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Abstract

Analytic expression for the longitudinal adiabatic invariant is
derived for general magnetic configuration. The orbit loss is evaluated
to determine the outermost loss-free surface. QGeometrical factor of the
neoclassical transport coefficients in 1/ regime in helical torus is
calculated by using the longitudinal adiabatic invariant. The dependence
of the pariicle confinement upon the geometrical parameter is investigated
for N=10 configurations; and the improvement by the inward shift of the

magnetic axis is quantitatively clarified.
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§i, Intrecduction

The knowledge of particle orbit is important to understand the plasma
confinement in the toroidal helical devices. Usually the particle orbit
is studied by integrating the drift equation of motion in the given
magnetic field; such calculations are quite complicated and time-consuming
one. The simple description with the use of longitudinal adiabatic
invariant "% is useful in many cases, and the transport theory in the
rare collision case 1s based on such description. However, the analytic
representation of the longitudinal adiabatic invariant J, has been known
only for simple model fields, which are not sufficient for actual magnetic
configurations.

In this paper, the analytic representation for the longitudinal
adiabatic invariant for the general magnetic configuration is presented,
in the convenient form for the numerical calculations for actual magnetic
field configurations. Such expression employs a powerful method to
investigate the particle confinement in the wide range of parameter space
specifying the magnetic field configurations.

Application to the evaluation of the particle loss and to the
calculation of neoclassical transport coefficients in 1/» regime is also
discussed. Especially, the effects of magnetic axis shift by vertical
field, shaping of averaged surface by quadrupole field, and the pitch
modulation of the helical coils are investigated. In the design study of
Large-Scaled Helical System (LHS)Tﬁ} the confinement of single particles
is one of the key issues to choose the magnetic configuration. It is
found that in the low N devices the particle confinement as well as the

MHD beta limit is improved by the inward shift of the plasma. As the




characteristic number signifying the performance of particle confinement
of each configuration the radius of the such a magnetic surface that the
particle starting within the surface never reach to the loss boundary
{outermost lossfree surface) is employed., The application of the
adiabatic invariant analysis to this problem recover the results obtained
in the design study; and it allows us to extend easily to the wider range
of parameters. The investigation is restricted to the vacuum magnetic
field.

In the next section the longitudinal adiabatic invariant in the
helical torus is introduced. The method to calculate the adiabatic
invariant in the actual magnetic field is presented in §3. The method to
determine the largest surface without orbit loss 1s described in §4. The
particle transport in 1/v regime is discussed in §5. The application of
the adiabatic invariant to these problems is given in §6. for the magnetic
field configuration used in LHS design studies, mainly for N=10, y.~1.20
configurations, 7. being the pitch parameter [ see. eq.(6.3) 1. Some
examples for N=8 configurations are also discussed. The summary is given
in the last section. Some formulae useful to calculate adiabatic

invariant and the related integral are given in the Appendixes.

82 Adiabatic -Invariant

We use the magnetic coordinates (y, €. ¢), in which the magnetic
field can be expressed as
B = VyxVo-Vi,(3)xVyp = BVp+ByVE+B,Vy. 2.0

Magnetic lines of force are straight in g9 plane with the rotational



transform ¢ () = dwp/dw in this coordinates. The choice of § and ¢ has
still one freedom. Usually they are chosen so that the covariant
component By and B, of the magnetic field are constant on the magnetic

9 However we do not restrict ourselves to this special choice.

surfaces.
In the helical torus with our interest, the system has many pericd N»1 in
toroidal direction. and the rotaticnal transform per peried is small,
t/N«1. lUnder these assumptions, the particle motion can be separated
into the fast periodic motion in ¢ direction and the slower motion
perpendicular to this direction. After averaging with respect to the fast
pericdic motion in ¢ direction. the slower motion in the poloidal cross

section is described in terms of the longitudinal adiabatic invariant.

The longitudinal adiazbatic invariant J, is defined as

Iy =1, = 515"“;8“@, 2.2a)

for ripple trapped particles, and

2‘/“"m|v;|83 ore. .
j,y = Ji = L B d,O =+ N Yp({lJ), (22b3

®  Here the integration is carried out for ¢ and 8

for passing particles.s
fixed. The sign = in eq.(2.2b) corresponds to the direction of the

particle movement. The parallel velocity v, is

vy = £,/ 2m W -pB-ed ) .

Here ¥ is the energy, p is the magnetic moment, m and e are mass and
charge of the particle, and ¢, is the static electric potential.
The particle motion in the poloidal cross section is described by the

equations

2je

) _ 10y [3ds  do _ _13dy [3), s
eaf/ o 4t € gy [ ol (2.3,



In these equations. the variables ¥ and 8 are not the coordinates of the
real particles, but those of some kind of average with respect to the fast
motion along ¢ direction. The actual position of ihe particles can be
known when the phase of the fast motion is specified. The detail of such

formulation will be given in the other paper.m

§3. Calculation of Adiabatic Invariant

In this section we consider the concrete expression for the adiabatic
invariant. The electrostatic potential is assumed as the function of
and 6 only.

The magnetic field can be expressed 1n terms of Fourier series

By,0,0) B, .(¥) cos (mB-nNp}. (3.1

wm.n
The symmetry B(¢.-8,-¢)=B{#},0,¢} is assumed, so that only cosine terms
appear in this expression. If such symmetry does not exist, the sine

terms appear in the expansion. This can also expressed in the form
B(y.0,0) = B,Y.£,(v,0) cos (nNo-3,(¥.0)). (3.2)
n=0

where &, and &, are defined by the relations,

Bigncos 6a = ZBm,ncos mo, Bic,sin 8, = ZB,,,nsin m. (3.3)
m

R
Here By is the typical value of the magnhetic field strength, which is
introduced in order to make g, dimensionless. If the Fourier series in
eq. (3.2; has only two coefficients ¢=¢,, and £,=¢,, in the coordinate such

that B.=RB,, the adiabatic invariant eqgs.{2.2) can be represented as



- 8R0( mpB, ) 12
dr= € QC.8), (3.4a)
2re 4R0( mB, \ 2 \
Jo =SRG2 S22 ) Q(CE), (3.4b)
where
A-g,tg, _EE, ~ W-ed, .
E - 28}5 L] C = 28“ L] l'{ = [JBO . (35}

The ripple trapped particles are characterized by £<1, and passing

particles by ¢>1. The function @ is given by

0c.e) = (15 &6 k(o) (for £<1), (3.6a)

Q(C.¢) =ﬁ{(1+%)nl<%;é)—xcé)} (for ¢>1), (3.6b)
1 1

QC.1) = Ci—/zarctan 'CT/Z’ (3.6¢)

where 1 is the complete elliptic integral of the third kind

0 (¢ fﬁz do
V€)= ,
a 0 (1+vsin %) 4/1¢ sin 2o

and K is the complete elliptic integral of the first kind.

(3.7)

In the case of multiple n, the situation is much more complicated in
general. However, if the bump of the magnetic field is one in each
pericd, in spite of many n modes, the adiabatic invariant can be expressed
in terms of elliptic integrals. For this purpose let us introduce new
angle variable x(¢,0.¢), such that the magnetic field strength can be
expressed in the form:

B{4.0,p) = By{e,(4.0)+¢,(v.0) cos Ny}, (3.8

or




- Bpax+Buin — Buax—Bnin 1 B—BOST) ;
2= Toop .= TopB X =  arccos Be )

where Bpax(¥,0) and Buin(¥,0) are the maximum and minimum of the magnetic

field strength with respect to ¢; and let us assume the Fourier expansion

B, dp _ ) '
RB,dx Z;. (4,8) cos (nNx) +ba(¥.8) sin (nNx} } (3.10)

The Fourier coefficients are calculated simply as

2n/N

N 2r/N
: B;=sin (nNx)de. (3.11)

N
. Ty A = H
a, TR.B,Jo B, cos (nNx)deg, b, TREJo

We shall consider the following integral

z 2
1C.¢) - ./; € cos 8

(C+£ sin “G) A 1-€ sin?

x{i—i—Z(—l)"anTn(l—ZS sin 28)}d6, (3.12a)
n=0

for the case of ¢£€=1, and

1:C.€) = fo A¢-sin’e {1+Z< 130Tl 1-2 sin 268) }de (3.12h)

C+sin’8 n=0
for the case of £>1. Here, Ta(x)=cos {(narccos x) is the Chebyshev
polynomials of the first kind. The coefficients b, do not appear in the
expression, because terms containing them are odd functions. Then we can

write egs.(2.2) in the form

J - %( muB,
T £

1/2
a ) e, (3.13a)

H

L =%

2-9 +4R ( muB,

12
- ) I{C.%). (3.13b)

We expand



n—1
Ta{1-22) = Tp(1+2C) +(C+2) Y Gn. n(C)=". (3.14)
=0

The coefficients in this expansion can be calculated by using the

recurrence relations:

2gn.mk4gn,m—l_gn—1‘m (for mz1),
Unetm = {(3.15}
Gn, 0~ Un-1.0-4T,{ 1+2C (for m=0),
with ¢, »=0 for m=zn., and
g0 =2, g2 =8, gzo =-8(C+1). (3.18)
Further we introduce the integrals:
% k=1 20 @i 2k
He) = [FE 008 BSIn 04 o gy, (8. 17a)
0 A 1-¢ 5in <6

f(}za/§~sin28 sin®pde  (for ¢=1). (3.17b)

Ho (&)

Note that H{13=1/(2k+1). and H,(0}=0. These functions can be also
calculated by using the recurrence relations:
He1(8) = zﬁ%;g{E(k+l+k€)Pk(f)—(2k—1}E?k-f(f)}, (3.18)

with

Il

Holg) = E@)-(1-€3K{€),  Hi(&) %{(ZE}E(E)*E(I—E)K(E)V (3.19a)

for £€=1, and

1/

Higr=¢EGED . H© -5 {@-aEE ) -(1-0Ke 1], (3.19h)

™

for ¢z1. Here E is the complete elliptic integral of the second kirnd.
Then wve can write eqs./3.12" in the form

= n-1

1(C.&) = {I+Z(—1)“anTn{1+2C)}Q{C;§')+ZZ(1}”C£ngjlk(C}Hk’\§“,‘:. (3.203
n=1 n={k=(}

In the actual situation we can replace the infinite sum in eq.(3.20° by




the sum of the first couples of terms. The number of terms, of course,
depends on the problem; usually the inclusion of aj or az yields

significant effects, but the effects of a3 and ay are very small.

§4. FEvaluation of Orbit Loss

The conventional method to evaluate the particle loss in the given
magnetic field is to determine the velocity space loss region for
specified points. The importance of loss region in real coordinate is
realized, and the loss region in two dimension, major radius and pitch
angle. for fixed energy of particle is introduced. Such figures are
useful to understand a certain aspect of the confinement properties, but
not so useful in comparison of a lot of field configurations. In the
course of the LHS design study the radius of the largest magnetic surface
such that the particle started from the surface never reach to the
particle loss boundary (outermost loss-free surface) is employed as the
characteristics signifying the quality of particle confinement of the

0 Such surface depends on the choice of the

magnetic configurations.
loss boundary as well as the electric potential and the energy of
particles. The outermost magnetic surface is chosen as the loss boundary
¥, because the particle going out to the plasma surface suffers the
charge exchange interaction with the ambient neutral particles. If we
want to determine the outermost loss-free surface by directly integrating
the drift equations of motion, the large amount of calculations for the

various initial conditions uniformly distributed on the three dimensional

space. pitch angle, poloidal and toroidal angles. The use of adiabatic



invariant drastically reduces necessary amount of computations.

The confinement of particles moving freely around the torus (transit
particles) is generally good. Therefore the confinement of the trapped
particle is our main concern. In the following analysis, the orbit of the
passing particles are considered to follow the magnetic surface, 1.e.

Jr =xe¥y, for the sake of simplicity. We also assume the up-down
symmetry for cr,e4, ete., and @, 1.e.
eT{y,-0)
Se(y,-0) = By, 0), (4.1)

er(,6), enly,-0) = en(y.0), etc.,

which follows from the symmetry given in eq.(3.1), in order to assure the
closing of the particle orbit.

The loss-free surface can be determined by the following two
mechanisms: the orbit of v,=0 particles and the orbit of the transition
particles. We denote the loss-free surface determined by the former
particles as y1p, and by the latter particles as yi:. The cutermost
loss-free surface Y1 is determined by the smaller one of Y19 and ;.

The orbit of v,=0 particles are characterized by £=0, or

(W-e®:) /u=Bnin. If Bun on the magnetic axis satisfies the inequality
B f b s (
g {Bun(,0)/(1- =D} 2 B0 /(1-220)), 4.2)

the particles started from magnetic axis with v,=0 can reach to the loss
boundary; therefore y19=0. If the above ineguality does not hold, then
the outermost loss-free surface ¥ for v,=0 particles is determined by

the equation

Buin(¥b, 6 - m: Boin (10,8 p N
g {1 ) - {1 EATRRg 8
W W

The other limit is determines by the blocked particles, making

- 10 -



transition from passing to ripple trapped state. On the given surface
Y=, we will take a transition point (¥:.8t). The particles with the
pitch angle A = W/tt= Buax(¥r-00){1-e®c(¥s.0:),/¥} ', makes transition to
the ripple trapped state on this point. leaving this point with the value
of adiabatic invariant Ji =J.(y1,06t,t0). This value is compared with the

value of J, on the loss boundary. If the inequalities
m%xjr(ﬁﬁ,e,ﬁtc) = Jy = m%nJr(wﬁ,e,&to). (4.4)

hold for some value of 6., the particles making transition at that point
can reach to the loss boundary; i.e. it < ¥t. On the contrary, if the
inequalities (4.4) do not hold for all values of 8¢, the particles making
transition on the surface do not reach to the loss boundary: i.e. Lt >
Y. Thus we can determine yr. by simple iteration procedure.
If the electric field is large and its spatial structure is not

simple, the points with same values of invariant may not necessarily be
comnected by the single orbit. In that case the more complete procedure

to follow the orbit is required to determine the loss region.

§5. Neoclassical Transport Coefficient in 1/v regime

The neoclassical transport in 1/v regime is described by the bounce

averaged kinetic equation
1"9i ‘gi = Y A
Vagto5e = (C)s (5.1

wvhere (€) is the bounce averaged collision operator. Assuming that
v«fﬁ»i/Ay, where Ay is the typical scale length in ¥ direction, the

iowest order distribution function becomes the local Maxwellian depending

- 11 -



on ¥. To the next order, neglecting the term Q(GJL/aG}, we have®

124,0f _ @fx )
€ah ay au : (5.2)
with
mu B, .
M= ]f B’; “dip. . (5.3;

In writing these equations, we have employed the Lorentz collision
operator. We also used the expression for ¥ in terms of adiabatic
invariant. The quantity M can be calculated in the similar way to J,, as
is given in Appendix B. The contribution to the radial flux comes only

from ripple trapped particles, and the particle flux ¥ becomes to

o N *qwof, [ Bedp
Ve = ——*“"*"—qi’de f s f 7
ore’m” o Y avJo M

V" being the specific volume. Here the electrostatic potential is assumed

Brng ’
Srdy’ ‘ : (5.4)

as ®,(¢). and ¥ is put in the place of W-e® . The adiabatic invariant
depends on 8 through € as well as ¢ and a,. If we put
Jr=(8R,/N) /muB,1,(£,8), or I,=I/el*, and M= {4R,/N)./m/B,1,(¢,0), and

change the variable of integration from p to ¢, we obtain the expression

o 8 B2 } 0] Q
ST = — < s 7
' B 333/2 f W v il dI \55\

where S*°° is the geometrical factor

2r 1
ge0 _ dg o, - 1/2[ dé 1
S o 21\28_.,1 o <C+§)1/21M(§’e)

i

. oreonde” |t

23 ¢ v 132 8 W& ;

I § 8 EE_A\C*é‘F + == = =
8(39L : ! a8 o K\EE_‘.‘)‘S/L(CTf,}a"' I

(5.8,

The expression for the heat flux 1s obtained by replacing W52 in eq.{5.b,

by e Integration in eq. (5.8 can easily be carried out numerically

- 12 -




for given magnetic configuration, the derivative with respect to 8 being
calculated numerically by finite difference scheme.

For the case of g ,«g_, eq.(3.20) can be expanded as

pod .
1€.8) = T2{akhie) ramie) + -}, 5.7

with A=1-a+a,—-, A =q—-8a,+--. If we retain only the first term in the
brace of eq.(5.7), and make the same kind of approximation for M, then
the dependence of I, and T, to £ and 0 is separated, and we can obtain

much simpler expression

2% 3/2 2 3 3 2
geeo _ fo de &, Aﬂ{lS( oe, \©_320¢, €T+0.684(,,§1

2reli2™ 9\ 38 1530 26 36
£,04, \2 g, 04, o550, 3e,
+O.804( §;3§-> _23559[225@6'—0'62568 }. (5.8)

When 34,/00=0 and £,~1, eq.{5.8) becomes to the expression given in
Ref.4. The factor £1!/? in the denominator in eq.(5.8) may have
significant effects in the low aspect torus.

Comparison of eq. (5.8) with the result of direct integration of
eq. (5.6 showé that the geomeirical factor {5.8) gives good approximaticn
near the magnetic axis, where g, is small, as is expected; but in the

outer region where g, is not small they give substantial differences.

86. HNumerical Resultis

A, Magnetic Configurations

First we will briefly describe the vacuum magnetic fields used in the

foliowing calculations. The typical fields are those used in the LHS



configuration study: toroidal period number N=10, the major radius R.=4m,
and averaged field strength By=4T. The configurations with N=8, 12 and 14
are also investigated. The magnetic field is expressed as the sum of the
two parts, the three dimensional field produced by helical coils, and the
additional axisymmetric poloidal field. The magnetic field is calculated
by the Bio-Savart’s law for the finite size helical coii.' The helical
coils are wound around the torus

r = R.—accos 8, zZ = g.sinf, (6.1

with the winding law

8 = kp—asin (kg), K = %, (6.2)
vhere (r,p.,z) are the cylindrical coordinates, and =2 is the polarity of

the helical coils. The pitch parameter v. is defined as

o = K. ©.3)

The helical coil has finite size corresponding to coll current density jc
= 4kA/Cm2 for N=10, and 8. For N=12 and 14 configurations jC=5.8kA/cm2 is
assumed. The concrete form of the size and cross section of the helical
coil is given in Ref .12, The effects of the size of the helical coils are
not important in the range of 3 to 5kA/cm2 in the following analyses,
except for the position of the wall. which is placed 15cm distant from the
coil surface.

As the poloidal field, the analytic expression in terms of multipole

expansion is used.

< el ()\l
S

welir.z) = %—(rz—%}+%{4r222—(r"~%)*

+ D2 1202 (2 R e R Y e, (6.4

with

— 14 -




pot _ a\llpO] pot M .
BT - BO aZ > BZ - BO ar - (6*5)

The helical coil produces not only the helical field, but also
multiplole field components. The applied vertical field Bv is measured by
the position of the magnetic axis As = RausRe, while the quadrupole field
By is measured by the percentage of the cancellation of the guadrupole
component of the field produced by the helical coils. The hexapole field
and higher components are set to zero. When the quadrupcle component is
100% cancelled (i. e. By=100%), the shape of the averaged surface is
nearly circular. When By < 100%, the averaged surface is vertically
elongated, while it is horizontally elongated when By > 100%.

The outermost surface is determined by tracing about 40 lines of
force starting from =0, z=0.

For the sake of understanding of the magnetic surface properties in
these parameters, the change of the mean radius, rotational transform at
the surface. and the depth of the magnetic well in the position of the
magnetic axis (Ag) are shown in Fig.1 and Fig.2. The position of the last
closed surface is affected by the presence of island. which causes the
unusual dependence of the surface quantities depending on the last closed
surface ( for instance, at Ag=—10cm, for By=100%, =0, and at As=-7.Dcm,
for Bg=100%, a=0.2}.

The typical structure of g1, €4, ai. a2, dz is shown in Fig.3 and 4.
The values of ¢; is from 0.1 to 0.15 for the cases studied. As n
increases, the value of a, decreases gradually. The main structure of the
magnetic field is almost fixed in space and the shift of the magnetic
surface changes the relative position between that structure and the

magnetic surface. Important is that as the result of invard shift the

- i5 -



helical ripple changes from 0.15 to 0.4. This change is almost ignored in
the past analyses based on the model magnetic field. The magnetic field
strength is not harmonic in toroidal direction, and this may have
significant effects to particle orbit especially in the outer region.

We shall note that the contours of By = constant and B,.,- constant
are nearly circular in these cases, because the cross section of the

surface on which the helical coils are wound is circular (see eq.(B.1)).

B. Outermost loss free surface

In the following analysis, no electric field is assumed. Some
examples of the orbit, which determines the radius of the loss-free
surface, are shown in Fig.B5. The dependence of rhﬂaps(il/wb)vz to the
shift of the magnetic axis is shown in Fig.8 and 8. The three curves are
drawn for Byg= 0,100,and 200% in Fig.B. The dependence with respect to By
is shown in Fig.7. The dip at By=100% in the case of Aj=—10cm is due to
the island near the surface. The case By=100% seems to be optimum for
wide range of axis position. Therefore, we will adopt Bg=100% as the
standard parameter.

As the plasma shifts inward, the radius of the loss—free surface
determined by v,=0 particles first increases; it is determined by the
orbit crossing the outermost surface inside of the torus. When the shift
becomes large, the radius begins to decrease; it is determined by the
orbit crossing outermost surface outside the torus. For the case of
B=200%. since the averaged surface is horizontally elongated, the radius
is limited by the orbit crossing the outermost surface at the top and
bottom of the torus.

As for the blocked particles. the angle of the transition point 8:

- 18 -




determining ¥i: moves inside as the shift increases. This angle 6, is
larger for the negative pitch modulation than for the positive pitch
modulatiecn.

Figure 8 shows the dependence of ri/a, to the shift of the magnetic
axis for different values of pitch modulation. The curves for a=0 and 0.1
agree well with the more precise results in Ref.10, obtained by
integrating drift equation of motion. The same is shown in Fig.9 with &
as the abscissa.

These figures shov that the inward shift significantly improves the
particle confinement, especially in the case of a=0.1 and By =100%. This
is due to the fact that the plasma radius is large enough to that large
shift in case of a=0.1 {gy= 80cm for Ay=-30cm), while it decreases for the
case of o=0.2 when -A;=20cm.

The case of different N, with B=100% and a=0, is shown in Fig.10.
Four curves correspond to N=8,10.12 and 14, with the pitch parameters
1.15,1.20.1.23 and 1.25, respectively. When the plasma shift is small,as
N decreases the confinement become worse. However, if the inward shift
of magnetic axis is sufficiently large, the particle confinement is
improved in lower N configurations. Since the clearance between plasma
and wall becomes less stringent in lower N {if R. is fixed), the larger
shift is possible; and the low aspect ratio may allow the larger inward

shift without deteriorating MHD stability.

C. Geometrical factor of 1/v reginme

The geometric factor eq.(5.8) has strong dependence on the radius,
S#°<pt or p°; hence the small change of plasma radius strongly affects its

value.

- 17 -



Since EVﬂﬁ is proportional to the particle confinement time, D being
the diffusion coefficient, the ratio EF“V%?, padial dependence of which is
much weaker than S*° itself, may be taken as the parameter expressing the
confinement property of the configuration. The value of S¥*°/)° evaluated
at the magnetic surface ¥/¥s=0.5 for the axis shift are plotted in
Fig.11. The dependence for By is shown in Fig.12. For five values of
pitch modulation, the dependence on Ay is shown in Fig.13 and 14. The
dependence on N is shown in Fig.15, the parameters being same to Fig.10.
The steep rise in the left side in Fig.15 is due to the reduction of the
plasma radius, because the magnetic surface touches to the wall.

Thus, the significant improvement is caused by inward shift or
negative pitch modulation, reflecting the improvement in particle orbit.

The accuracy of eq.(5.8) is within factor 2 in this radius.

§7. Summary and Discussion

The analytic expression for the longitudinal adiabatic invariant for
actual magnetic configuration will give a powerful method to study the
particle orbit in toroidal helical system; it is alsc useful to
investigate transport coefficients in 1/v regime.

In the LHS configuration study the improvement of particle orbit as
well as the MHD beta limit in the lower pitch number is discovered.® The
orbit loss can be significantly reduced by the sufficient amount of 1inward
shift of the plasma and magnetic axis. or by applying negative pitch
modulation of the helical coils. The negative pitch modulation. however,

imposes severe restriction to the clearance between plasma and wall: the

- 18 -




improvement by inward shift in the negatively modulated coils is possible
only in the device with lower magnetic field (smaller coil size) or larger
dimension. As for the lower N, i.e. N=8, the inward shift up to Zocm
improves the orbit, which seems to be compatible with MHD stability. Such
low aspect device may be a hopeful candidate for the large experimental
device.

The analyses done in this paper are only for the vacuum field. In
finite beta plasmas, the deformation of the magnetic durface due to the
Pfirsch - Schluter current may degrade the particle confinement. The

problem is left to the future study.
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Appendix A. Calculation of Q in egs.(3.6)

The integral for £=1

5 £ cos 2pde

Q¢ = f ——,
¢ J/1-¢sin?0

can be expressed in terms of the complete integral of the third kind.

(A1)

Q(Cie) = (1-5)m(Es6) Ke) (for £<1), (4.2)

The complete elliptic integral of the third kind can be represented in

terms of the incomplete integrals of the first and second kind,'¥

; @ dop ? —
Fig,§) = fmu—_ E(p.&) - f«/l—gsm‘@d@. (A.3)
" e sine 9 '

Since v=¢/C>0, it is convenient to use the following expression

Q(Cs6)~| gy | A{EO P10 KO P10 B .16
¢ ) ,
ke s, (4.4)
vhere
© = arctan Cll/z' (A.D)

Similarly, eq.{3.6b) for ¢=1 can be expressed as

e[ L5 T2l g 1oyl 1y gy 1y L6
QCie [C{CH)] {e(g)p(m Hk(bFe1-1) £ 6)}}, (4.6)

with
1/2
& = arctan ( -6—} . (AT
\C /

When cy«c7, we can approximate that C“'zey/a'r«l, and we have

- 20 -




QUC3E)~ eI (O +. .,

{A.8)

In caleculating incomplete elliptic integrals the ascending Landen

transformaticn
bt =172 Bt = -Gl

Pnel = %{¢f+arcsin(knsin¢m)},

is useful to change the modulus to increase, until the formulae
Flp.1) = log tan (5+5),  E(p,1)~- sing,

can be used. Then the recurrence formulae

Flpnk2) = (1+knet ) F (Pret-Kkoe1)

E(wn‘k%wm’?m—{zﬂ@m,k%q)+kn+1’F<qom,k§+1>}~—knsin Ons

4
r+|

(A.9)

(A.10)

(A.11)

are used to calculate the soughit functions. Less than 10 iterations are

sufficient to obtain 10 significant digit, except for the case of

k=¢"2<1071, where F(¢,0)=E(¢,0)=p, are used instead.

Appendix B, Calculation of M in eq.(5.3)

We shall consider the following integral

) fcoszﬂ

e = [ >
0 (C+¢ sin®9)°a/1-¢ sin 26

x{l + 3 (~1)"a,Ta(1-2¢ sin 26) }de,
n=0)

for the case of €=21. Then eq.(5.3) can be written as

-2 -

B.1)



4Ry y mp 172
M==—= J(C.¢&). (B.2
) e 02

Ve introduce the function

Qi (C;¢)

f ¢ cos 20d0
9

, (B.3)
(C+¢ 81in203°A/1-¢ sin %0
which is related to Q, defined in eq.(A.1) or (3.6), by the relation

2C(C+1) (C+)@(C,€) = {CQ+(2C+1)E}Q(C,€)+(C42>Fb(f)—th(€). (B.4)
Since Jj=-al/3C and Q;=-28Q/8C, I being defined in eq.(3.12), we have the

expression

JC,8) - {1+Z(-1>“a§n(1+2(,')}91<C:§)—22(—1)“aﬁ?ﬂ’(nzcm(c;g)
r=1 n=[

= n=2

“Y Y (-Dag,, (CHE). (B.5)
n=2k=0

Here ” stands for the differentiation with respect to its argument, and

the coefficients ¢,k can be calculated by using the recurrence relations:

{ign‘ml‘lign,m—li‘gn—-],n’ {(for mz=1),
On+1 =

(B.6;
9n,01_9n~1,0’_8Tn,(1+2C> (for m=0).

with

g1.0 =0, ¢21 =0, g2p =-8. (B.T)




REFERENCES

1) R.J.Hastie,J.B.Taylor, and F.A Haas: Ann. Phys. (N.Y.) 41 (19687 302

2) D.Dobrott and E.A.Frieman: Phys. Fluids 14 (1971) 349

3) M.Wakatani,S.Kodama,M.Nakasuga and K.Hanatani: Nucl. Fusion 21 (1981)
17

4) K.C.Shaing and S.A.Hokin: Phys. Fluids 26 (1983) 2136

5) J.R.Cary.C.L.Hedrick and J.S.Tolliver: Phys. Fluids 31 (1988) 1585

B8) J.Todoroki: to be published.

7) Design Group for the New Large Helical System Device: New Large
Helical System Device, (The Planning Office for New Institute for Fusion
Plasma Science, Nagova University, Nagoya, 19838)

8) J.Todoroki,T.Kamimura.H.Sanuki,T.Amano,T Hayashi K.Suzuki, T.Sato,
K.Hanatani, Y.Nakamura, W.Wakatani and A.Iiyoshi: 12th Int. Conf. on
Plasma Physics and Controlled Nuclear Fusion, Nice, 1988,
TAFA-CN-50,/C-5-4

9) A.Roozer: Phys. Fluids 24 (1881) 1999

10) K.Hanatani,H.Sanuki and T.Kamimura: Basic Design of lLarge Helical
Device, Report of Design Group of Large Helical Device, (NIFS, Nagoya,
1989) p.B84 [ in Japanese )

11) J.Todoroki: Kakuyugo Kenkyu 57 (1987) 318 [ in Japanese ]

12} Basic Design of Large Helical Device, Report of Design Group of Large
Helical Device, (NIFS, Nagoya, 1983) p.635 [ in Japanese ]

13) L.M.Milne-Thomson: Handbook’of Mathematical Functions, edited by M.

Abramowitz and I. Stegun, (Dover Publications, N.Y.. 1964) p.b&7



Figure Captions

Fig.1  The magnetic surface properties with respect Ay, for the case
N=10, v.=1.20, o= O,
0! By=0%; a: By=100%; +: By=2P00%

Fig.2 The magnetic surface properties with respect A;. for the case
N=10, v.=1.20, By=100%.

Oa=-020 &4 ! a=-0.1; + T 0=0; x : a=0.1; 1 : ¢=0.2.

Fig.3 The structure of zr,e4, @1, @2. The case is N=10, v.=1.20, a=0,

Bo=100%, and Ag=0.

Fig.4 The structure of £1,e4, a1, a2. The case is N=10, y=1.20, a=0.1,

Bp=100%. and Ap=-35cm.

Fig.5 Examples of the orbit determines outermost loss-free surf ace for
N=10. The bold line shows the orbit for transition particles, while
the broken lines for u=0 particles.

a; a= 0, A=-10cm; b) a= 0, Ac=——cm; ¢) a=-0.2, Ap=-25cm,

Fig.6 Radius of loss-free surface versus position of magnetic axis Ay,

for N=10, 7.=1.20, and a=0.

O 1 Bp=0%: & : Bg=100%; - : By=200%.

Fig.7 Radius of loss-free surface versus position of magnetic on the

quadrupele field By, for AN=10. v.=1.20. and a=0.

~ 24 -



O T Ap= Oem: A @ Ag=-10cm; + @ Ap=-20cm; X : Ag=-30cn.

Fig.8 Radius of loss-free surface versus position of magnetic axis Ay, on
the position of magnetic axis, for N=10, vy.=1.20, and By=100%.

O: =02 A =-0.1; +: a=0; x: a=0.1; 0 : a=0.2.

Fig.9 Radius of loss-free surface versus position of magnetic on the
parameter « of pitch modulation, for N=10, v.=1.20, and By=100%.

O A= 07 & 0 Ag=-10cm; + @ Ap=-20cm; % : Ay=-30cm.

Fig.10 Radius of loss-free surface versus position of magnetic axis Ag

for a=0. and Bp=100%.
O ! N=B,y:=1.15, je= 4kA/cm2; a1 N=10,7%=1.20, jo= 4kA/cm®; +

D N=12, v=1.23, joB.3kA/em™; X @ N=14, 7.=1.25, jo=5.3khA/cn.

Fig.11  Dependence of S*°47 at v/45=0.5 on the position of magnetic
axis. for N=10, ¥~=1.20. and o=0.

O Bp=0%; a @ Bg=100%: + : Bg=200%

Fig.12 Dependence of S*°/47 at ,/45=0.5 on the quadrupole field By, for
N=10, v.=1.20 and «=0.

O : Ao= Ocm; o @ Ap=-10cm; + :@ Ap=-20cm; x : Ay=-3C0cm.
Fig.13 Dependence of S¥°/47 at #//x=0.5 on the position of magnetic axis,

for N=10, ¥=1.20 and By=100%.

O a=-0.2; o a=-0.1; + : a=0; x . o= 0.1; O : a=0.2.

- o5 -



Fig.14 Dependence of ng/Tf at ¥/¥5=0.5 on the parameter a of pitich
modulation, for N=10, v =1.20 and By=100%.

C A= Cem: A @ Ap=—10cm;, + : Ap=-20cm; X . A=-30cm.

Fig.15 Dependence of S50 F at. Ps=0.5 for a=0, and By=100%.
O : N=8,7.=1.15, je=dkA/cm®; A& : N=10,7.=1.20, j.=4kA /cm®:

+ 1 N=12, %=1.23, jo=5.3kA/em’; x : N=14, y.=1.295, j.=5.3kA/cn’.
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