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Abstract

Magnetic field structure of the scrape off layer (SOL) region in both helical systems
and divertor tokamaks is studied numerically by using model fields. The connection
length of the field line to the wall is calculated. In helical systems, the connection
length, L, has a logarithmic dependence on the distance from the outermost magnetic
surface or that from the residual magnetic islands. The effect of axisymmetric fields on
the field structure is also determined. In divertor tokamaks, the connection length also
has logarithmic properties near the separatrix. Even when the perturbations, which res-
onate to rational surfaces near the plasma boundary, are added, logarithmic properties
still remain. We compare the connection length of torsatron/helical-heliotron systems
with that of divertor tokamaks. It is found that the former is shorter than the latter

by one order magnitude with similar aspect ratio.
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1 Introduction

In straight helical systems and in axisymmetric toroidal systems like tokamaks, the
magnetic surfaces are perfectly closed within the separatrix, provided that there are no
perturbationssuch as error fields and MHD fluctuations. In toroidal helical systems, the
closed magnetic surfaces can be partly destroyed so that an ergodic region appears in
the scrape off layer (SOL) region. This occurs because magnetic islands are constructed
on rational surfaces by the toroidal effect; consequently, islands overlap once they reach
a certain size { Rosenbluth et al.,1966; Filonenko et al.,1967; Hamzeh,1972). Destruction
of the magnetic surface is generally believed to be one source of the anomalous diffuston
in toroidal helical systems (Wobig and Fowler,1988). Cary and Hanson(1986) indicated
that the ergodicity is systematically reduced by the variation of the parameters of
systems. Though this method enlarges the closed region, the ergedicity still remains
outside of the closed region. When the field is ergodic, it is necessary to analyze its
statistical properties.

On the other hand, in tokamaks, when we add the perturbations which resonate
to boundary rational surfaces, the ergodic region appears near the separatrix and the
separatrix disappears. This ergodic magretic field is known as a concept of a ergodic
magnetic limiter (EML)(Neuhauseret al,,1989). The edge plasma behavior is modified
by EML. The role of the ergodic field on the plasma confinement has been investigated

experimentally (Samain et al., 1984; Ohyabu and Degrassie, 1987; McCool, 1989; Shen,



et al, 1989; Shoji, et l.,1989) and theoretically (Martin and Taylor, 1984). The moti-
vation of these investigations is that particles and high heat flux can be handled and
impurity is controlled. The modification of the edge plasma also affects the core plasma
confinement.

Divertor function has an important role in controlling particles and heat in toroidal
plasmas. It also improves the confinement of the core plasma. Several types of im-
proved confinement, including H-mode (Wagner ef al.,1982), improved ohmic confine-
ment (Séldner et al.,3988) and improved divertor confinement {Tsuji et al.,1988), have
been observed in tokamaks. The separatrix has a divertor function in axisymmetric
systems. The question of whether the ergodic region plays the role of the divertor func-
tion or not merits further study. The problem of the SOL plasma in toroidal helical
systems is discussed by authors briefly in a preceding paper (Itoh et al.,1989). This
ergodic SOL region was also studied in tokamaks with small error fields (Neuhauser et
al., 1989).

We in this article study the magnetic field structure of the SOL region in both
helical systems and divertor tokamaks. On the outside of the outermost magnetic
surface (OMS), the field line reaches the wall. We define connection length as the
distance from the initial point to the wall. The connection length of the magnetic field
is used to investigate the field structure. To comstruct a model of vacuum magnetic

fields, we use two models, i.e., a simple toroidal harmonic function in helical systems




and a circular current which concentrates near the magnetic axis in divertor tokamaks.
The connection length has an infinite value within the OMS, but rapidly decreases
away from it. The connection length has a logarithmic dependence on 4, where & is
the distance from the OMS. On the outside of the OMS, residual magnetic islands,
which are isolated from the closed magnetic surface, exist. The connection length has
an infinite value on these islands and also has a logarithmic dependence in the vicinity
of them.

In helical systems, a characteristic value in regard to logarithmic properties exists in
the SOL region. Expanding on results in the previous article, we study the dependence
on both the toroidal pitch number and the axisymmetric fields. The effect of the residual
magnetic islands in the SOL is also studied.

Helical systems and divertor tokamaks are compared from the viewpoint of the
absolute value of the connection length. From numerical results, the connection length

of torsatron/helical-heliotron systems is found to be less than that of tokamaks by one

order magnitude.



2 Connection Length in Helical Systems

2.1 Model

The vacuum magnetic field of toroidal helical systems can be expressed by the

magnetic scalar potential as

B=-Vo. (2.1)

The potential, @, is represented in terms of the toroidal harmonic functions as (Morse

and Feshbach, 1953)

D = o frm(¥)/1 — ycost cos(£y + m() (2.2)
tm

where £ and m are the poloidal and toroidal pitch numbers, respectively, oy, is a
numerical coefficient, and (y, ¥, {) are the toroidal coordinates. The relation between

the toroidal coordinates and the quasi-toroidal coordinates (r, (, ) are

Vi
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where r is minor radius, R is major radius, 4 is poloidal angle and ¢ is toroidal angle.

The equation which determines f,, 1s given in Morse and Feshbach (1953).
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By taking a simple (£, m)-Fourier component and superimposing the axisymmetric

torcidal and vertical fields, B, and B,, the total magnetic field is expressed as

B = — V{0 frm(y)y/1 — ycos ¢ cos(fy) + m{)} + B + B,. (2.4)

The equation of field line,

dp _ pds _ dz

is solved to determine the structure of the field, where (p, §, z) are the cylindrical co-
ordinates. Eqn.{2.4) has been used to study magnetic surlfa,ces of £ = 2 helical systems
(Yoshikawa,1983; Nagasaki et ¢l.,1988).

In axisymmetric systems such as tokamaks and in straight helical configurations, the
magnetic surfaces are perfectly closed within the separatrix, provided that there are no
field perturbations. In toroidal helical systems, however, the magnetic surfaces near
the separatrix are partly destroyed, resulting in the disappearance of the separatrix.
Therefore, the ergodic region appears at the plasma boundary. Since particles and heat
are mainly carried along the field line, the connection length, which has a finite value in
the ergodic region, is an important factor in evaluating the qualities of the SOL region.

An example of closed magnetic surfaces is shown in Fig.1, simulating Heliotron-

E device (£ = 2,m = 19) at {a)( = 0 and (b}{ = 7/2m . Values of characteristic



quantities of the magnetic surface are ¢{0) = 0.5,¢(a) = 2.44,a/R = 0.07, where a is

average minor radius.



2.2 Properties of Connection Length in Ergodic Region

Connection length is calculated as follows. The initial point of the field line is given.
By solving Eqn.(2.5), we follow the field line in the direction of increasing { until it
reaches the wall. The connection length, L4, is defined as the distance along the field
line from the initial point to the wall. L. is also given by following the field line in the
opposite direction. L4 1s a fanction of the initial point coordinates.

Figure 2 shows the example of the radial profile of connection length 7. Parameters
are the same as in Fig.1. Initial points of the field line are { r,8,( ) =(r,0,%/2m ). Since
magnetic surfaces are perfectly closed within the OMS, the connection length has an
infinite value within it. Away fromit, the connection length decreases rapidly. Magnetic
islands exist on rational surfaces and still remain even in the SOL region. In the SOL
region, islands are isolated and self-enclosed and have their own inner structure; they
have similarly small islands around them. This is called fractal structure. An example
is shown in Fig.2(b). The connection length has an infinite value on the islands and
decreases away from the islands’ surfaces. Figure 3 shows the asymptotic behavior near
the OMS and residual islands’ surfaces. The asymptotic behavior near the OMS is
important in view of the divertor function (Wagner and Lackner,1984). The connection
length . has a logarithmic dependence on é, where § is the distance from the OMS or
from residual islands’ surfaces. This dependence holds up within a range, §/R ~ 1073,

The value of the connection length is slightly different between the inside and ocutside



of the torus. The logarithmic dependence is common, i.e., the coefficient, L/In{R/§),
is same, but the constant term is different. The connection length on the side where
the O-points of residual islands exists is longer than the other side_. A step structure in
the radial profile can be seen in Fig.2{a). This is because residual istands remain in the
SOL region. The O-points of ¢ = m/({+7)(j = 1,3,5,- - -) magnetic islands appear on
the outside of torus, § = 0. The field line near the 19/7 surface must rotate one and
a half helical pitches on its journey to the vicinity of the 19/5 surface. In the case of
19/5 surface, the field line must rotate one helical pitch to reach the 19/3 surface.

It is also found that the connection length for different values of (8, ) has the same
dependence except for a constant term. Figure 4 shows the § and ( dependence of I,

for §/ R = 1073, From these results, the connection length can be approximated as

B6,0) ~ LoF (64 QR (21)

Dotted lines in Fig.4(a) do not form a rhom because the connection length on the inside
of the torus is slightly shorter than on the outside by the toroidal effect. The second
term in Eq.(2.1) approximates the distance that the field line rotates to reach the low
field sides, £0 + m{ = +w, i.e., X-point. The distance that the field line travels to
reach the low field sides is approximated by 7/m F (£68/m + ¢), because the rotational
transform near the OMS is much smaller than the geometrical pitch, m/Z. This means

that the field line moves in a laminar manner and obeys the ergodic law in radial
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directions near the X-point. For this reason, the connection length near the OMS can
be written as
m¢

La(6,8,0) ~ 1O + (57 0+ TR (22)

where the toroidal and poloidal angle is measured in a single pitch, 0 < 8 < 27/¢ and
—7t/m < { < 7/m. There is periodicity in both & and (.

L(8) is a logarithmic function of §,

(2.3)

where a is a plasma radius and b is a wall radius. Tlhe coefficients A; and A, are
approximately 2.0 and 0.67 respectively in the case of Fig.1.

The value of }; is a key parameter because the absolute value of the connection
length depends on it. Figure 5 shows the m dependence of A; for given values of B,
and B,. The value of X, is weakly dependent on m. It is confirmed that its value is
independent of the wall distance. Dependence on the axisymmetric fields is studied in
the next section. The logarithmic property in straight systems are also studied. (See
Appendix.) The value of }; in straight systems is proportional to (a/ R)Y? and is close
to the value in toroidal systems. That is, helical systems have logarithmic properties

regardless of the existence of the separatrix.
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2.3 Effect of axisymmetric fields on L

Characteristic quantities of the magnetic surface, such as rotational transform,
plasma volume and specific volume, are changed by axisymmetric fields. The effect
of axisymmetric fields has been evaluated in view of the plasma confinement, for ex-
ample, MHD activity and particle confinement. Here we will analyze the effects on the
field structure of the SOL region.

We first study the effect of the toroidal field. With the increase of the toroidal
field, the plasma volume increases, while the rotational transform is lowered and the
shear is weakened. In the £ = 2 case, the rotational transform at the magnetic axis is

analytically given as

4 Utm
- m B{R

From Eq.(2.4), the toroidal field which satisfies the condition ¢ (0) = m/(£ + ;) can be

written as

BE 2

R S

E+7j 2.5
Cim m ] ( )
In the vicinity of the magnetic axis, the toroidal effect is weak and the analysis of

straight helical systems can be applied. In straight helical systems, the short minor

radius of the magnetic surface, r,, is written as (Soloveev and Shafranov,1966)




4 Xt

= 1-— . 2.6
r=roi- Ol B g (26)
This determines the lower limit of the toroidal field,
BR,6 4
| == > —. (2.7)
o730 m

When the toroidal field is lower than this limit, the confinement region surrounding the
major radius p = R cannot be constructed.

Figure 6 shows the relationship between the toroidal field and the positions of both
the OMS and the O-points of the magnetic islands on the outside of torus, # = 0. The
toroidal pitch number is n = 19 and the vertical field is not added. The values of
the toroidal field, at which the central rotational transform is equal to m/(£ + 7)(j =
1,3,5, ) or the confinement region disappears, agree with the analytic values given by
Eqns.(2.5) and (2.7). With the increase of the toroidal field, the rotational transform
at the plasma radius becomes smaller. If it falls bellow m/(£ + j), the O-points of
¢ = mf{£+ j) islands appear on the outside of the OMS, 6 = 0.

The toroidal field changes A; as shown in Fig.7. From the numerical result, we find
that A; is proportional to (a/R)!?. The inverse aspect ratio a/R is proportional to
(B, — BE)UQ, where B; is the critical toroidal field at which the confinement region
disappears (Nagasaki ef al.,1988). Therefore, except in the vicinity of By ~ B, the

dependence of A; on the toroidal field is weak A; o (B, — BE)1"4.
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We next study the effect of the vertical field. Aéplication of the vertical field influ-
ences the plasma volume. The magnetic surfaces are shifted and the boundary region is
affected. Not only the OMS but the O-points are shifted. Figure 8 illustrates the shift
of the OMS and the O-points of the magnetic islands on both the inside and outside of
the torus. Parameters are the same as in Fig.1. Since the shift of the magnetic surface
is proportional to B, /¢, the inner side of the OMS, where ¢ is smaller, moves faster than
the outer side. In the case of Fig.8, the O-points move from the outside of the torus
(8 = 0) to the inside (9 = ) with the increase of the vertical field. The confinement re-
gion is optimized at B, = B:. The edge rotational transform is also optimized as shown
in Fig.9. When B, is less than B;, the O-point and the X-point of m/{¢+ j) magnetic
islands exist at (6,{) = (0,0} and (x,0), respectively. Locations of the O-point and
X-point are reversed on opposite sides. The helical resonant component BH,J,,,, changes
its sign from positive to negative, and vice versa at B, = B;. This implies that éH.J,m

1s expanded near B} as

Bryym =~ (B, = B} +--- (2.8)

where v is a numerical coefficient. The width of resonant islands is proportional to
th,m (Gourdon et al.,1968; Matsuda and Yoshikawa,1975). This suggests that the
width of natural islands is proportional to /| B, — B: | near the optimum B!. Conse-

quently the change of both the plasma radius and the rotational transform is propor-
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tional to m in the vicinity of B:. This is confirmed by numerical calculation.

From numerical results, it is found that the behavior of the + = 19/3 rational surface
differs from those of the others. The shift of this rational surface is very small, less than
5% of the shift of 19/5 surface, and the OMS never becomes larger than the 19/3 surface
by the change of B,. This property is also confirmed in the case of other torcidal pitch
numbers. It is presumed that ¢ = m/(£ + 1) is the upper limit of the edge rotational
transform. If more optimization is needed, the other resonant fields, which makes the
width of ¢ = m/(£ + 1) islands narrower, must be added.

Control of the field perturbation By, would reduce the ergodicity. The ergodicity,
however, remains on the outside of the OMS so that the connection length still has a
logarithmic dependence in the SOL region. The dependelnce of A; on the vertical field
is very weak. Within the range, —0.005 < B, R/ay, < 0.01, A; changes no more than +
3%, while ¢(a) approximately doubles. The increase of the plasma volume by B, does

not cause an increase in A;. This is in contrast to the toroidal field case.
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3 Connection Length in Divertor Tokamaks

3.1 Logarithmic Dependence near Separatrix

In the same way as helical systems, the connection length can be used to investigate
the field structure near the separatrix in tokamaks equipped with poleidal divertor. We
consider the model in which the plasma current concentrates near the magnetic axis.
Though there can be finite plasma current around the separatrix in real plasmas, we
study the case where the boundary current is almost negligible.

We introduce a magnetic flux function as

where A is the toroidal component of the vector potential A. By using the complete
elliptic integrals K (k) and E(k), the component A, which is constructed by the circular

current 1s described as

1 }10[ R k? -
Ac="—r ;{(1 - S H(R) = E(k)} (3.2)
where
5 4pR
e —— 3.3
(p+ R)? + 22 (3.3)
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It is known that the magnetic surface near the magnetic axis is approximately circular
and far away from the circular current, a dipole field is constructed.

The equation of the magnetic surface in divertor configurations is written by

v=9,+¥;+9, (3.4)

where ¥, ¥, and ¥, correspond to the flux functions by the plasma current, divertor
current and the vertical field. The divertor currents are located at (p,z) = (R, +z;).
The function ¥, is given by (1/2)p?B,q. In this paper, the vertical field is added so that
the X-point of the separatrix may be located at p = R. The location of the X-point
also has a relation to the ratio of the plasma current I, to the divertor current ;. The
X-point divides the distance z, between the plasma current and the divertor current in
the ratio [, : Iy

Since the poloidal field di;appears at the X-point of the separatrix, the effective ¢

value is introduced. The effective ¢ value is defined as

I (p.s B R)BCD

RB.(p.) | (3.5)

qr =

where p, is the radius of the separatrix magnetic surface at z = 0 on the outside of the
torus and B.(p,) is the z-component of the magnetic field at the separatrix.
Figure 10 illustrates one example of the magnetic surfaces in double null configura-

tions. Parameters are chosen as g; = 3, z5/R = 0.45 and /], = 1/2. We calculate the
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connection length in such a configuration. Like in helical systems, the connection length
is defined as the distance from the initial point to the divertor plate which is set up at
p = R,| z{> zs. The connection length has an infinite value within the separatrix and
decreases away from it. The asymptotic behavior of the connection length is shown in
Fig. 11. The parameter ¢ is defined as the distance from the separatrix on the outside
of the torus. The connection length also has the logarithmic dependence on & like in
helical systems. The coefficient C' of the logarithmic function is affected by parameters
of configurations. Figure 12 shows the dependence of C on parameters, ¢;, z; and /1.
From these numerical results, the connection length in divertor tokamaks can be fitted

in the following formula.

L:Cln? (6 —0)

zg Iy
C ~ 13 R+ 0422 .

It is confirmed that the connection length on the inside of the torus also has the same
properties. However, its value is a little larger than the outside one. This is because

the inside toroidal field is stronger than the outside.
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3.2 Effects of Resonant Perturbing Fields

When we add the perturbations which resonate to rational surfaces near the separa-
trix, the separatrix disappears and the SOL region becomes ergodic once the magnetic
island on the rational surface reaches a certain size. The ergodic layer width depends
on the mode numbers and magnitude of the perturbations. In this section, the effect of
the perturbations on the connection length is discussed.

Assume that the perturbation field B, which satisfies V-B =0, is added to divertor

tokamak configurations in the following form,

- bR ol

_ L m—1 _: _
B, = R+ rcosf QWR(R) sin(mé — n()
] (3.7)
- ER yng ' m—1 N
Be = R+ rcosd2nR R) cos(mf —nc)

where (r,(, 8) are the quasi toroidal coordinates and m, n are the poloidal and toroidal
mode numbers, respectively. This perturbation simulates the resonant helical field.
Figure 13 shows one example of radial profiles of both the connection length and
the safety factor. The safety factor ¢ in the SOL region is defined as [ df/ [ d( where
the integral is taken from the initial point of the field line to the wall. The perturbation
is chosen as m/n = 5/1 and b = 0.1. Residual islands are constructed on the rational
surfaces. In this case, m/n = 5/1 magnetic island is completely broken and m/n = 4/1
magnetic island, which is induced by the toroidal effect, is seen. Sharp corrugations of
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the safety factor profile are seen in the SOL region. Like in toroidal helical systems, the
connection length decreases rapidly away from residual islands surfaces. Figure 14 shows
the asymptotic behavior at A and B in Fig. 13(a). The logarithmic dependence is seen.
The coefficient C' of the logarithmic function has nearly the same value as the symmetric
case and the dependence of C on the geometrical parameters is similar. € has almost
no dependence on  within the range b < 1. It is also confirmed that C does not depend
on the mode numbers of the perturbing fields. This means that logarithmic properties
of the connection length in the SOL region persist no matter how the perturbation is
added. In other words, the logarithmic nature of the connection length is not destroyed
even if the idealized poloidal separatrix configuration is not realized. This would be the
reason that the divertor functioning has been observed in many tokamaks with poloidal

divertor under various operation conditions.




4 Comparison between Helical Systems and Diver-

tor Tokamaks

Both helical systems and divertor tokamaks have logarithmic properties regardless
of the preservation of symmetry. Their origins, however, seem to be different between
symmetric and asymmetric systems. In symmetric systems, the properties have the
relation to characteristics of the X-point of magnetic surface of the separatrix. The

connection length near the X-point can be writien as follows.

B
L N]E;ds (4.1)

where B and B, are total and relative poloidal fields, respectively and s is a distance
from the X-point in the poloidal direction. The relative poloidal field B, vanishes at

the X-point, and it is approximately given as

where 7 15 a distance from the X-point. If the minimum distance to the X-point is given
by A, z may be approximated by z ~ /52 + A2, Substituting Eqn.(4.2) into Eqn.(4.1),
logarithmic properties of the connection length, L o In R/A is found.

On the other hand, in broken symmetric systems, the destruction of the separatrix
is caused by the overlapping of the magnetic islands. The fractal structure of many

islands is confirmed by numerical calculations (See Fig.2(b)). Divergence of nearby
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field lines are expected in the state of positive Lyapunov exponent { Benettin and
Galgani,1979; Rechester ef al,1979). We confirm that the connection length decays
with the logarithmic form in the SOL region and that the coefficient of the logarithmic
function is almost preserved in the symmetric limif.

Though the characteristics of the SOL region is similar both in helical systems and
divertor tokamaks, the absolute value of the connection length is quite different. We
compare the connection length value of helical systems and that of divertor tokamaks.
By using the Eqns. (2.3) and (3.6), The ratio for the former L, to the latter L, is given

by

Ly (L1076 1 L
Lt mgr )\1 1+Zd/RId.

(4.3)

For typical parameters (£ = 2,m = 12,¢; = 3,2%5 0.45,1;/T, = 1/2), this ratio is
less than 1/10. In general, the conrection length of torsatron/helical-heliotron (T /H)
systems is shorter than that of tokamaks by one order magnitude. This indicates that
particles and heat would reach the wall faster in T/H systems than in tokamaks with
similar aspect ratio.

The dependence on the toroidal field is also different. In T/H systems, when the
toroidal field increases, the boundary state slightly gets worse because the connection
length is proportional to BC_I‘H. On the other hand, in divertor tokamaks, the plasma
boundary is improved with the increase of the toroidal field. We note that the depen-

dence of the field property on the toroidal field is opposite.

L2
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5 Summary and Discussions

Field structure of the SOL regions in both toroidal helical systems and divertor
tokamaks was analyzed by calculating the connection length of the field line to the
wall. The model vacuum magnetic fields are used. It was confirmed that the connection
length has the logarithmic dependence in the SOL region of toroidal systems with the
separatrix. We compare the connection length of T/H systems with that of divertor
tokamaks. The former is shorter than the latter by one order magnitude.

The role of residual islands in helical systems was discussed. Although the logarith-
mic dependence is common for all values of (8, {), the difference appears on the constant
term. The connection length on the side where the O-point does not exist is shorter
than the other side. This implies that heat preferentially follows on the side where the
O-point does not exist.

Tn the SOL region, A; has a characteristic value, by which the ergodic property can
be estimated. The dependence of A; on the pitch number and the axisymmetric fields
was numerically calculated. The m-dependence of A; is weak ; i.e., the asymptotic form
of the connection length (§ — 0) is approximately given as L ~ £R/(2m)In(a/é). The
value of ); increases according to the formula, A; ch. Increasing B, results in an
incremental increase in the inverse aspect ratio, but also brings about an undesirable
reduction in the connection length. The plasma volume is also affected by B,, but A,

is nearly independent of B,. Adjustment in the vertical field can increase the volume
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without a reduction in the connection length. Therefore, optimization of the plasma
volume by B, is better than optimization by B in terms of the SOL plasma confinement.

From nwmerical results, it was found that ¢ = m/(£ + 1) rational surface is hardly
shifted by the vertical field and the rotational transform can not be beyond ¢ =
m/f{£+ 1). If we need more improvement of the SOL region, the other resonant fields,
which makes the width of ¢ = m/({ + 1) island small, must be added to systems.
Todoroki(1989) has pointed that the component of the magnetic field in £ = 2 systems,
which destroys the magnetic surface near periphery, is persistent under the shift of the
magnetic surfaces. The behavior of the (£+ 1, m) island may be related to this residual
magnetic field. This comparison requires further research.

The value of A; would be modified in real devices, because the single harmonic
model field is too simple to describe the fields generated by winding currents. Although
higher harmonics should be taken into account in order to apply the result to real
experiments, the result remains a good first step in the SOL plasma analysis. The
logarithmic dependence has been verified in a real coil system, Heliotron-E (Mizuuchi
et al,1984) and A; is neatly 1.1. This value differs from that of the simple model field
by less than a factor of two. Since the reduction of ); makes the connection length
longer, it will improve the plasma confinement. Analysis including higher harmonics is
left for future study.

Since this dependence of L on § is similar to that of tokamaks, analysis of the SOL




plasma in tokamaks using the fluid model is applicable. Edge temperature and width of
the heat channel have been estimated (Itoh et al., 1989). The edge temperature scales
as P*%* and the half width of the temperature profile scales as P~%?"™, where P is
the total heat flux out of the plasma surface. These dependencies are the same as in
tokamaks. It is noted, however, that the edge temperature is lower than in tokamaks
because the connection length is shorter by one order of magnitude, resulting in a set
of conditions that make it difficult to operate a divertor function.

We finally note that the logarithmic dependence and the coefficient C in Eqn.(3.6)
in divertor tokamaks are not affected by the resonant perturbations which destroy the
separatrix. This would be the reason that the divertor functioning is observed in many

devices which may have error fields and edge magnetic turbulences.
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7 Appendix

The scalar potential which describes straight helical systems is written as (Morozov

and Soloveev, 1966)

®=>" ajmfz(m—%) cos(£6 + m%) + B.z (A1)
Lm

where I, is modified Bessel function of the first kind, and B, is a uniform axisymmetrc
field. Like toroidal helical systems, the field is calculated by using a single harmonic and
the connection length can be estimated. The separatrix exists in straight systems and
the connection length has a finite value away from the separatrix. Then the connection

length can be written as

71
™m A

R
— A2
In 5 ( )

| b

=t

where § is the distance in the radial direction from the X-point of the separatrix. Fig.Al
shows the numerical result of B, dependence of A;. The value of A} is approximated by
A5 o {@/R)/2. This dependence is the same as in toroidal systems. When parameters
are those in Heliotron-E (¢(0) = 0.5, m = 19), we obtain A{ ~ 2.2, This value is close
to that of toroidal systems. As a result, helical systems have a logarithmic property

regardless of the existence of the separatrix and have the common dependence on the

axisymmetric field.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions

1 Poloidal cross-sections of magnetic surfaces at toroidal angle (a) ¢ = 0, (b)
¢ = 7/2m. Parameters are £{ = 2,m = 19, B(R/oy,, = 0.65 and B, = 0.0.

Characteristic quantities of the magnetic surface are ¢ = 0.5,¢ = 2,44, R = 0.07.

2 Connection length Ly as a function of p for the case of Fig.1(b)(4 = 0,{ =

7/2m). (2) a whole figure {b) a magnified figure near ¢« = 19/7 .

3 Logarithmic dependence of connection length on & in the case of Fig.1(b).
Symboals o, A, O and e denotes L, at the points ¢ = 19/7,19/5,19/3 and the

OMS on the inside of the torus, respectively.

4 Dependence of L on both # and ¢ at §/R ~ 107 near the OMS. Symbols
o and A denote for L, and L., respectively. (a) § dependence at { =0, (b} ¢

dependence at 8 = 0.
5 Dependence of A, on m. Parameters are £ = 2, B;R/ay,, = 1.0 and B, = 0.0.

6 Positions of the OMS and the O-points of magnetic islands as a function
of the toroidal field. Symbols o, A, O and e denote for the O-points of ¢ =

19/3,19/5,19/7 and the OMS, respectively.

7 a/R dependence of A;. Parameters are { =2,m =19, B, = 0.

31



Fig. 8 Shift of the OMS and the O-points by the vertical field at m = 19, B, R/, =

0.65. Symbols are the same as in Fig.6.

Fig. 9 Edge rotational transform ¢(a) as a function of the vertical field. <(a) is

optimized at B, R/oy, = 0.0027.

Fig. 10 Magnetic surface of double null divertor tokamaks. Parameters are ¢; =

3, Zd/R = 0.45 and Id/[p = 1/2.
Fig. 11 Asymptotic behavior of the connection length on 6 in the case of Fig. 10.

Fig. 12 Dependence of the coeflicient C on geometrical parameters. (a)g; dependence,

(b)zq dependence and (¢)/a/ I, dependence.

Fig. 13 Radial profiles of {a)the connection length and ({b)the safety factor. The

resonant perturbation is m/n = 5/1,5 = 0.1.

Fig. 14 Logarithmic property of the connection length in the ergodic region. Symbols
o and e correspond to L at the points A and B in Fig. 13, respectively. Small

dips near /R ~ 10™° and 107 correspond to the integer g-numbers.
P ger g

Fig A1 a/R dependence of A in straight helical systems. Parameters are £ = 2, m =

19.
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