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Abstract

Three dimensional equilibrinm and breaking of magnetic snrfaces due to
the finite beta effect in a 1=2 heliotron/torsatron configuration are studied by
using a newly developed three-dimensional equilibrium code. The breaking is
significantly suppressed as vy, ( pitch parameter ) becomes smaller. An in-
ward shift of the plasma by using the vertical ficld and elliptic ( vertical )
shaping using the quadrupole field can also suppress the breaking.
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I. Introduction

One of the main targets of the present (ATF)! and the next step (Large
scale Helical Systern)? helical devices is to obtain a high beta plasma, such as
525 %, where B denotes the averaged valie of B. It is known, however, that
a non-axisymmetric toroidal finite beta equilibrinm does not necessarily regu-
larly nest magnetic surfaces.3 7

As a measure to define the equilibrium betfa-limit of helical systems, the

amount of the shift of the magnetic axis due to a finite pressure effect

a
(Shafranov shift) A (B) is often used, specifically, AS(B)<-—2‘P—, where a,

is
the average plasma minor radius.! However, we should be careful against the
breaking of magnetic surfaces in an equilibrium caused by the symmetry-
breaking of the configuration, which is specific to a non-axisymmetric torus.
In a helical system, the outside of the outermost magnetic surface is the re-
gion with magnetic islands or ergodic field lines even in the vacuum field.
What should be analyzed is, therefore, how largely the ergodic region ex-
pands in a finite beta equilibrium. The breaking of magnetic surfaces (ap-
pearance of magnetic islands) in the finite beta equilibrium is caused by the
plasma current which induces error poloidal magnetic fields in resonance with
rational magnetic surfaces.

The plasma current (especially the field-aligned current or Pfirsch-
Schiuter current) is important in two points in a helical eguilibrium. One is
its dipole moment that generates the vertical field, which induces the shift of
the magnetic axis. The other is the generation of the resonant error fields
mentioned above. A number of poloidal modes m are included in the error
field due to the toroidal effect. In the case of an axisymmetric torus, the
toroidal mode number nr of the error fields is limited to be 0. Therefore they

do not resonate with any rational surfaces except for a very special case with
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the rotational transform 1=0. Omn the other hand, in the case of a non-

axisymmetric helical torus, » can be harmonics of the pitch period number M,

thus some error fields can satisfy the resonant condition 1= L inside the plas-
m

ma region.

In the finite beta helical equilibrium it may be conceived that, when B is
rather low, the plasma automatically chooses such a configuration that the
current distribution is suitably adjusted through the deformation of the shape
of the magnetic surfaces. As a result, an equilibrium is reached (or very
closely reached) in which the integrated error fields do not generate islands by
resonant effects, and at the same time, jXB=Vp is satisfied everywhere self-
consistently. It is also conceived that, when B becomes rather high, a transi-
tion occurs at which an equilibrium allowing the generation of islands can be
a lower energy state than the one kecping clear magnetic surfaces by a com-

plicated current distribution, thus the breaking of magnetic surfaces occurs.

A number of computer codes have been developed and actively used to
obtain and evaluate three dimensional (3D) helical equilibria. Some examples
of them are BETA® and VMEC?, which use Lagrangean coordinates, and
Chodura— Schluter’® and NEAR!!, which use Eulerian coordinates. Howev-
er, these codes assume the existence of clearly nested magnetic surfaces, ex-
plicitly or implicitly. Thercfore, even though the breaking of magnetic sur-
faces in finite beta helical equilibria is a crucial problem, it remains not to be
clarified. Several efforts have been addressed to evaluate numericaily the
breaking so far (for example, ref.12). This paper describes results of another
approach'3.

In the present study, we analyze quantitatively 3D equilibria and the
magnetic surfaces breaking due to finite beta effect for a toroidal /=2

heliotron/torsatron configuration with a rather low aspect ratio. For this pur-
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pose we have developed a new 3D magriete-hydrodynamic computer code
(HINT) which obtains a currentless helical equilibrium by a relaxation
method (an initial value method) with a fourth-order accuracy scheme in a
free-boundary Eulerian coordinate system. The coordinate system rotates
with the same pitch as the helical coil. The poloidal boundary is assumed to
be rectangler and a perfect conductor; the plasma pressure is null there. The
calculation region covers the outermost magpetic surface and a part of the
outer ergodic vacuum region. Since the details of the numerical scheme are

described in other papers'®'415, we do not reproduce them here.

II. Vacuum Field

Before going to the finite beta equilibrium, we describe the characteristic
of the vacuum field in this section. We examine a configuration of
M=10/1=2, and we assume that the major radius of the center of the helical
coil R,=4.0(m) in the following. The coil current is approximated by a thin
filament. The axisymmetric external poloidal fields are expressed by
cocfficients of the multipole expansion at the center of the helical coil. We
examine the independent control of magnetic surfaces by the external vertical

field component and the quadrupole component.
A. Vertical field B, control

Shown in Fig.l (a)-(d) are the vacuum magnetic surfaces of a
configuration with y,=1.21 (the minor radius of the helical coil a,=0.97(m))

for four cases of the position of the magnetic axis where the external uniform
. . M1 _ R, . )
vertical field B, is changed; y .= TA and Ac=-a— is the coil aspect ratio.
(4 c

The figure shows the cross section at the toroidal angle ¢=0. The radial posi-
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tion of the magnetic axis corresponds to R;=4.01,3.89,3.76, and 3.63(m),
respectively. (Precisely speaking, the magnetic axis has the structure of the
belical axis, although the scale is small. Here, R, is described by the position
of the averaged center of the "small” helical axis.) Excessive inward shift of
the magnetic axis practically gives rise to serious problems, such as an onset
of instability due to the lack of the magnetic well, or an insufficient clearance
between the plasma boundary and the helical coil when the finite width of the
helical coil is taken into account. However, in this paper we examine the ef-
fect of the shift for a rather wide range in order fo investigate the tendency of
the characteristic of the equilibrium solutions.

Corresponding change of the rotational transform versus A, is plotted
in Fig.2, where A, is the amount of the shift of the magnetic axis measured
from the coil center R, (=4{m)), and 1y and 1, are the rotational transform at
the magnetic axis and the plasma boundary, respectively. The minimum of
1o (A~ —0.15(m)) corresponds to the case in which the position of the
magnetic axis almost coincides with the center of other surfaces.

The average minor radius of the outermost magnetic surface a, versus
A is plotted in Fig.3. a, shrinks when the magnetic axis is shifted either
excessively outward or inward. Also plotted in Fig.3 is , for a configuration
with y,=1.31. &, remarkably increases when v, is increased.

The radial profile of the magnetic well W(r) for the y.=1.21
configuration is plotted in Fig.4(a) for the different values of B,. Here, W is

defined as W(F)E—qm[%)j—(ax 100 (%) where the specific volume

U= (%) _f % is evaluated on a surface, U(0) denotes the value on the mag-
N

netic axis and U(r) denotes the value on the magnetic surface with average ra-

dius 7. A local magnetic well exists when dW/dr is positive. The hill in-
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creases as the magnetic axis is shifted inward.

Figure 4(b) shows the radial profile of o f %l—), which denotes the
1pitch

. s di .
variation of f — on a magnetic surface, namely,
1pitch

<(f-§)2>-<(f-‘—§)>2
<(f4)>

where <> denotes an average on a surface. The variation is directly related

with the magnitude of j,, (Pfirsch-Schluter current) through the relation that

Ju
B I.dF (f

Ip zfch
where

Mf—%f f

Ipztr.‘k lpztch lpm:h

The variation o, as well as the magnetic well W, changes significantly as the
shift of the magnetic axis. It rapidly and monotonically decreases with inward

shift.
B. Quadrupole field B, control

The quadrupole component of the external field B, controls the elliptici-
ty of the magnetic surface. Figure 5 (a)-(c) show different shape of magnetic
surfaces for three cases of B, for the confiruration with y.=1.31 and
Ry=4.0(m). The magnitude of the external quadrapole field B, is described
by a ratio on that of the quadrupole ficld generated by the helical coil. There-
fore, for the case (c) in Fig.5, for which B,=~100(%), the quadrupole field
of the helical coil is cancelled by the external B, near the coil center, thus the

averaged shape of the magnetic surfaces is almost a circle. The correspond-
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ing profiles of i, the magnetic well W, and o( f %), are plotted in Fig.6.
1pitch

As the averaged magnetic surface becomes prolate (vertically elliptic}, the

depth of the magnetic well, as well as i, reduces. The magnitnde of

o f %—l~) also reduces, but not as significantly as for the case of B, control
ipitch

shown in Fig.4 (b).

C. vy, dependence

The plasma aspect ratio decreases as vy, is increased, as is shown in

Fig.3. The profiles of ., the magnetic well W, and o ( f %), are plotted in
ipich

Fig.7 for two cases of y. ( y.=1.21 and 1.31, and for both cases, Ry=3.9(m),

and B,=0 ). As v, is increased, () prominently decrcases, and the well

depth increases. However, there is no remarkable change in af _f il—).
1pitch

INl. Finite Beta Equilibrium

An equilibrium calculated by the HINT code is compared with that by
the VMEC code!® for the same configuration ( y.=1.34, R;=4.0(m), and the
pressure profile is p(¥,)=po(1—¥,)* ) in Fig.8, where the shift of the mag-
netic axis A () normalized by the initial major radius R(0) is plotted versus

g at the magnetic axis. The agreement is fairly good.

In Fig.9, the deformation of the shape of magnetic surfaces accompany-
ing an increase of B is shown for the case with vy.=1.21 and Ry=3.76(m).
The pressure profile is assumed to be p(¥,) =po(1—,)°, where ¢, is the
toroidal magnetic flux normalized to be 1.0 at the plasma boundary. The
pressure profile is kept while the breaking of magnetic surfaces, as will be
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described in Section IV, does not occur. We stop Increasing § in the equili-
brium calculation when the breaking of magnetic surfaces due to finite beta
effect becomes prominent. Clear magnetic surfaces are kept up to relatively
high B ( B=6% ) in this case. The corresponding profiles of the plasma pres-
sure and the toroidal current are shown in Fig.10.

The change of profiles of the rotational transform, the magnetic well,

and o( | %) with B is plotted in Fig.11 (a)-(d) for the cases with y,=1.21
1pitch

and Rp=4.01,3.89,3.76, and 3.63(n). The rotational transform at the mag-
netic axis i, increases as _B_ is increased, and that on the plasma boundary .,
decreases for the “standard” case such as (a) and (b), namuly, Ry=4.01 and
3.89(m). On the contrary, for strongly inwardly-shifted cases such as (c) and
(d), for which the magnetic axis is located on the inner half side of the po-
loidal cross section of the outermost magnetic surface, 1, decreases as B is in-
creased. This difference may be due to the difference of the change of the
geometrical shape of magnetic surfaces near the magnetic axis when E Is in-
creased. The magnetic well is rapidly deepened for every case as B is in-
creased, which causes self-stabilization if sufficiently deepened. Compared

with the changes of the rotational transform and the well, the values of

o f %) do not significantly change when B is increased, and keep the
ipitch

characteristic of the vacuum field that its value is smaller as the inward shift is
larger.

The total flux of the positive component of the toroidal current, which is
equal to that of the negative component since a currentless equilibrium is ob-
tained, is plotted versus 8 in Fig.12. The flux becomes smaller for the inward-
1y shifted case.

The shift of the magnetic axis due to beta effect A (B) normalized by the
initial average plasma radius a, is plotted in Fig.13. For this configuration,
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— a,
the equilibrium B limit is determined by the condition of A (B)< TP, except

for the cases with Ry=4.01 and 3.95(m).

TV. Breaking of Magnetic Surfaces

In this section we discuss the appearénce of magnetic islands in a finite
beta equilibrium, and ergodization of magnetic surfaces as a result of the
overlapping of islands. The value of B at which the breaking occurs depends
on many physical parameters. In this paper we examine the breaking in a
rather practical way. Namely, we examine its dependence on v, and the exter-

nal field B, and B,,.
A. Island Formation and Ergodization

Let us study with the first example with a configuration for y,=1.31 and
Ry=3.95(m). The vacuum ficld has clear magnetic surfaces up to the outer-
most surface. In Fig.14(a), magnetic surfaces of this configuration for
B=1.8% are shown. Clearly nested magnetic surfaces are kept perfectly up to
the outermost magnetic surface at this low beta equilibrinm, although the po-
sition of the magnetic axis has already shifted significantly from that for the
vacuum field. However, as § is increased up to 2.8 %, as is showna in
Fig.14(b), magnetic islands appear on the plasma boundary. The resomant
condition of the island can be written as =kM/m, where m is the poloidal
mode number, and k is any integer. In order to identify the mode number of
each island, the corresponding resonant position {(for the fundamental case
k=1) in the « profile is also plotted in Fig.14(b). (The islands with only odd
number of m are observed in Fig.14(b). But note that it is accidental; it

depends on the choice of the start positions of traced field lines. Islands with
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even m, such as m=10,12,etc, actually exist between odd islands.) When 8 is
further increased, the width of the island increases. Meanwhile, as is shown in
Fig.14(c) for B=3.5%, ergodization of magnetic surfaces is indnced by the
overlapping of islands.

In this case, the breaking of magnetic surfaces appears at lower g than

. a
that at which the shift of the magnetic axis exceeds —Zp—, thus the occurence of

the breaking imposes more severe equilibrium B limit.
B. Numerical Check

In order to confirm that the appearance of islands, such as observed in
Fig.14 (b) and (c), is not due to a numerical error, but due to a physical
mechanism, we make two kinds of check. The first one is the convergence
check, where calculations with two different mesh sizes { 73X73X29 and
49x49x21 for half pitch period ) are compared for the conﬁguraﬁon with
v¥.=1.21 and R;=3.95. The results are shown in Fig.15 for B=2.5% and
3.5%. The second one is to check a numerical error arising on the boudary,
where calculations with two different boudary positions (the size of poloidal
cross section is 1.0(m)X 1.8(m) and 1.4(m)X2.6(m) ) arc compared in Fig.16
for B=2.1% and 3.2% . In both checks the results are very similar, which
supports that the results are physical.

C. Suppression of Breaking by Control of B,, B,, and v,

The extent of the breaking of magnetic surfaces is summarized in
Fig.17,18 and 19. Figure 17 is for the case with y.=1.21 for different posi-
tions of the vacuum magnetic axis when B, is changed, where O denotes that
clear magnetic surfaces are kept, A denotes the appearance of islands, and X

depotes that the width of the ergodized plasma boundary is more than about
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.25 of a,. The breaking is remarkably improved by the inward shift. Figure
18 again shows results for the B, control, but for y.=1.31. The same tenden-
cy of improvement by the inward shift is observed. Comparing Fig.17 and
18, it is noted that the breaking is significantly reduced, in general, when v, is
decreased, namely, the coil aspect ratio is increased.

Similarly, Fig. 19 (2)(b) shows the effect of B, control for the case with
v.=1.31, (a) for Ry=3.8 and (b) for R;=4.0. The breaking is improved by

controlling the shape vertically elliptic in average.

V. Discussion and Summary

Several discussions have so far been made on the fragility of the vacuum
field of the low aspect ratio heliotron/torsatron configuration'’+18:1% _ Espe-
cially it is pointed out that clearly nested magnetic surfaces can be restored in
the outer ergodic region by properly controlling the winding law (the modula-
tion) of the helical coil, or by controlling the coil currents of several pairs of
axisymmetric poloidal field coils (equivalently, the multipole components of
the external field, such as the dipole or quadrupole components) . In fact,
significant effects of multipole components of the external field on the vacu-
um magnetic surfaces are also observed in this work. Let us here compare
the fragility of magnetic surfaces of the vacuum field with the fragility for the
non-zero pressure case. For this purpose, we define the fragility of the vacu-
um field by the average minor radius of the outermost surface a,, .

First, we examine the effect of the vertical field B, on the fragility. As
is shown in Fig.3, @, increases when the magnetic axis is shifted inwards in

the range of A;=—0.2(m) . In the meantime, as we have seen in Fig.17 or

18, the fragility for the finite pressure case is significantly improved with the
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inward shift of the magnetic axis. Thus, we can say that the improvement in
the vacuum fragility in this range ( i.e., A ski=—0.2(m) ) has the similar ten-
dency with that for the finite pressure case. When the inward shift exceeds
—0.2(m) , however, a, of the vacuum field decreases. On the other hand, the
improvement for the finite pressure case continues even when the inward shift
goes beyond ~0.2(m) .

Next, we go on to the effect of the quadrupole field B, on the fragility.
We have observed a similar tendency of the improvement in the fragility both
for the vacuum ( see Fig.6 ) and the finite pressure case ( Fig.19 ) . Namely,
the vertically elongated configuration is favorable for both cases.

Finally, we shall examine the effect of y, . The fragility is deteriorated
for the vacuum field when v, is decreased, as is shown in Fig.3. On the con-
trary, the fragility for the finite pressure case is significantly improved when
Y. Is decreased, as can be observed by comparing Fig.17 and Fig.18. This in-
dicates that the tendency is completely opposite for the change of v, .

These investigations concludes that the tendency of the improvement in
the fragility does not always the same for the vacuum and fnite pressure

Cascs.

The main conclusion of the paper is that we need to analyze the breaking
of boundary magnetic surfaces due to the finite beta effect in cvaluating the
equilibrinm beta limit of a helical system, in addition to the usual standard of

the Shafranov shift A,(8)< fzi’-

We have found several methods to suppress the breaking of magnetic
surfaces. The breaking is reduced
(a) significantly as -y, becomes smaller,
(b) as the magnetic axis is shifted inwardly by controlling B,
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(c) as the plasma is vertically and elliptically shaped by adding B, com-

ponent.

The inward shift of the magneiic axis in a low aspect ratio
heliotron/torsatron is favorable from another point of view; the significant im-
provement in the amount of loss of particle orbits?, if the shift is not exces-
sive. However, a further careful study on the stability, as well as the clear-
ance between the plasma and the wall, is necessary to determine the limit of

inward shift.
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FIGURE CAPTIONS

Fig.1 Vacuum magnetic surfaces of the M=10/I=2 configuration with
Y¥.=1.21 and R, =4.0(m) for four cases of the radial position of the magnetic

axis by a control of the vertical field B, .

Fig.2 The rotational transform at the magnetic axis 1y and that on the boun-
dary v, versus the radial position of the magnetic axis A ship Tor the vacuum
field of the same configuration with Fig.1. A ship 18 measured from the central
position of the helical coil R, =4(m).

Fig.3 The average plasma radius a, versus A, for y.=1.21 and 1.31.

Fig.4 The radial profile of (a) the magnetic well W(7) and (b) the variation

of f 4 for the vacuum field of the y,=1.21 configuration with five dif-
1pitch

ferent values of B,.

Fig.5 Vacuum wmagnetic surfaces of the M=10/[=2 configuration with
Y¥.=1-31 and R;=4.0(m) for three cases of the elliptic shaping by a control of
the quadrupole field B,.

Fig.6 The radial profile of (a) v (b) W and (c) the variation of f 4 for the
ipitch

vacuum field of the y.=1.31 configuration with three different values of B,

corresponding to Fig.5.

Fig.7 The radial profile of (a) v (b) W and (c) the variation of f —‘;—l for two
1pitch

cases of vy, where Ry=3.9(m) and B,=0.
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Fig.8 Comparison of a finite beta equilibrium calculation by the VMEC code
and by the HINT code, where the radial shift of the magnetic axis is plotted

versus B at the magnetic axis.

Fig.9 The deformation of the shape of magnetic surfaces accompanying an in-
crease of B for the y,=1.21 and Ry=3.76(m) configuration. Regularly nested
magnetic surfaces are kept up to relatively high B ( B=5—6% ) in this case.

Fig.10 Contour plots of the plasma pressure (upper panel) and the toroidal
plasma current (lower panel) corresponding to Fig.9. One dimensional

profile at the midplane is plotted for each contour.

Fig.11 The change of profiles of +,W and the variation of f 4 with B for
1pitck

the +y.=1.21 cofiguration with (a) R;=4.01(m), (b) R;=3.89(m), (c)
Rg=3.76(mm), and (d) Ry=3.63(m).

Fig.12 The total flux of the positive component of the toroidal current versus
B.
Fig.13 The shift of the magnetic axis A (B) normalized by the initial average

plasma radius a, versus §.

Fig.14 Magnetic surfaces of the y.=1.31 configuration (a) for B=1.8%, (b)
for B=2.8% (each island is identified with the corresponding resonant posi-
tion), and (c) for B=3.5%.

Fig.15 Numerical check of the appearance of the breaking of magnetic sur-
faces I : Calculations with two different mesh sizes ( 73X73X29 and
49x49x21 ) for §=2.5% and B=3.5% for the same y,=1.21 configuration
with Rg=3.95(m).
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Fig.16 Numerical check of the appearance of the breaking of magnetic sur-
faces I : Calculations with two different boundary positions (
1.0(m)x 1.8(m) with 49x49%21 mesh and 1.4(m)X2.6{m) with 73X73X29
mesh ) for the same y,=1.21 configuration with Ry=3.95(m).

Fig.17 Summary of the extent of the breaking of magnetic surfaces for the
v.=1.21 configuration with five different A ( B, control ) : O denotes that
clear magnetic surfaces are kept, A denotes the appearance of prominent is-
lands, and X denotes that the width of the ergodized plasma boundary is

more than about .25 of a,.
Fig.18 Similar plot to Fig.17, but for the y,~1.31 configuration.

Fig.19 Similar plot to Fig.17, but for the B, control in the y,=131
configuration {a) with R=3.8(m) and (b) with Ry=4.0(m).
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