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Abstract

The current bubble means a helical duct with low current demsity invading
the inner high current region of current carrying toroidal plasmas. It is a non-
turbulent analogune of the MHD clump. The numerical simulations show that
it appears right after the absorbtion of a small magnetic island into the chaotic

layer in the separatrix region of a large magnetic island.
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1 Introduction

We know that the current disruption is the most dangerous phenomenon in toka-
maks. The breakdown of the magnetic surface caused by magnetic perturbations with
different helicities is thought to be a central ingredient of the mechanism for the disrup-
tion. In this letter, we study numerically the mode-coupling process of resistive tearing
modes with different helicities based on a reduced set of magnetohydrodynamics ( MHD
) in the tokamak ordering[1,2,3,4]. Dominant two tearing modes are m = 2/n = 1( 2/1
in shorthand notaion ) and 3/2. Here m and n represent the poloidal and the toroidal
mode numbers, respectively. B.V.Waddell et al. [5] and B.Carreras et al. [6] studied
the nonlinear destabilization of the 3/2 mode and the nonlinear coupling of the 3/2
mode and the 2/1 mode resulting in the chaotic magnetic field. J.W.Eastwood and
W.Arter[7] demonstrated that the final phase of rapid growth observed in the previous
simulations can be accounted for a nonphysical feedback mechanism.

The motivation of the present study is to understand the fundamental mechanisms
of selfconsistent chaotic evolution of MHD system toward the turbulent state. We
find out an unexpected new phenomenon which has been overlooked in Refs. [5,6],
the formation of a current bubble, which occurs right after the disappearance of the
3/2 magnetic islands. The current bubble is a duct with nearly zero toroidal current
density J; , which invades the central region of the high J; around the magnetic axis
in the poloidal cross-section. It deforms into an irregular pattern after a finite time
and is at last followed by a turbulent state. At the stage of bubble formation, there is
no numerical problem of finite radial mesh size which was pointed out in Ref.[7]. After
describing in Sec.2 the observation of the current bubble, its significances are discussed

in Sec.3.

2 Bubble formation

The basic equations of the present simulation are the reduced set of equations(1,2,3,4];

2V =[BV1— [, 4] - G + NVAU (1)
0, 1 .
2= 9] = b+ SO+ EY) 2)



where [o, ] = (- Va x V8, magnetic field B = —eV, 1 x ¢ + ¢ ( e is the inverse
aspect ratio ), velocity v = V¢ x Q_", toroidal current density J, = V24, vorticity
U = V3¢, (The functions ¢ and ¢ are the poloidal flux and velocity stream function,
and  is the unit vector of toroida direction )- The time is now expressed in units of
T4 = afvy ( ais the minor radius, vs the Alfvén velocity ), so all results presented here
will be expressed in the Alfvén times. Conventional notations .S = 7, /74 and 7 are the
ratio of the resistive skin time to the Alfvén time and the resistivity, respectively. N is
the ratio of the Alfvén time 7, to the viscous diffusion time a?/v( v is the kinematic
viscosity ).

The resistivity 7 is taken to be constant in time, and its radial dependence is
obtained by assuming a constant loop voltage in the equiliblium and not allowing the
magnetic flux to evolve in the absence of tearing mode activity[6]. The quantities 1

and ¢ are expanded in Fourier series in the toroidal and poloidal angles to give
Y= Yona(r) cos (mb + n) (3)

and

¢ = Z Pmn(r) sin (mf + n() (4)

and a finite difference scheme is employed in the radial variable. The results presented
here use 29 Fourier components ( maximum poloidal number is 14 and maximum
toroidal number is 7 ) and radial grid has 200 points.

The g profiles are fixed by the formulae;

o(r) = 1401+ ()% (5)

As initial perturbations, we set in eigen functions of 2/1 and 3/2 modes decided by a
linear shooting code. The value of S ranges up to 1.0 x 10%. At any value of S, current
bubbles are formed. We describe here the case where S is 2 x 10°. The viscosity is
totally neglected; N = 0, in the subsections 2.1 through 2.3 .

2.1 Linear stage

Firstly, 2/1 and 3/2 modes grow exponentially. On account of the difference in the
growth rate, the 2/1 mode dominates at the end of the linear stage.




2.2 Stage of developed 2/1 island

The 2/1 mode comes to grow algebraically, and the 3/2 magnetic islands become
visible. The Poincaré intersections of magnetic field lines with a poloidal plane ({ = 0)
show that a pair of large 2/1 magnetic islands have appeared, meanwhile nested regular
magnetic surfaces remain around the magnetic axis, although their shapes of concentric
circles turn into ellipses gradually. Cross-sections of those regular magnetic surfaces
with the { = 0 plane always agree with contour lines of equal J; , that is VyJ, =0 .

At the end of this stage, there is a high 'mountain’ of J; in the central elliptic region
and two moderate hills’ of J, lie in the 2/1 island as shown in Fig.1 . Between the
'mountain’ and *hills’, there exist the ’valley’ region where J, ~ 0 . At the edge of the
‘mountain’, the 3/2 islands become considerably large, then a layer of chaotic magnetic

field begins to develop along the ’valley’.

2.3 Stage of bubble formation

The 3/2 mode is abruptly destabilized by nonlinear effects. The 3/2 islands are
shown in Fig.2(b). It should be noted that the stream function becomes large in the
area where O-points of 2/1 and 3/2 modes face each other. Fig.5(a) shows that there
appears a strong inflow toward the magnetic axis. But the flow is blocked at first
because regular magnetic surfaces survive in the central region as shown in Fig.3(b).
The 3/2 island plays a role of a 'bank’ against the flow.

Once the 3/2 magnetic islands are absorbed into the chaotic layer and disappear,
a dramatic change in J; takes place. The gradient of J; in the direction of magnetic
field becomes finite ( VjJ; # 0 ), and induces a finite inertia term dU/dt , because the
equation of motion ( 1) may be rewritten as dU/dt = —V|J; + NV3 . So the low J;
region in the chaotic layer invades the central ellipse with high J, . If we look at the
point S in Fig.5(b), there exists a stagnation point of the flow, which is a remnant of
the O-point of 3/2 mode. The value of J; remains high around the stagnation point
as shown at a point S in Fig.4(a). A series of 7/4 magnetic islands which lie in the
ellipse, limit the size of the bubble in the radial direction as shown in Fig.4(b) . The
time scale of the formation, the persistence and the decay of the current bubble is of
the order of 107,. After the bubble has deformed, a turbulent stage sets in, where J;

is roughly uniform.



The current bubble has the same helical structure as the magnetic island of the 3/2
mode. It connects with itself after the three rotations in the toroidal direction and the
two rotations in the poloidal direction, because the bubble appears when the 3/2 mode
is strongly influenced by the inflow of the 2/1 mode around the O-point of that mode.
Thus the most regular cross-section of the current bubble is formed around the point
A in Fig.4(a) where the O-points of the 2/1 mode and the 3/2 mode face each other in
a shortest distance. If we start from the point A in Fig.4(a} and go along the current
bubble in the toroidal direction, the duct structure of the bubble gradually changes
to the gap structure. After just one rotation in the toroidal direction, we arrive at
the point B in the same figure. If we go in the opposite direction, we arrive at the
point C. At the points B and C, where the duct of the bubble and the 2/1 mode are
separete in 60 degrees of the poloidal angle, the cross-section of the bubble is smaller
than the regular one and is deformed. If they are separate in more than 70 degrees of
the poloidal angle, no bubble structure can be identified.

At the point D where O-point of 2/1 mode and X-point of 3/2 mode face each other,
no current bubble is formed. Comparing Figs.4(a) and (b), we can recognize that the
bubble structure exists well inside the chaotic region.

Some results are obtained in the case of finite viscosity N, the value of which ranges
upto 0.75 x 10°. As N increases, two characteristic features get remarkable. First, the
growth rates of principal modes tend to be smaller, so that the time sequence of bubble
formation and the onset of turbulence is delayed. Secondly, the fine structure of J; is
averaged out to be hard to be seen even in the turbulent state. It is confirmed that
finite viscosity does not prevent the bubble from forming at least when N is less than
0.75 x 10°.

3 Significance of the Current Bubble

We show in this section a theory in which the current bubble is involved. D.J.Tetreault[9,
10] developed a MHD clump theory in current-carrying plasma. He applied the original
clump theory, which had been first developed to study the Vlasov turbulence, to the
MHD turbulence and predicted clumps, that are the correlated structures of magnetic
field lines. The clump is caused by mixing of the mean current density and decays as

a result of magnetic stochasticity.




The present current bubble is created right after the absorption of 3 /2— islands into
the chaotic magnetic layer. Note that the rotation of the Lorentz force is the gradient

of the toroidal current density along the field line ;
V x (J X B) =B- VJC = Vn.]g (6)

In the magnetic island, the quasi-equiliblium state with V. J; = 0 is retained. After the
onset of magnetic chaos, however, it is replaced by a state with finite value of VyJ,, at
least at a transient stage when the magnetic field is stochastic but J; remains coherent.
The flow associated with the 3/2— island is enhanced by the Lorentz force, according
to the vorticity equation;

U

E = --V"Jg + NVi_U. (7)

Thus both the current bubble and the MHD clump are created by the strong flows
which mix the inhomogeneous mean current density. The difference is that the bubble
results from a strong inward coherent flow, not from the turbulent mixing flow. Except
for the difference in flow patterns, the current bubble is the first numerical observation
of the MHD clump as predicted by D.J. Tetreault.

Formation of a current bubble means the local interchange of the high and low
current density regions, therefore it gives one of the mechanisms for the rapid radial
transport of the toroidal current density. 1t is well known that the force-free equilibrinm
states are frequently realized in the laboratory and astrophysical plasmas through the
rapid magnetic relaxation process. The associated violent transport of the current

density is explicable by the current bubble.

4 Conclusions and discussion

The current bubble formation in the coupling process of resistive tearing modes
is found by numerical simulations based on the reduced set of MHD equations. It is
formed right after the disappearance of 3/2 island. This indicates that it is a structure
induced by the magnetic chaos. It persists within a time interval of the order of 1074.
Tt is to be noted there exists a spatical structure which we call the current bubble
even in the chaotic magnetic field. Current bubbles are formed anywhere O-points of

different modes face each other.



Investigation of decay process of the bubble will be published elsewhere, in which

the aliasing errors in radial mesh as pointed by J.W.Eastwood and W.Arter[7] must

be avoided.
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Figure captions

Fig.1

The 3-D representation of the toroidal current density J; on a poloidal plane; { =0
at { = 64074 .

Fig.2

(a) Contour lines of the equal toroidal current density J, or a poloidal plane; { = 0
at t = 66074 . The central high J, region has deformed to be elliptic.

(b} Poincaré plots of some magnetic field lines on a poloidal plane; { = 0 at the
same time as (a), initial points of which are marked by triangles. The 3/2 magnetic
islands appear in addition to the large 2/1 islands.

The value of S'is 2.0 x 10° .

Fig.3

A state immediately before the onset of the current bubble formation. The value
of §is 2.0 x 10°.

{a) Contour lines of the equal torcidal current density J; on a poloidal plane; ¢ =0
at 1 = 6807, .

(b} Poincaré plots of some magnetic field lines on a poloidal plane; ¢ = 0 at the
same time as {a), initial points of which are marked by triangles. The bubble formation
is prevented by the 3/2 island.

Fig.4

The formation of the current bubble. The value of S is 2.0 x 10°.

{a) Contour lines of the equal torcidal current density J; on a poloidal plane; { =0
at t = 72074 . The regular cross-section is shown around the point A and the deformed
ones are at the points B and C. The point S is the stagnation point of the flow ( sce
Fig.5(b) ), where J; is kept high.

(b) Poincaré plots of some magnetic field lines on a poloidal plane; { = 0 at the
same time as {a), initial points of which are marked by triangles.

Fig.5

The flow velocity on a plane; ( = 0. The length of the arrows represents the
intensity of the flow. The value of Sis 2.0 x 10°.

(a) At t = 6807, the flow is brocked by the 3/2 magnetic island. ( see Fig.3 )

(b) At t = 72074, the strong flow to the central elliptic region takes place. The
point S is the stagnation point of flow. ( see Fig.4)
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