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Spatial Structure of Particle-Orbit

Loss Regions in ! = 2 Helical Systems

H. Sanuki. J. Todoroki and T. Kamimura
National Institute for Fusion Science

Furoche, Chikusaku, Nagoya 464-01

Particle orbits and loss regions in both configuration and velocity
space are studied on the basis of adiabatic invariants and guiding center
drift equations. The boundary of loss region is determined from the condi-
tion vhether the drift surfaces for both localizeﬂ particles and transition
particles between localized and blocked particles hit the limiter or not.
Analytical form of loss region boundary for localized particle with 1, = 0 is
obtained. Effects of ripple modulation and electrostatic potential on parti-

cle confinement are alsoc discussed,
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I. INTRODUCTION

A good understanding of particle orbits is very important for predicting
the plasma confinement, high energy particle loss, and heating efficiency in
a helical system. Particle orbits in these systems depend generally on many
parameters such as aspect ratio, toroidal and helical ripples, particle
energy, pitch angle, plasma potential, etc. To study particle orbits,
several techniques of orbit calculations have been discussed. A typical
method is to study the particle trajectries of many particles on the basis of
guiding center drift equations. Another method is to use the adiabatic
invariants. The former requires generally vast computations more than the
latter.

In an asymmetric magnetic configuration under consideration, the momen-
tum of charged particle is not conserved exactly. However, a constant of

-motion associated with a extended canonical momentum has been proposed ! and
applied to study the velocity space loss regions in existing machines z
Recently, Cary et al.® and Todoroki * discussed a more precise theory of adi-
abatic invariants. In this paper we analyze particle orbits and loss regions
by using these adiabatic invariants. An analysis based on guiding center
drift equations is also carried out.

Tn Section 2, the model of calculation is represented. The analytical
scheme of loss region is explained in Section 3. Loss regions in configura-
tion space are studied for several device parameters in Section 4. Effects
of ripple modulation and electrostatic potential are also discussed in this

section in connection with the reduction of particle loss. A numerical cal-



' 6niation based on guiding center drift equations is carried out in Section 5.

The last section is devoted to the conclusions.

I. MODEL OF CALCULATION

We apply the J - invariant method 34 {5 analyze particle orbits and to
study a detailed spatial strusture of particle orbit loss regions in helical
systems. For the analytic form of the adiabatic invariants it is necessary
to specify a form for the magnetic field strength and electrostatic potential
as functions of the coordinates. Here, the magnetic field strength and elec-

trostatic potential are assumed to have the forms

B(¥.8.9) = Bo{v,9) - Bi(¥,8)cos(l8 + Mp), (1)

&{y.0.0) = &), , (2)
with

Bo(¥.9) = Boco(¥-8) - 3

Bi(¥,8) = Boe1(¥.8) . (4)
The adjabatic invariants for this kind of stellarator configuration are given
by 3.4

- ~ — —2 L —_ L -

Ji = oqyp + 4B, /iBim! [+ v )H(y,kz) K(kz)] / k. (k>1) ()

Jr = 83”/3'"% (1 + ¥AHUE, KB - K(ED)), (k< 1) (6)

Jr ~ 8B, %’T‘ Y 2an Y2, k- 1), )

where ¥, is the poloidal flux, ve choose B, = RoBy to be constant, p is the

magnetic moment, g is the particle charge, m is the particle mass, and

==+ . InEgs.(B) ~ (T}, ¢ = + and r indicate the species of a relevant



particle ( 0 = +, positive passing, 0 = —~ , negative passipng ; r ,
trapped ) . K is the complete elliptic integral of the.first kind and I is

the complete elliptic integral of the third kind ;

5 dp
kD) = _ .
ne ) 0 (1 4 wsin®p) (1 - Ksin’p) 2

Also, ve defined the following two parameters for the derivation of Egs. (5)

~ {1 ;
K = (E - pBy + uBi — q¥) /2uBi , : (8)
y=2B / (B - B) , ‘ (9)

where E is the total energy, and k > 1 corresponds to passing particles and
0 s k =1 to trapped particles. If the limit y — O is taken, the adiabatic

invariants {5) and (6) reduce to the conventional expressions
Js = oqty + s%,\/"mus";kﬁr (5 - (10)

I - 16%4/_111#31 (E@D) - (1 - DKW (11)

Since the finiteness of y may have an influence upon particle drift orbits
and loss regions in the systems with large M number or large helical ripple
‘where )r'becomes’small but finite, particularly at the edge region of devices,
the invariant forms (5) ~ (7) should be applied for particle orbit studies
in these systems. In the following calculations, therefore, we use the
invariant forms (%) ~ (7) .

We define the normalized minor radius p for labeling a flux surface
p= @ /Ye)”, (12)

vhere Y. 1s the value of ¥ at the plasma edge. Magnetic field and potential

are specified in the folloving forms ;

ep(¥.0) = 1 + g;pcos @, (13)



e1(y,8) = [{Eh + (8T + 84Mp?) ewp cos 0)2

+ {65 = 8V pDeap sin 6}2]2L , (14)

de(¥,0) = dop" . (15)
where cp = saapz, €a 1s the inverse aspect ratio, sg = a / Ry ( @ is the

plasma radius and Rp is the major radius ) and « is given approximately by
o= (Meg £ 4)V2Me, . (16)

The ripple form, Eq.{14) contains the 1, ! + 1 (6{*") and I - 1 (6f") com-
ponents of helical ripple. This expression, Eq.(14) is discussed in S8 we
note that Eq.(14) reduces to the ¢ - configuration, B; = Boen (1 + ocosB) ,
vhich are used for the transport optimization ' , when 8" = -20a¢ . The

modulating envelope

1+ [(6FY + 68 Pp?) ap] cos §

localizes the ripple to the interior ( exterior ) of the torus, for
S50 880 2 0 ( = 0) . The rotational transform associated vith ¥, in

Eq. (5) is assumed to be

e{¥) = - % = 10 + (Le = to)p? , an

where ¢ and ¢. are the values of ¢(¥) at the location of magnetic axis and

at the plasma edge, respectively. Equations (16) and (17) give ¥, as

oYy = -2 7 M)BoRoo (1 + (te = w)p? / (2t0)} . (18)



. ANALYSIS OF LOSS REGION

The constant - J, surfaces describe drift surfaces of trapped particles
in helical ripples. On the other hand, the constant - J. surfaces give drift
surfaces for passing and blocked particles.

We here explain the analysis of drift orbit loss regions in configura-
tion space by using the adiabatic invariants, (5) ~ (7} . Particle motions
in toroidal helical systems are generally characterized by drift surfaces
defined by the constant- J, and constant- J, surfaces, and the transition
between these two surfaces. To simplify the analysis, we introduce the quan-

tity 4¢ by

i = “—E— , (19)

vhich is related to the pitch angle in velocity space. Then, k% can be
expressed as e (p, 85 ko). The Kk = 1 locus for a fixed value of Ao
is called a transition curve in { p, 8) plane. The interior of the transi-
tion curve is k2 = 1 and drift surfaces belong to the passing and blocked
particles. Outside the transition curve, drift surfaces are characterized by
localized particles.

In helical configurations, the loss region caused by the trapped parti-~
cles is formed both outside and inside the torus. Generally, the loss region
outside the torus is bigger than inside the torus because the drift orbit of
trapped particle is shifted inside the torus due to the toroidal effect. We
here analyze the loss region outside the torus although the loss region
inside the torus can also be studied in the same way. We assume that all
particles start from a position outside the torus ( pp, =) . and a circular

limiter is located at p = ps. We consider the following three cases associ-




ated with the boundary of particle loss.

(a) When po is outside the transition curve, the drift surface is deter-
mind by J, = constant. If the drift surfaces of localized particles kit the
limiter at { ps » 0 ) , these particles are defined as lost particles. This
condition gives a margiﬁal value for Ap or a corresponding pitch angle in

velocity space. From the condition Jr ( po » 7 ; &o) = Jr (ps, 05 o), 1.e.,

W2 (1 + yokB)I(vokG 5 K§) - K(kB))

- 2 [+ wAHOGKE KB - KU, (20)
with the abbreviations of
kzu’:kZ(DO’Tf;RO)’ kg-kz(ps’O;P\O)f

yo = v(po, T, ¥s = Y{ps» 0),

e = €1{py, T), £1s = €1(ps, 0},
we obtain the solution, g = Ag(po) with other parameters fixed. Localized
particles with g > A are confined within p < pe and those with 1p < A; g0
outside p = ps .

(b) Blocked and passing particles exist inside the transition curve. We

here study the particle loss associated with the transition process from a
blocked particle with g = = starting from ( pg, =) to a localized particle.
The confinement of blocked particles depends on whether the localized parti-
cles after the transition can be confined or not. We consider a case that
the blocked particle starting from ( py, 7) moves along J: = constant path,
and cresses the transition curve at (pr, fr) where k¥ =1, and it comes to
the position of limiter { ps, 0) along J. = constant path. These particle

motions are described by the relations

o, 07 5 Ao) = 1, 1)



Jolor, 61 5 &e) = Js(po, = 1 Ao, (2}

Jr{ps, 0 1 &o) = Jelpr, Or ; o). (23)
By eliminating pr and 87 in Egs.{21), (22}, and (23), we have the relations
for %o = A {po) for G = + and A = A {(pg) for & = — , which determine
the boundary of loss reéion caused by the blocked particles with ¢ = = .
Blocked particles with o < A+ and Ap- are confined, and those with &g > As.
and Ap- are lost.

{¢) Here we give the boundary between the blocked particles and the
passing particles. The radial position where the transition curve crosses
the § = O plane is denoted by p = p*. The boundary is given by the follow-
ing relations ;

Jo(p*, O3 Ro) = Js(po, T 5 Ro) (24}
= (1 - e’ £ E) [ (06", 0) + e1l6%, 0)) (25)

From (24) and (25), we obtain &g = Ac.(pg) for ¢ = + and Ao = A.-(pg) for
G = — . Particles with ¢ < Ac and Ac- are passing particles and stay
inside the transition curve.

When the solutions, 4; ( j = a, b+ and ¢+ ) are cobtained, we can
determine the corresponding pitch angle in velocity space at the initial
position from

L2 & o :
SIX0 = T =00 T E feo(po, @) — e1lpo, w)cose) , (26)

where we defined the pitch angle xp at the starting point (ps, 66 = %, ¢o) as

sin®y =pB / (E - ed:) . @

For a specific case of ¢ = 0 , therefore, the loss boundary determined by

localized particles with yp = 7 / 2 is given by



(€opo, T — e1(po, T)){1 - e®elps) 7 E]

=~ [eolos, 0) - e1(ps, O] {1 - ede(po) / E] . (28)

Consequently, we can determine the relationship between &j or xo and pp ,
which describe the boundaries of loss region caused by localized, blocked and

passing particles.

V. RESULTS OF LOSS REGIONS

We now discuss the structure of loss region for several helical
configurations. Parameters of these configurations are shown in Table 1,
vhere the magnetic field strength for all cases is fixed to be 4T and we use
the parameters of existing machine for M = 12 ( ATF )8 and also use the
machine parameters at the design stage % for M = 10 and 14.

We first analyze the loss region in configuration space for the system
with M = 14 . The values of &; ( j = @, b+ and ¢+ ) obtained from Egs.
(20) ~ (25) versus py are plotted in Fig.1. The values of ip corresponding
tokb=0,k=-1,KE =0, and k2 = 1 are also shown in this figure. The
region surrounded by kﬁ =0, k% =1 and k§ = ) curves represents the exist-
ing region of localized particles. Here, we used the parameters ;
E-10keV ,ps=1,8 =0, 8™ =6 =0and ¢ - 0. The curve 2,
indicates the loss boundary caused by localized particles. It should be
noted that the solution A, is independent of the sign of 0 . The curves .
and 2b- vield the loss boundaries caused by blocked particles with ¢ = +

respectively. The boundaries between passing and blocked particles are shown



by Ac. and i, . The difference between these curves, Ab. versus R and Ac-
versus A.. comes from the different shift of drift orbits for ¢ = % , and it
gives an asymmetric structure of loss region around vy = Qor o =7/ 2.
Particle loss diagram in pitch angle and major radius (xo, o) plane are
shown in Fig.Z2 for M = 10 ( broken line ) , 12 ( dotted line ) and 14
( solid line ) configurations. It turns out from these results that the loss
region is sensitive to M - number because of the variation of the ratio
between toroidal and helical ripples, ¢; / & , and the configuration with
large M is generally preferable for the reduction of particle loss. The
loss boundary caused by localized particles with xo = 7 / 2 can easily be
evaluated from Eq.{28) in case of ¢o = 0 . We denote this loss boundary by
pus. Also, we can evaluate numerically the lower limit of loss boundary
( we represent pyp hereafter ) , which is caused by the transition

particles. As shown in Fig.2, we have these loss boundaries ;

pup = 0.2845(M = 10) , 0.4307 (M = 12) and 0.5442 (M = 14) , and
pug = 0.0843 (M = 10), 0.1384 (M = 12) and 0.2157 (M = 14) .

Generally. the loss region can be reduced by adding the side band compo-
nents such as gft' . These components are practically provided by the shift

of magnetic axis due to vertical field, the pitch modulation of helical wind-
ing and so on. We study the effect of side band components on particle loss
on the basis of a model of ripple modulation, Eq.(14) . Particle loss dia-
grams in xo—p plane are plotted in Fig.3 for ¥ = 14 configurations with

560 = 5D = 6§D = 0.0 (@) , 0.1 (b) and 0.2 (c) . The other parameters
used here are the same as the case of M = 14 in Fig.2 . The present results
show that the positive ripple modulation ( 81 > 0and 85V > 0 ) has a
good effect on the reduction of particle loss. Similar results have been

discussed rec:ently.'O

-10-




We next study the effect of radial electric field on the particle
confinement. Particle loss regions in xo—p plane are shown in Fig.4 for
several values of electric potential & in the M = 14 configuration. As for
the potential profile is concerned, we assume a parabolic profile, & = @mf
(n = 2) . The result for & - dpt (n = 4) with & = —2KV is also shown by
dotted line. It turns out that the case of $¢ ~ p* has an influence on the
improvement of particle confinement more than the case of & ~ pﬁ does. Loss
boundaries. pup ( closed circles ) and pup { open circles ) in ®—p plane
are plotted in Fig.5. The analytical result for pus calculated by Eq. (28}
is shown by solid curve in this figure. The region below these curves repre-
sents the particle loss region. Negative potential leads the reduction of
particle loss and the positive potential degradates the particle confinement
in the outside of torus, when the ion motion 1is considered.'! Degradation of
the confinement for some value of positive potential is caused by a large
shift of drift surface from magnetic surface. Generally, the particle éonfi—
nement may be improved for a large potential regardless of its sign due to
large poloidal rotation by E x B drift. For the configurations under con-
sideration in this paper, the occurrence of helical resonance may enhance the

particle losses.

V. NUMERICAL ANALYSIS BASED ON DRIFT EQUATIONS

In this section we study the loss regions in both configuration and
velocity space by solving the guiding center drift equations. The normalized
drift equations can be written in the magnetic coordinates (¥. 0o, x}”

dbo _ 22 2y 9B

—11-



@ o 2. 3B

at = Tag - W * Bon) 5 (30)
g-? = BZDI ? <31)
dow _ _ 8% _ -2 98B

G- E - w8, @)

vith

By, 80, x) = 1 — £,(2¢) %cosh

- [{eeaoy - (667 + 28V ea@n) Vooss)?

+ {88V~ 258 Uy eq(2y) stinB}ZJ]/Zcosn (33)

vhere uB = (I/E)mv? » b = uys(mc / eB) , & is an electrostatic potential, and
=18 - Mp , 8 = teqx + 00, ¢t = to+ 2(te — to)¥ . All gquantities in
Egs.(29) ~ (83) are normalized in the same manner of Ref.[14y .

¥We can evaluate the loss region by solving Egs. (28) ~ (32). Typical
results for loss regions in both configuration space and velocity space at
the position of p = 0.5 are shown in Fig.6a and 8b for the case of M = 14 .,
The same parameters as in Fig.2 are used in the calculations. Also. we
assumed ¢, = tp = 0.58 in Figs.6. The particles are initially distributed
uniformly in the region of pitch angle 40° to 140° and in major radius p = 0
to 1 in the plane of toroidal angle z / 14 , and are assumed to be lost when
they touch the limiter (p = p¢ = 1). Passing, localized and blocked - tran-
sition particles are classified in Figs.B by open circle {C), star (%) and
lozenge (o) , respectively. Loss regions are also represented by the small

mark of each particle (O, %, @) . Therefore, we can easily understand what

12—




kind of lost particle determines the boundaries of loss region. The results
are in qualitative agreement with the results derived by J - invariant

method.

V. CONCLUSIONS

The spatial structure of loss region has been studied by the adiabatic
invariant method for several device parameters. Also we have carried out the
numerical calculations by solving the guiding center drift equations.
Atthough the contribution of finite banana widih to the boundaries of loss
region is not taken into consideration in the adiabatic invariant method, a
good agreement between these two results has been obtained qualitatively on
the spatial structure of loss regions.

Effects of ripple modulation on particle loss have been studied on the
basis of a model of ripple modulation, Eg.(14) . It turned out that the
positive &i*" component has a good effect on particle confinement.

Effects of radial electric potential have also been discussed. Drift
motion due to negative potential reduces a number of localized particles and
consequently leads the improvement of particle confinement. For a positive
potential, however, there is a possible particle loss caused by the
resonances. The present analysis based on the simple magnetic field model
can not be applied directly to a more realistic magnetic field, which
includes the effects such as vertical field, quadrapole field, pitch modula-
tion of heliecal winding. The analysis involving these effects awaits futher

investigations.

-13-
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Table Caption

Table 1. Machine parameters used in numerical calculations

Figure Captions

Fig.1

Fig.2

Fig.3

Fig.4

Fig.b

Values of {&; charactering loss boundaries associated with localized
particles {4,), blocked - localized transition particles ( Ap. for
6 = + and Ap- for 0 = — ), and passing - blocked transition ( Ac.
for 0 = + and 2. for ¢ = — ) are shown as a function of D .
Boundaries of kf = 1 , k§ = 0, kf = 1, and k2 = O are also
plotted. Parameters for M = 14 configuration are used.

Particle loss diagram in pitch angle and normalized major radius (
%0 — p ) plane is shown for M = 10 , { broken line ), 12 ( dotted
line ) and 14 (solid line ) configurations.

Effect of ripple modulation on particle loss. Resulis for M = 14
configuration with Y = 0.0 (@), 0.1 (b) and 0.2 {(c) are plotted.
Boundaries for k5 = 1 are also shown by small dotted lines.

Particle loss diagram in xp-p plane in M = 14 configuration is shown
for several values of @ , vhere & = &yp® is used. Results for

&y %04 with §¢ = -ZKV is also plotted by dotted line. (a)

dp = 0.0, (b) & = -2KV , (¢) & = -4KV . The boundary for if = 1

is also shown by small dotted line.

Loss boundaries corresponding Fig.4, pus ( cloéed circles ) and pus
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( open circles ) are shown in &-p plane. Analytical results for
pie given by Eq. (28) is shown by solid curve.

Fig.6 Numerical results of particle loss region in configuration space
( Fig.8a) and velocity space at p = 0.5 { Fig.6b ) , which are
obtaind by solving drift equations. Parameters of M = 14 configura-

tion are used, but te = ¢¢p = 0.58 and Séil) = 0 are assumed.
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