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Abstract

There has been a renewal of interest in cellular automata, partly because
they give an architecture for a special puipose computer with parallel process-
ing optimized to solve a particular problem. The lattice gas cellular antomata
are briefly surveyed, which are recently developed to solve partial differential
equations such as hydrodynamics or magnetohydrodynamics. A new model is
given in the present paper to implement the magnetic Lorentz force in a more
deterministic and local procedure than the previous one.
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1 Introduction

The computer is now a day the indispensable tool for modern science. As large com-
puters emerge year after year, number of solvable problems increase explosively. There
remains however a large number of problems which are well beyond what existing com-
puters can give answer. As one increases the size of a given problem by increasing
grid points or traces the evolution of the system over a longer time, the capacity and
the speed of the computer required to solve it grows much faster than one’s naive
expectation.

New technologies for the element of computer hardware are being developed, but a
new computer architecture,i.e. the parallel processing, offers a more immediate solu-
tion. A familiar example of the use of parallel processing is the vector super computer
of general purpose, but a new trend in science is to build the special purpose com-
puter (SPC) with parallel processing. The architecture of a general purpose computer
(GPC)is not optimized for any particular problem. For the special class of problems,
it is found to be possible to design and construct a SPC, at modest cost as compared
with GPC, which runs faster than the general purpose commercial super computers.
The many processors, which are assigned to different parts of the task, are applied fo
a single problem in SPC, so that SPC could compete in the computational speed with
the super computer. The processor in SPC should be simpler and cheaper than the
processor in the super computer, but it can match the super computer performance
because of a great number of processors. Once SPC is constructed, it is available full
time to a single user. Construction of SPC has been realized in some areas which
include quantum chromodynamics, Monte Calro simulation of the Ising model, molec-
ular dynamics of classical many-particle system with short-range interactions, lattice
gas hydrodynamics and neural networks.

Especially the lattice gas hydrodynamics has made progress recently ¥ during the
last few years. It is based on cellular automata which was first introduced by Von
Neumann and Ulam, and has been taken a renewed interest. The hydrodynamics is
modeled with a system of many particles interacting via artificial microscopic process
which can be described totally by Boolian logic. The algorithm is quite different from
using the traditional finite-difference method to solve the partial differential equations.
As for the present state of arts of the lattice gas methods for partial differential equa-
tions, one should refer to Ref.2.

The Lattice gas and the real gas have quite different microscopic structures, but
have the same macroscopic behavionr, governed by the Navier-Stokes equation. The



fictitious microscopic process, which is however convenient for the computational pro-
cess, is found to converge to the physical fluid dynamics in the macroscopic limit. In
other words, the form of resulting differential equation is insensitive to the microscopic
process. By the lattice gas model based upon cellular automata(CA in short), we mean
the discrete analogue of molecular dynamics. Definition of CA due to S. Wolfram® is
the following. A cellular automaton consists of a regular lattice of sites. Each site takes
on finite number of possible values and is updated in discrete time steps according to a
rule that depends on the value of sites in some neighborhood around it. The underlying
discreteness of CA model in space, time and variables make it particularly suitable for
digital computation.

The most important point to construct the hydrodynamic lattice gas model is the
choice of lattice system. For the two dimensional hydrodynamics, for instance, the
square lattice as investigated by Hardy, de Pazzis and Pomeau®) leads to a partial dif-
ferential equation different from the Navier-Stokes equation. The true choice of lattice
system for the two dimensional Navier-Stokes equation is found to be the hexagonal
lattice (see Fig. 1) by Frisch, Hasslacher and Pomeau®. The form of macroscopic
equation reduced from particular CA with particular lattice system is determined by

w+{n)
symmetry properties. Define a tensor £ = of rank n as

H(ﬂ.)

= Zeaea - €, (1.1)

where €, means a unit vector in the direction of neighbouring cite from a particular
cite, and the suffix a indicates an each neighbouring site, running from 1 to 6 in the

hexagonal lattice. We impose a priori a restriction, which will be derived in §2, that

( ) «(n)
should be isotropic for any n < 4. The tensor £ must always be invariant un-

der the discrete symmetry group characterized by a given lattice system. It should be
invariant also under the full continuous rotation group. In the two dimensional space,
the hexagonal lattice gives in fact isotropic tensors E‘(n) up to n = 4. In the three
dimensional space, however, it is impossible to make E‘“) isotropic by any crystallo-
graphic lattices. But, fortunately, in the four dimensional space, it is found that there
exists a system called the face-centered-hyper-cubic lattice with required symmetry.
Projection from the four dimensional space to the three dimensional space gives the
required space.

Dynamical rules for artificial particles of the hydrodynamical CA are as follows.
Particles located at a particular cite can have only g different velocities oriented to
neighbouring cites, where g is number of neighbouring cites. All velocities have the




same modulus as the distance of lattice size, so that after a unit time step each particle
streams to one of neighbouring cites. To describe the algorithm in the Boolian logic,
we require an exclusion principle that not more than one particle is to be found at a
given time and a cite, moving in a given direction é,. When more than one particles
artive at a cite, we proceed them under a prescribed callision rule which conserve the
total particle number and momentum.

A magnetohydrodynamical(MHD) CA in the two dimensional space has recently
been proposed by Montgomery and Doolen.® In the present article, a new MHD - CA
model is addressed which implements the magnetic Lorentz force in a more determin-
istic and local procedure as compared with the previous one. It is applicable to the
Strauss equation in the three dimensional space.

In §2, a MHD - CA in two dimensional space(2D - MHD - CA) is described in
detail, and reduction of the magnetohydrodynamics from 2D - MHD - CA is given.
In §3, the correlation function formalism is applied to transport coefficients, viscosity
and magnetic diffusivity for 2D - MHD - CA. §4 describes a new MHD - CA, and §5
contains some remarks.

2 Magnetohydrodynamic lattice gas model

Many properties of 2D - MHD - CA®) are shared by the two dimensional Navier-Stokes
CA. The lattice system is hexagonal. The MHD particles reside at the cites in one
of six discrete states of velocity, é, = (cos2ra/6,sin 27a/6),a = 1,2,---6. In every
integer time step, they move to the centers of the adjacent hexagons toward which
they are directed. They carry an additional index o corresponding to the z-component
of the microscopic magnetic vector potential A;, ¢ taking the values + 1,0. Thus the
allowed states for a single site is 18(= 6 x 3) bits. A 2D - MED particle is a rod
having a “ spin ”. The Lorentz force J x B which is given by —VA,AA, in the present
case is introduced by imparting the requisite momentum per unit volume by randomly
flipping the microscopic distribution of é, proportional to —VA,AA,. When different
particles come into a single site, they undergo collisions under a rule which conserves
»

total momentum and “ spin ”.
It is possible to derive a macroscopic differential equation in a form,

6 - - -
(g +i- Vi) = -V P+Jx B+nwVi, (2.1)
a -
(gt--}-u-V)A, = V%4, (2.2)



-%n+Vnﬁ' = 0, (2.3)
V-i = 0, (2.4)

that is an incompressible two dimensional MHD system. The conventional symbols
&, J, B mean the flow velocity, the electric current, and the magnetic field. v and n are
the kinematic viscosity and the magnetic diffusivity. The pressure tensor P is given by
2
n e u n
-1{1=-y-2
2 1 2 ) 2
A kinetic theory to derive the equations(2.1) through(2.5) is described in the foliowing.

pP= i, (2.5)
Consider an ensemble of above mentioned CA with different origins of space 7 and
time ¢ to define a one-bedy smooth distribution function, f, ,(Z,t) in (Z,t) space. The

distribution function gives macrovariables, such as the density n(Z,t), the flow velocity
#(Z,t) and the vector potential A,(Z,1),

(1) = ) faol,1) (2.6)
ni(#,1) = 3 éfosl) (2.7)
nA(Z,1) = > ofesldi) (2.8)

It is reasonable to assume that f,, may be advanced according to the Markovian

stochastic process,

faolZ ) = Y [ d67P(a, 033, t1b, 7 E— 651 = D fy (- 63,6 — 1), (29)
b

where P(a,0;%,t|b,7;Z — 6Z,{ — 1) means a transition probability from an old state
(b,7) at a position £ — 6z and a time ¢ to a new state (a,¢) at £ and ¢. Note that P
is implicitly a functional of f and some many-body distribution functions. In the case

of present CA,

Pla,0; E,t|b, 7 £ — 82,1 — 1) = Py o0 (T, 1)6{6T — &). (2.10)
Then eq.{2.9)becomes,
foolB) =3 P A%, 1) for (8 — 1yt — 1). (2.11)
b,r

If the process is collisionless, transition probability becomes trivially P, ;. 4, = 84,4657,

however in the presence of collision,

Pa,o’;b,'r = 60':66‘7,?(1 = Z WC)P‘;b:T) + Wa:a;bl"'! (2.12)

Of




where W, .- 1s a transition probability density per unit time interval from a state
{a,0) to another state (b, 7). From egs.(2,11) and (2.12), we obtain

fa,a(f;t) - fa,e(f - éa:t - 1) = E(Pa,a:b,r - 6a,b5cr,r)fb,r(5_ ébst - 1)

b7

- Z Wb,‘r;a,afa.,o’(:'?— éaai - 1)
br

+ 3 Waopr for(F — &5t = 1), (2.13)
b,

In the present units of time and space, the time derivative and the spatial gradient
of one-body distribution function are very small. Expanding the left-hand side of
eq.(2.13), we thus obtain a basic transport equation for the magnetohydrodynamic CA

model,
& . 1,8 . 9 . - - .
(=+éa-V)— (g +éa- V) +- Voo Zt) = =D Wiraold 1) fo(f — ot — 1)
ot 2 -
+ Y Wee AZ ) lF — &t = 1)
b,r
= Qoo (2.14)

which is the counterpart of ordinary master equation. 2, is called the collision term.

The prescribed rule of collisions satisfies the three non-trivial conservation laws,

3> Qp, = 0 (2.15)
Y R, = 0 (2.16)
EUQG,, =0 (2.17)

a0
which mean the conservation for particle number, momentum, and o -index, respec-

tively. The conservation of kinetic energy is trivial in the present model. Some moments

of the transport equation(2.14) yield some balance equations for macrovariables,

0
-a—tn+V-ni£ =0 {2.18)
3 - 1., 0 5
Zng+ V- = = — - d, 2.19
8tnu+V I ZBZ';ea(at + €, V) fa,n’ ( )
—a-nA +V-4 = lEU(E—i—é V)3, (2.20
ot v At o 20)
where
T = ¥ éabefuoldP), (2.21)



Z Uéafa,a'(fz t). (222)

The right-hand side of eqs.(2.19) and (2.20) give artificial dissipation due to the effect
of finite lattice size and iime step.

As is the case of real gas, the collision term 2, ; has an effect of driving the distri-
bution function f,, to a local thermal equilibrium over length and time scales short
compared to those over which macrovariables vary. This make it possible to apply the
Chapman-Enskog expansion to eq.(2.14),

foa = Fid@ 1) + FQE ) o0 (2.23)
Here f{)(Z,1} is the local thermal equilibrium satisfying Q, ,(f(®) = 0, given by
FOZ4) = {1+ expla+ B, - U(F, 1) + v0 AL(F, )]}, {2.24)

which is the Fermi-Dirac distribution function in form, but depends on the space and
time variables through n(ft) , #(Z,¢), and A,(Z,t). The deviation FAE, ) from
the local equilibrium represents the effect of the first order spatial gradient or the
time derivative of the fluid macrovariables. The smallness parameter of expansion is
therefore the ratio of collision mean free path to the characteristic length scale for the
variation of the moments. The equation for f*) is governed by

@ . «{0)
7t VEEY =0 Ve =00 (2.25)

The right-hand side 0f(2.25) is a symbolical expression for the linearized version of
Qa(f) about £ in powers of (). As for the explicit forms for Q. and QW refer to
Ref.7. To obtain transport fluxes II and ¢ defined by

I = §:eaf;, (2.26)

V= Zm £, (2.27)

. : . =(0) .
the Inversion of 18 x 18 matrix ¢ is required to express f(l) in terms of (Z+¢,-V) f§°,3

. =0} .
It is found 7 that the matrix ¢ can be written as the sum of four direct products of

6 x 6 matrices in €,-space and 3 x 3 matrices in c-space as

4
() o o3
=3 0@, (2.28)




where explicitly N
02 ©F s = oG8 e

The 5% (7 = 1,---4) are all circulant matrices but 7 are not all circulant. The

inversion of 18 x 18 matrix 8‘(0) is now made possible by reducing it to that of 3 x 3
matrix, with use of the theorem that all circulant matrices of a given dimension have
the same right eigen vectors.

It should be noted that since the function f(1) contains the dyads é,¢é, the transport
flux ﬁ(l) defined by (2.26) involves the quantity 3, €,€,€,€, which is denoted by E(i) in
eq.{1.1). In order that the collisional transport term V- ﬁ(l) should give the isotropic
kinematic viscosity, vnAd, E‘“) 1s required to be invariant under the continuous rota-
tion group. The choice of hexagonal lattice is necessary in the case of two dimensional
magnetohydrodynamics.

Without giving detailed calculation, we summarize the resultant expressions for 1
and 5 as follows;

~(0) (1)

V- = V- +4V-TI , (2.30)
= —[1-— — 7478 2.31
P Tyl e et (2:31)
(1) ~
. = nvAi (2.32)
V-¢g = V-g@3+V.5W (2.33)
2(9 — n)
20) — ppAT T g
& i o——As, (2.34)
and
V-V = noAA,. (2.35)
The kinematic viscosity for arbitrary density is given by
1 1
_1 2.36
YT I E)s (2:36)
and the magnetic diffusivity o is
S S——
= 2Bh + 9R2)(1 - £)e’ (2.87)

with A = n/(18 — n). If we take the limit of n — 0, we recover the value of kinematic
viscosity 1/2 for the 2D - Navier-Stokes + CA model.



3 Correlation function formalism for transport co-

efficients

R. Kubo® derived a quantum-mechanical formula for the electrical conductivity in
terms of the correlation function of equilibrium fluctuations. H. Mori®!% demonstrated
a partial equivalence between the Kubo-type and the Chapman-Enskog formulae, for
Maxwellian molecules. H. S. Green®!) established the equivalence of both by deriving
the Kubo-type transport coefficient based on classical mechanics.

The correlation function formalism for the MHD lattice gas model is developed in
this section. We start with the Liouville equation for M-body distribution P(S,¢). Let
the total number of cites be G, then the total number of the states of the MHD - CA
becomes 18G. The vector S has 18G components, and each component of S Takes
a value, 0 or 1. Number of components with finite value in S is the total particle
number, M. The components of .5 is denoted by Sz, . where 7 is the coordinate of cite,

a and o the orientation of velocity and the spin. The Liouville equation for P(S,¢) is

P( zaast) - acbk( )P(Sf—éb,b,ht - 1)) (3’1)

where the evolution operator W, ;4 1(¢) has a function to change from an old state
(b, X) to a new state (a,0). The M -body distribution function is assumed to be a

homogeneous equilibrium at ¢t = —oo0,
P(S, —o0) = PO(S;, .; n(®, 7 4®) (3.2)
where n(® 4 and A are constant parameters. The equilibrium distribution is
POYs) =TS o2 (1= Nog ) Feme (3.3)
and the function N is the Fermi-Dirac distribution,
Now = {1+ exp[y(n®@ + &, - T9 + ¢ AD}? (3.4)

Frisch et al ) proved that the distribution (3.3) in fact satisfies the steady state of the
Liouville equation (3.1). Consider infinitesimal inhomogeneous perturbations, én{7),
6i(Z) and §A.(Z},at time ¢—T, then subsequently n, @, and A, evolve in space and time,
governed by a macroscopic differential equation. At present time ¢, the distribution P
1s composed of two parts, the local thermal equilibrium,

POY(Sz0.05 n(E,1), W, 1), A:(Z, 1)), (3.5)

10




plus the first-order deviation P with respect to the spatial and time derivatives of
macrovariables,

P= P04 pa), (3.6)
Tt should be noted that if the local thermal equilibrium {3.5) is substituted to the
evolution term in the right-hand side of eq.(3.1), then there remain only the effects
of spatial and temporal derivatives of macrovariables, n(Z,t), (Z,t) and A,(,1). To

obtain an expression for P{Y), after plugging eq.(3.6) into eq.(3.1) and Taylor-expanding
P(Sz_s,p2,t — 1) in the right-hand side of eq.(3.1), we obtain

a ~ -
PO(Sga001) = Wo e a ()P (Szpn,t) - Wa‘a;b,l(t)('a‘t‘ +&- V)PO(Szp0n, 4, As),
(3.7)
where the temporal and spatial derivatives in (3.7) operate only on n, @ and A,.

Successive use of eq.(3.7) yields

T
- -
PO (Sz0,t) = = 2 Waapaltlt — )5, + 8- V)P O(Szan;n, 4, A:),  (3.8)
=1
where the physical meaning of W, ;4,1 (t|¢ — 7) is an operator transferring from the state
(b, ) at t — 7 to the state (g, o) at t. More explicitly it is given by
Woer (= 5) = Waotia; OWorsamnat — D Wap it =5+ 1) (3.9)

- «+(1)
Thus the transport fluxes ¢*) and I ~ are obtained as

FNE ) = Ve / ds'PY(Sz, . =1,5,1), (3.10)
(1)
(Z0 = Zéaéa f dS'PY(Sz,,0 = 1,5',1), (3.12)

where the integrals in (3.10) and (3.11) mean summation over Boohan variables S

except Sz .. From the definition of transport coefficients, o and "7

¢ = —no VA, (3.12)
-
= —n 1 Vi, (3.13)

we finally arrive at the Kubo-style expressions,
3 &, g
no = 33 {000 (), (3.14)

nn = 2
7

((0)e(0)e(5)é(a))- (3.15)

3
‘MS ‘:'1

|
-

11



Definition of time correlation function for arbitrary variable Ha,o 18

(LOp() = 3 taoWaopa(tlt — s Noa. (3.16)

4 Generalized magnetohydrodynamic cellular au-

tomata

Before describing the generalization!?, a fundamental invariant of MHD, what is called
the Alfvenic invariant, is derived as a starting point of this section. Consider an
arbitrary surface element in the plasma and define the magnetic flux by the amount of

magnetic field passing through the surface,
U= /dST-B‘. (4.1)

When the magnetic field is changing and the surface together with the closed contour
spanned by the surface element is deforming with flow velocity 7, each diflerential
length dl of the contour sweeps out an area di x 7- di in a differential interval d¢. The
total rate of change of flux ¥ is then given by

d - 8§ - g
__=d.__f,{"-'._ 4.2
= [d8-2-fdxi-B (4.2)
Applying the Ohm’s law,
E+dxB=nJ, (4.3)
and the Farady’s law to eq.(4,2), we get

d
V=
=¥ =0, (4.4)

if the resistivity of plasma 7 vanishes. In other words, the magnetic flux ¥ is frozen in
the moving element of infinitely conductive plasma.

4.1 Generalized MHD particle

If MHD system can be modeled with the many particle system, the MED particle must
be characterized by the Alfvenic invariant frozen in itself, as well as by its coordinate
and velocity. The variable indices {a,0) of a single MHD particle correspond to the
six directions of velocity and three states of magnetic flux, up, down and nothing. The
generalized MHD particle '@ is characterized also by four parameters, r;, r5, [ and b.

12



new particle is depicted in Fig.2. It is an annulus with inner radius r,, outer radius
r» and length [. Inside the particle, the radial profile of azimuthal magnetic field, the
axial current density and the z -component of magnetic vector potential are shown in
Fig.3.

4.2 Macrovariables

For the convenience in the following, define a Boolian function n, ,{g.) as

- 1, if the state (a,0 ) at g, is occupied,
Nao(B) = { (2.0 ) P (4.5)

0, otherwise.

To observe macrovariables, we introduce a super-cell which is composed of many unit
cells as illustrated in Fig. 4. It is now straightforward to define macrovariables, such

as number density n, particle flux n, and magnetic field B,

33 na oA/ S0, (4.6)
Pa 3T

nd = 3.3 €aNlas(fu}fSo- (4.7)

5’: a,7

B = T3 [ Bi(p- 2)dne(5)/Ss. (4.8)

Pe 'O

n

Here the summation over g, is limited inside the super-cell, Sy the total area of super-
cell, and the integral [ Bgdp is a total magnetic field belonging to a single particle
located at g,. Contributions to the macrofield B',(4.8), from inner particles in the
supper-cell are cancelled out, because all the microscopic magnetic field lines assigned
to a single particle are closed(See Fig.2). Only particles located at the boundary of
the super-cell contribute to the magnetic field B. The boundary of the super-cell is
composed of six segments, § = 1,...,6, (see Fig.4). B defined by eq.{4.8) now becomes

B=Y 623 neol) [ é- B7(5— A.)dp/So- (4.9)

B=1 Pa @0

where the summation over g, is on the S-th segment. The integral over g is performed
over the inner-half space on the side of the super-cell to yield,

[ Br(5—po)dp = ]0 " dfsin 6 f 1’ drab = 20b(rs — 7). (4.10)

Definition of the current density in the z -direction is not simple, since any contributions

from individual particles are canceled even from particles located at the boundary. To

13



obtain a finite value of macroscopic current J., we require the Ampere’s law for B and
J.,ie. V x B = J,%, so that we have a formula, from the Stokes theorem,

//da:dsz - fﬁ-dﬁ (4.11)

where the integrations are over the whole space of the super-cell for the integral in the
left-hand side and along the boundary for the right-hand side. Thus, from egs. (4.9)
and (4.10), the current J, is

J. = -l-ff}' ol
= SQ Z /eﬁ dlg:gnac P )(208{r2 — 1))
= & Z Ls Z Z Mao(fa)20b(r2 — 11), (4.12)
0 B=1

where L is the length of the B -th segment. It is to be noted that both B and J, can

be determined just from the surface observation.

4.3 7Quantization” of Lorentz force

Updating rules to impart the momentum increase in the super-cell in proportion to the
Lorentz force J x B is a central part of the MED - CA. Expressions (4.9) and (4.12)

lead to a formula for Lorentz force
Jx B=-—fIb, (4.13)

with

53
b= Z €pee +8845) D D naolfu)o (4.14)

p. a0
= - Z Z na,c(}a‘*)gt (415)
Fa &F
where summation over g, in (4.15) is throughout the boundary of the super-cell, and

fe 4b%(ry — ry)? s L.B
V383

Notice that b is the sum of €z multiplied by integer over § = 1,2,---6, and that [ is

(4.16)

an integer. If we here impose a quantization condition for the Lorentz force,

F=2, (4.17)

14




then it becomes convenient to construct a scenaric to apply the Lorentz force to par-
ticles in a super-cell 1} Observe the integer bg defined by
b=y E N o(Fe)0, (4.18)
5_ a0

for all segments, 8= 1,---,6. 2) Observe the integer current I at the boundary,

6
I==%t. (4.19)
p=1

Next task is to change velocities of some particles inside the super-cell. The Lorentz

force (4.13} is, after rearranging,

JxB= Siuzjr[(b2 by — b — b)és -+ (b -+ ba — bs — b1)éa + (ba - bs — by — by)és). (4.20)
3) If I(by+ b3 — bs — bg) > 0(< 0), search for [I{b;+b3— b5 — be)| particles with velocity
¢4(é) and change their velocities to €;(é,). 4) If I{bs + b4 — bs — b1} > 0(< 0), search
for |I(bs + by — bs — b1)| particles with velocity é5(é;) and change their velocities to
84(8s). If I(bg + bs — by — by) > 0(< 0), search for [I(by + bs — by — bo)| particles with
velocity ég(és) and change their velocities to é;(é). Thus, the new scenario for the
Lorentz force is fully deterministic.

4.4 Restriction from the equipartition of energies

It is widely believed that there exists an Aliven mode dominant inertia region in the
fully developed MHD turbulence. It is characterized by the inequality

lvak] > PR3P = (k)7 (4.21)

where ¢ is a rate of energy supplied to eddies of size L per unit mass and unit time, 7(k)
the characteristic life time of an eddy of size k7{< L), and v, the Alfven velocity.
In the high wave-number region satisfying (4.21), the equipartition of the kinetic and

magnetic energy holds,

-

s < iR >= 3 < BRI > (422)

Here the Fourier components 5(1-:) and B(E) are

ey 1 — Y - T
iR = 3 [0 exp(—iE -72) (4.23)
= - 1 - 2 - L
iF) = o [dBB(E)exp(—iF -7.) (4.24)

15



where 5’ (7.) and ]:3"(,6'.) are microscopic flow velocity and magnetic field, respectively.

The generalized MHD particle introduced in §4.1 has four parameters. We have
imposed a constraint, quantization condition for the Lorentz force, but three free pa-
rameters are left. We now choose a set of parameters such that the equipartition low
holds in the region with high k of the order of 27/ly, where I is a characteristic size of
the single lattice.

4.5 Strauss equation

The Strauss equation is a reduced set of full MHD system, which is valid in low-£
plasma of tokamak ordering. It is written as
i}

(5 +E- V)% = (B-V)J. + nvAQ,, (4.25)
(%-{.a’-V)Az = gg+nnﬂ-4z, (4.26)
u, = 0, (4.27)

i = Véx3, (4.28)

B = VA, x5+3, (4.29)

AA, = -], (4.30)

A = —Q,. (4.31)

If the z -dependence is totally neglected in eqs.(4.25) through (4.31), they are reduced
to 2D - MHD.

The lattice system for Strauss-CA is hexagonal in (z,y) space. The length [ of the
MHED particle is finite. Each particle is free 1o move in (z,y) space, but is inhibited to
move In z -direction because of the restriction, u, = 0. Total system is composed of a set
of layers perpendicular to the z-axis. Particular particles are confined to a particular
layer, but they undergo interactions among themselves. Only interactions between
adjacent layers are due to terms, 8J,/8z in (4.25) and 8¢/8z in (4.26). They result
from shears in the z -direction of the perpendicular Lorentz force and flow velocity.
Scenario to incorporate such shear effects can be constructed as a local interaction

between adjacent layers.

5 Some remarks

Recent development of the lattice gas method has given a novel tool for numerical

solution of incompressible Navier-Stokes equation or MHD. Cellular automata have
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been paid a renewed interest, not only because they are simple dynamical systems and
are tractable theoretical models, but also because they are quite suitable for imple-
mentation on computers. Construction of good CA can simulate a natural system in
the scaling limit. The time evolution of CA can be traced rigorously by a computer,
while the numerical solution of partial differential equation cannot proceed without
inevitable roundoff errors or numerical instabilities. The lattice gas method is thought
to have an advantage over the ordinary finite element or difference methods, in the
tact thai the numerical solution of CA has no difficulty in the problem of comphcated
boundary conditions. S. A. Orszag and V.Yakhot **) however argued that the com-
putational requirement for present lattice gas method is much more severe, if applied
to turbulence, than for conventional solution of differential equation. In spite of this
criticism, efforts in this direction is continued for instance by S. Chen et al. ¥

A different MHD - CA from those given in §§ 2 and 4 has been developed by H.
Chen and W. H. Matthaeus'®). Montgomery-Doolen model® incorporated a nonlocal
computation of Lorentz force by spatially differencing the coarse-grained magnetic po-
tential A,, via ~VA,AA,. The present new model described in § 4 however needs no
spatial gradient of potential 4,. It can directly observe the macroscopic current density
and the magnetic field from the diagnosis of particles located only at the boundary of
super-cell. H. Chen and W. Matthaeus'® presented aliernative MHD - CA by com-
pletely local computation of magnetic Lorentz force. Their MHD - CA are stochastic
in contrast with the resent MHD - CA which are characterized by fully deterministic
algorithm.

As for CA machine, one should refer to papers in Ref.2.

The lattice gas model has been successful in the parabolic differential equations,
such as hydrodynamics and magnetohydrodynamics. H. Chen et al*®) have shown
that it is possible to construct CA for solving the linear wave equation. Application
of CA also to other natural system has recently been performed. M. Gerhardt and
H. Schuster'” introduced CA describing a chemical system, a certain heterogeneous
catalytic reaction. The numerical results demonstrate a self-sustained organization of
circular and spiral wave-like structures, which are very similar to those observed in the
Belousov-Zhabotinskii reaction. Quantum CA were first investigated by G. Grossing
and A. Zeilinger’®. As the speed of computer operation increases, they have to get
smaller in size. Thus the understanding of quantum effects on computer or CA is
becoming of significance. The quantum CA are not described by Boolian logic, since

it is not certain whether the value at a given citeis 0 or 1.
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Figure captions

Fig. 1. Hexagonal Lattice system.

Fig. 2. The structure of the generalized MHD particle. The particle is an annulus
with inner and ounter radii r, r; and length . It contains the closed magnetic

field B, whose magnitude and direction are characterized by b and o,

Fig. 3. Radial profile of some quantities inside the MHD particle; a) azimuthal mag-
netic field Bg(r), b) axial current density J,{r), and z -component of magnetic
vector potential A7(r), where ¢ indicates the orientation of magnetic field. The
parameter b is defined by a formula, BZ(r) = ob/r.

Fig. 4. Supercell is a large hexagon which is expected to contain a large number of
MHD particles. The boundary of super-cell is composed of six segments, labeled
as f=1,2,---6.
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