can determine the stability region of the stationary orbits

(uo, vo) as

Max (ln—ﬁl, |n+6|) < A < Au 27.a)

A = [—;— {( m—§)2+ (n+3)2 +j(( m—S)z— (n+5)z) } % ]‘/2 27.b)

As for the fundamental accelerator mode, even if s 1is specified,
combination of m and n leads to occurence of an infinite number of the

fundamental accelerator mode in the vicinity of
A=NZ%8 28)

where N is the natural number. This is due to the fact that both
variables u and v are subject to the nonlinear mapping. Eq.27.a) and b)
indicate that the stability range is getting narrower for the larger
value of m and n, so the lower (m, n) mode will manifest its dominant

effect upon the diffusion process.

§ 3. Correlation Function and Diffusion Corfficient
Now, assuming that the entire phase space is ergodic, we investi~
gate stochastic properties of the two dimensional nonlinear area-

preserving map, egs.18.a) and b). Regarding the auxiliary variables (u,

11



v) as probabilistic variables, we define the diffusion coefficient in

the velocity space as

D=lm — <(P Paf) 29)

Tow 2T

where < > is an ensemble average of particles in the entire phase
space. Since the map egs.18.a) and b) is periodic in the both variables

u and v, we can define the average <« > as

(FY= f F(u,, v;) du, dv; s0)

Now, one iteration of mapping gives rise to the increment AP -

d

given as
]
A%:;(Auj_dg-)zn)q(cos u3_+'+ cos 15 a1)

The diffusion coefficient eq.27), is expressed in terms of AP as

D—_C "'QMZ(!_ )Cr

1= 7=y

~ 5 ZC’

‘llr‘)

32)

with

(ap,, af

> 33)
T, +7T

The correlation function of acceleration C.C is independent of the

12




initial time To as far as the phase space is ergodic. In deriving the
last expression of eq.30), use has been made of an assuamption that Cor
decays rapidly with t. The correlation function C,t can be calculated

from the characteristic function

Ky (mg my - migsm, )

T K )
. . 34
E(e/x.f)( Lmju..lg_‘_J'FZan U:{;+k)>

j ks

as

Co = 1/2n2A%Re [2X0,0(0;0) + 2Xo.0(1;1) + Xo0.0(2;0)
+ X0,0(052) + No,0(13;-1) + No,0(-151) ] 35)
C = 1/2n?A?Re ['X'C-‘C (110t""0,1;0s“‘,0)

+lx'C-"C (1!01“'0:-1;0""0) + .x't't‘ (01"'10;110-"',0,1)

+ ’X'C"C (0: "'0;1;0, "'01_1) + Xt"‘c (19 T ',O;Os "'031)

+ ’x‘t"c (1,0,"'0;0,"',0,-1) +’x‘t-1— (0!“'001;]40""0)

+’x‘1"t (0$0|°"s"1;1$01"'0)] 36)

The characteristic function specifies statistical properties of the

system described by the given nonlinear map.

13



Since the probability variables (uj, vj) are related each other by
the nonlinear map of eqs.18.a) and b), we can reduce the rank of the

characteristic function. Using eq.18.b), we can express Xy,7 as
7(3.3(0:°"sm3;n01°",n3.)

¥
= 2J°°J (21 A)expi(2un 8+1/2 )

-XJ.J—I(mo,---mJ+P;no,--- Ny, 05, +n‘,}_) 37)
then using eq.18.a), we can reduce X5,3-1 as

.XJ,J-I(IIIO y " "'mj;nv y ...’nj—{)
>0

= Jk(Zu:mJA)expi(ZrchS-l/ka)
k=-¥

Xi-1.3-1(my, - cymp, ymyp  tmping, s, ng +k) 38)
Combining eqgs.35) and 36), we obtain the recurrence formula

,n n_)

‘XJ.J(mea"° J._I! T

lmJ-_’ lmJ;HO I

= z ZJl(zan_A)Jk(Zrc(mJ+f)A) expil [2u(nj+mJ+@)6 +1/2(¢-k)n)
Lo

foo

- Xr-t,3-1(my, - ,mJ,_z,mJ_‘+mJ+ﬂ;na Ty ey, +nJ+k) 39)

14




In order to calculate the correlation function C,z,applying eq.39)

repeatedely, we obtain

Xeop  Bz+1,0,---,0,8o5kwe1,0,---,0,ko)

-~

-

=i. i i i T 51,01, (2uk,8)
k:’

-n 2

-1
J-kh+kn+’(2El A)expl [2x Ei_(lj+1+k;)6
;,o

+ m/Z(lgPIn—kt+ko)]Xn.o(lt+,+ltzkt+,+kt) 40)
Now, the characteristic function‘Xo.o(ma,nD) is evaluated as
Xo,0(m,,0) = 8my,0 8ny.0 41)
upon the use of the definition of eq.30) for “eq.34). B63.x is the
Kronecker's & symbol. Thus, we get the following restrictions for the
indicies ls and ke,
le == 1w, ke = - ks 42)
We can show explicitly that eq.41) corresponds to the random phase
approximation with respect to the initial value {uo, vo). Equation 35)

gives rise to the value of Co=u®A®. The diffusion coefficient 1in the

random phase approximation Da is

15



Do = 1/2 Co = 1/2 w2A% 43)

which is nothing but the guasi-linear diffusion coeficient. The next

crder correlation Ci is reduced from the characteristic funetion

Xio1(ly,Liky ky) = -4 - ¢, (2k,A)J-K, -k, (-2r1,A)

expiiZn(ka—Iz)S + n/z(ko+kz_1o_lz)] 44)

D: = C1 = w®A?[ Jo(2rA)cos2nd - Ji12(2nA)sin?2ud } 45)

wnich is nothing but the result obtained by Antonsen et.al {5] and
Karney et.al {6}. Similarly, we can calculate the correlation C2,
assuning that triple product of the Bessel functions .are sufficiently

smail,as follows,

Dz = Czam®A®[ Jo2(2mA)cosdnd - Ji2(2rA)sin?2rs ] 46)

Equation 46) is the principal term of eq.12) in the reference 5.

Now, let wus turn to evaluate principal tems of the correlation Cr
with arbitrary waiues of <t. Here, since the Bessel functions are
getting asymictically small for the larger indicies as shown by eq.8),

w2 ldentify the principal terms as the tersm reduced by constructing a

factor of Jo{(0) as many as possible in the characteristic function in

16




eq.40). We will examine contributions of the eight components of the
characteristic function of C as given by eq.36).
i.) 'X(l) = x'c,r (1,0,"',0,1;0,"',0)’ 10 = ﬂ'z‘l". = l] kﬂ = ktil - 0.

Equation 42) gives I't = -1, and kg = 0. We can express %{1) as

L T2
T (2nk e Aok (227A) - TT J-fe f,,, (20KGA)
naj
T/
J-katkay (20 {ne1A)expif2n zi ( 3:14k3)6-x] 47)
=

The first factor in eq.47) determines l1=+1. Remaining indicies ( [z,
Ty (‘c-l) and (ki,---, ke-1) are set equal to zero as possible as
many, while the other indicies are assinged to be 1. In general, if we
set kn and €n or kn and {ns1 to be zeto at the same time, eq.47)

vanishes identically, so we have the following restrictions

if kn=0, then %n= fns1 = 0

if dns1=0, then kn=kns1=0 48)

Hence, among the indicies In, we set all the indicies between {n +1 to

fne equal to zero, and remaining indicies k equal to zero and thus we

obtain

17



kn, = -r =ke1 20 —>0nar = o= ley = -1 49)

so that total of (t-2) Bessel functions are reduced to Jo{(0)}=l. Various
choice of n, and n, gives rise to (t-1)(z-2) ways of combinations of

eq.49). Thus, the principal term X(1)p1 is expressed as

T \
’X(l)plE-J14(ZEA)Jn(’C-3)(ZEA)[1+e-1('c-1)4ﬁ5‘+(1:-3) Z e-inmg]ez,(m)mg
n=p
sum (27078
=J13(2rA) [Jo(2mA)]¢T-2) “cin‘(—___)
d2xh) Son (78
+J14(2nA) Jo (T-3) (21A) 3vn (‘2':1:(1:-2)3)
:MCZ';(S)
50)

with ©23.

Another possible choice is to assign %1 to the indicies of ﬂn.

Then, having

k1= ko1 20— Q1= --= fa=1
kn+} = -+ = kp-1 = 0 — ?nu = e = a't-l = -1
< 0n #4041 = -2 —> kn = #1 51)

we can set (t-2) Bessel functions to be Jo(0)=1. We have 2(z-1) ways of

combination, obtaining the corresponding principal termX(l)ez as
X(Dpy = —Jz(ZnA)J12(2nA)Jo("‘2)(21:A)[1+e'“7‘("‘“8

T-2
+ 2 Z e- 148 eiza(T-114
n=/

18




= -J2 (2nA)J1%(2rA)J0 (T-2) (2rA) 2cot(2n8)sin[2n(t-1)3] 52)

The principal term of X(1) is composed of X{1)p1, eq.50)} and
AUpz, eq.52).
11) 2D B Kaug(1,0,-+20,-1,+-+,0), fo==1, [p1=1, kozkes1=0.
Having fz=-1 and k=0, we can express X{(2) es

0o

r e 2 — |
x(2) = 2__ ‘ Z Z 2_ Ju,{, (O)Jk'(ZI!;plA)

l"“'to k'c.--m

!

'c..
Tt rd- (20K ANI<k g (20 T 3Lt dr (2,A)
R {
T
J-kpytky,,, (28 QM,A)expi[ZttZ (£3414k;)8] 53)

J-

vhich determines Q:=-1. In this case, setting
ﬂl = +-o ={@zy = -1 and then ki=-++ = ky_, =0 54)
we reduce (t~1) Bessel functions to Jo(0)=1. If we takd dj=0 or ﬂjo-l.

we obtain only v-2 factors of Jo(0)=l1. Hence the principal term of X(2)

is reduced to
A2, = (Jo(2mA)e 1280 55)

111) X3 =X (0,--+40 5 1,0,++,0,1), &= fcs1=0, kozkeyy=l

Equation 42) gives et=0 and kt=-1. He get

19



%R = Z Z Z Z J¢ (21':A)J—1+k {2n (]1A)

R ol S

T-2
_11,,(2nkfc-1A)J-k_c_,-1(0)';[]; 3-8, (2uk,A)

-1
J-xqek,y, (21 dne1A)expil2n TZ( {5414k;3)8+x) 56)
ral
which is nothing but the expression obtained from eq.47) by the
replacesent of ﬁj-*; -kc-3 and kj—> - 4'1:-.1. Hence the principal term
of 24.58) is given as the sum of X(1)p1, eq.50) and X(1)pz, eq.52).
i) %48 2 Xqeil,-+,0 5 1,0,---,0,-1) 5 Qo= le4120, k =-1, kpe1=l

Equation 42) gives ?c=0 and k.=-1. We have

A4 = z 2_ Z Z Iy, (- 21:A)J1+k,(21td1A)
20

-2
34, (ZEkT_,A)J-kT_,q(O)-ZZ I-4,+4,,, (2nk,A)
!
J-ky itk (2 {n+1A)expil2n Z ( {3414k3)8 57)
J=!

which determines k,_,=-1. In this case, setting

ky=+*+ = ko, =-land then {3 = -+ = {zg= 0 58)

we reduce (x-1)Bessel functions to Jo{0)=1, and obtain the principal

term of X(4) as given by eq.55),

20




X{4)p = X(2)p 59)

V) XE5) = Ko (1,0,05,0 5 0,---,0,1) ; =0, {p1=1, k =1, kp, =0

Equation 42) gives ﬂ.t=-1 and kz:=0' We have

Cad » o

ad
X(5) = Z 2_ z = 2; 3¢, (2nA)-14x, (2n 014)

= ‘T-T-ba k=-oe kr-»:‘m
T-2
Ly -1 (2nky Aok, (~2nA) T{I - +4,,, (2nk A)
-/
Ik ok, (2n {ne1A)expil2n Z ( {3+14k3)8] 60)

J=o
Observing the indicies of four Bessel functions outside of the product

terms, we can reduce (t-1) Bessel functions to Jo(0)=1 by the choice of

L

kn = - =k

e :é-c-], 0 e.nd, then kl

u
—

- e - kﬂ“l

0 and, thenﬂn =ﬂ:=’1

[}
|
[

61)

Since there is v ways of this combination, the principal term of X(5)

is given as

-/
X5 = -512(20A)J0(T-D (2mA)et2TT1E 3 erimawd
n=p
sm{a2xT8)
= =J12(2rA)Jo(T-1) {2rA) - 62)
S (2x8)
Vi) X(8) = Xpp(1,0,+-+, 0 3 0,-+-, 0,-1); €o=0, Ce1Zl, ko=-1, kee1=0.

Having Q-; =-1 and k=0 from eg.42), we get

21



¥4

bo 17 w
x(8) =2 z Z ..ZJl’(—ZnA)Jl:fL-, (2n {14)

[‘3—59 _:_"5.'-00 k"t"?‘ kt_"_—-ﬂ"
-z
J-1.r_l-1(2nk¢-1A)J-kt_l (-2nA) -TZ:(, J-?hi-o“_r (2nk,A)

-1
J-k yeky o, (20 l_nuA)expi[ZnZ(aJu-l-kj }6-x] 63)

J=0
From the structure of indicies of the four Bessel functions, we can

reduce (t-1) Bessel functions to Jo(0)=1. Having t ways of combination,

we can write down the principal ferm of %(¢) as.

A(S)p = ti1?(2mA)JolT-1) (2rA)e- 12T+ 1)E

4

= =J1(20A) ———— (Jo(2wA)) e-1ZR(T+1) 64)
dlzeh

Viii) 71 E‘x{‘t‘(ol"-lotl H 130:"'10) H ao'—_ls 1’-:+1=0, ko=0, kee1=1.

Equation 42) gives lt=0 and kc=-1. We have

& e 9 s
N(T) = Z Z Z ZJ-].{Qf{O)Jk' (2x {14)

d,=""° (_ﬁ-‘-‘-‘“ k,=-w0 L—m:-bl
-/
J- l.c_’(anv;-xA)J-kT_‘-—x 0)-77 J- 4ot bnyy (2nknA)
J=e
-1
Jokptiy,, (2n n+1A)expil2n Z ( {3+14ks)8] 65)

J':.b

which determines 01=+1 and ke-1=-1. Eq.65) is further reduced to
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o0
NLTY = Z Z Z z J-1+2L(2mk,A)Jk,(2nA)

f=0 1 = Lo Ig-r_'::-—Ao
T3
o (2N g1 (2 a )T Ty (g (20 A)
nsy
-2
J-kptkpy (2w {ns1A)expil2n Z ( L3+14kj54+1)8} 66)
§>o

vhich is nothing but the expression of X¢-1,7-1(1,0,---,0 ; 0,---,0,1)
with the relacement of {n—%kn and kn— Cner. Therefore, referring to
eq.2), we get

wm (2 (T-1) 8
AX(p = -J12(2xA)Jo(T-2) (2rA) > ( ) 67)

sw(2w s )

Viii)’x(s) Ex‘t,t(0|."|0,-lg ; 1’0""’0) ;l°=-1|Q+1=01 k0=0' kt’fl:l-

Equation 42) gives ﬂ.t=0 and k.=-1. We have

© &L - o %
x(8) -_;z Z Z Z J1+l‘ (0)Jk,(2n: l1A)

o|=‘°° [T-l-.--” k';._p I‘-t‘-':-”

T-2
1o (2nkz1A)d-x ., (0) AT 3- g4 b, (2uk A)
n=/}

7!
J-ko+k (2ufner1A)expif2n { .an-&kj)&m] 68)
Lk T3

=

which determines Qx=-1 and ke-1=-1. Equation 68} is reduced further to

[7-}
X&) = Z_ Z z J1sq, (Zuk A)Jx ( -2mA)

k- e A -I_-ao

T3
J-x.c_,(—zm)J-k.,_z-l(ufZ-c-m)-Tr J-ty,, 4L, (2K

n=f

h-H A)
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T-2
Jkyek,,, (21 Lnv1A)expilzn 2. ( Lyartkye1)84n] 69)
il
which is nothing but the expression of %¢-1,¢-1(1,0,---,0 ; 0,---,0,-1)

with the replacement of In——%kn and kn——9«fn+1. Therefore, referring to

eq.64}, we get

X(8)p = =J1(2rnA) (Jo{2rA))T-lg-1270TS 70)

(aw A}

Summerizing the results obtained in the above, we can determine
the principal terms of the correlation Cr from eq.36) and by carrying
out the summation over Ct in eq.32), we obtain the renormalized

diffusion coefficient as

D

— = AMA,8)-1{1-Jo2 (2uA)~4J2 (2rA)J12 (2uA) cos2nb}
Oa
- ACA,8)-2{4712 (21A) sin2 2us
~4J14(21A) (Jo (2nA)cos2nd-cos428)} 71)
with the abbreviation of

A (4,8) = 1-2J0(2nA)cos2u8+Jo? (2nA) 12)

where Dq=n?A?/2 is the quasilinear diffusion coéfficient. He may

disregard the product ferms with three Bessel functions in the numera-
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tor of eq.71), giving rise to the expression of

— = A(A,0)-1(1-Jo% (2rA) )~ A(A,Q)-24J12 (2nA)sin? 2n6 73)
Q
Yhen 2uA®»l, assuming the smallness of the Bessel function, we may
reduce eq.73) to the approximate expressicn of

D

— ¢ 1+2J0(2mA)cos2ub+2J02 (2nA)cosdnd-4J12 (2nA)sin?2nd 74)
[DN
which recovers the results obtained as eqs.43), 44) and 45). It should
be noticed that eq.74) indicates critical improvement over the results

given by Antonsen et.al [5] and Karney et.al [6] who gave the following
expression for the diffusion coefficient,

D

— o, 142J0(2nA)cos2nd-2J12 (2nA)sin22nd 75)
Da.
Even in the valid region of 2mA®»1, eq.75) can not account correctly the
diffusion process for the phase parameter of &=1/4.
We conclude the present section by emphasizing that the renormali-
zed diffusion ccefficient given as eq.73) is expected to be valid down

to the small wave amplitude region over the entire range of phase

parameter &.

8 4. Comparison with Numerical Observation

In order +to confirm our expectation phat the renormalized diffu-

sion coefficient, eq.73), describes correctly the statistical propert-
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ies of the lower hybrid wave heating phenomena, we will carry out some
detailed comparison of the numerical observation and the theoretical
prediction. Karney {4] has reported the diffusion coefficient of the
lower hybrid wave heating map on the basis of numerical observation of
the correlation function Cy. We carried out the direct measurement of
the diffusion coefficient by distributing 100x100 particle uniformly
over the region of {-n,mlx[-w,m] in the (u,v) phase plane. We proceeded
up 1000 time steps to measure the diffusion coefficient. We illustrate
in Fig.1l.a), b) and c)} the observed diffusion coefficient for the phase
parameter 6=0,11, 0.23 and 0.47, respectively. The real 1lines are the
theoretical prediction of eq.73)}. The crosses indicate the estimated
values from the data presented by Karney [41].

In these figures, we indicated by the vertical lines where the
accelerator modes exist. In particular, the hatched regions indicate
the region where the fundamental accelerator modes exist. In Fig.l.c),
in the range of 0.53%A<0.60, we can not determine the diffusion
coefficient because of the contribution of accelerating particles. In
the same region, Karney [4] observed sharp enhancement of the diffu-
sion, of which numerical values are indicated in the outside of the
frame. The numerical observation confirms our expectation that the
renormalized diffusion coefficient is wvalid down to the relatively
small value of the stochastic parameter A except for the small value of
the phase parameter &. We reserve ourselves to account for the dis-
crepancy of the observation and the theoretical result at the &=0.11.
At the intermediate value of &21/4, the second term of eq.72) dimin-

ishes its contribution, and thus gives rise to suppression of the
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amplitude of deviation from the guasi-linear diffusion coefficient. In
Fig.2, we indicate the asymptotic behaviour of the diffusion coeffi-
cient in the region of 2mA»l. Here, we observe that the case of 6=0.23
chows asymmetric oscillation around the quasi-linear limit, which
indicates effect of the of Jo2(2mA) term.

Generalizing method of Meiss et.al, we have obtained the renormal-
ized diffusion coefficient in the lower hybrid wave heating process,
which is wvalid in wide range of the wave amplitude and fregquency.
Comparison with the numerical observation indicates that the accelera—
tor modes cause the anomalous enhancement of the diffusion process. We
will discuss the important problem of the interplay of the accelerator
modes and stochastic behaviors of the low dimensional nonlinear
dynamical systems in the separate paper.

In conclusion, we are oblidged to Professor Cary and Dr. Karney
for their stimulating discussions at the occasion of the US-Japan JIFT
workshop on the Low-Dimensional Nonlinear Dynamics and Applications to -

Plasma Physics at Boulder, held during July 24-28, 1888.
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Fig.1.

Fig.2

Captions of Figures

Comparison of numerical observation and theoretical values of
the diffusion coefficient for a) &=0.11, b) 8=0.23 and ¢)
6=0.47. The black circles indicate the present results for
103 time steps evolution of 104 particles uniformly distribu-
ted in the (u,v) plane. The crosses are the converted points
from Karney’s result. The vertical arrows indicate the range

vhere the stable accelerator mode exists.

Asymptotic behaviour of the diffusion coefficient in the

region of 2mA»l.
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