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1. INTRODUCTION

Many new ard exotic phenomena are being discovered and elucidated in the current
renaissance of nonlinear dissipative dynamics (Abraham & Shaw, 1982 et
seq; Guckenheimer & Hoimes, 1983; Thompson & Stewart, 1986; Moon, 1987). In
particular, the unexpected chaotic behaviour of deterministic systems (Lorenz, 1963;
Ueda, 1973, 1978) has provoked great interest among physical scientists, blurring the
previous sharp distinctions between deterministic and stochastic views of the world.
This unexpected behaviour embraces both the steady chaotic motions on chaotic
attractors, and the transient chaos which ¢an occur even in situations where all the final
attractors are regular and periodic. One important consequence of these chaotic
transients is that the basin boundaries between competing, coexisting steady states can
have an infinitely tangled homoclinic structure (Hayashi, Ueda, Akamatsu & Itakura,
1970), whose fractal properties have recently been the object of much study (McDonald,
Grebogi, Ott & Yorke, 1985; Moon & Li, 1985; Eschenazi, Solari & Gilmore, 1989;
Thompson & Soliman, 1990). Here, even though any trajectory over a finite time
interval depends continuously or the initial conditions, the dependence can be
extremely sensitive; so when final behaviour is considered in the limit as the time tends
to infinity, the attractor ultimately chosen may depend discontinuously on the initial
conditions in a substantial region of phase space corresponding to the fractal basin
boundary. From this point of view, long-term predictability is lost.

Chaotic attractors, their bifurcations, and fractal basin boundaries have recently
been shown to play a key role in the escape of periodically driven oscillators from a
potential well, a problem of very wide interest to chemists, physicists and engineers
(Thompson, 1989). The present work examines the twin-well forced Duffing oscillator,
and shows that as a control parameter is slowly varied there can arise abrupt and
discontinuous changes in the fractal boundaries (fractal-fractal basin bifurcations or
basin explosions) which are closely related to the escape from one-well to cross-well
motions. The basin bifurcations and escape curves are intimately interwoven with the
more familiar phenomena of nonlinear dynamics (saddie-node fold bifurcations,
period-doubling flip bifurcations, homaclinic tangencies, blue sky catastrophes, etc) in a
complex central region of control space. The exploration and clarification of this region,
whose phenomena seem to have significant general relevance to the dynamics of driven

nonlinear gscillators, is the major contribution of the present study.



2. OVERVIEW AND SOME COUNTER-INTUITIVE ESCAPE ROUTES

In our study of the twin-well Duffing oscillator we shall be holding the driving
frequehcy constant: at a value which we shall see is 101/ 2/2 (=~1.58) times the linear
natural frequenc& of small undriven, undamped oscillations in one of the two wells. The
driving amplitude 4 and the damping magnitude k are then the two control parameters
of interest, and figure 1 gives a schematic overview of some of the major bifurcations
in (A,k) space. The small rectangie shows the domain of our main
investigation, 0.3<4<0.36, 0.14<k<0.24, that is blown-up into figure 9, but before
proceeding it is of interest to examine some of the overall escape features.

Escape from single-weli to cross-weil motions will occur on crossing the indicated
bifurcation arc, which means that escape can easily be triggered, counter-intuitively, by
a decrease in the forcing magnitude, 4. Escape is clearly achieved most simply from
zere forcing amplitude, by gradually increasing A, at fixed damping k<K , along a
horizontal path below the segment KL. However, starting again from zero forcing with
damping greater than K, the forcing amplitude may be increased gradually from zero
without causing escape (in the sense that we shall explain later in terms of the dynamic
hilltop 1D). By following a path above segment KL to the right of L, then decreasing
damping below the level of KL, it is then possible to trigger escape by a
subsequent decrease in the forcing amplitude. (It should be noted that further attractors
not described here may coexist with the one-well or cross-well attractors whose regimes
are indicated in this figure; but these additional attractors are not observed in the
scenarios just described).

Similar counter-intuitive behaviour can aiso be seen in figure 3 of (Thompson,
1989) for the escape from his cubic single-well. On this figure we could first increase
the forcing magnitude F from zero at a sufficiently high frequency (above Wr ) until
the response is close to a fold (line GG): we could then reduce the forcing frequency at
constant F to arrive above a Feigenbaum cascade: a final reduction in F would lead to

period-doubling, chaos and escape along the route gfF of Thompson's figure 4(a).
3. SYSTEM DEFINITION AND ATTRACTOR BIFURCATIONS
We consider Duffing’s equation,

x"+kx'+ax+x3=Asinl ....... (1)




which we can write as two first-order equations,
- = - - 3 .
X =y y=-ky-oax-x +Asint..(2)

with a dot denoting differentiation with respect to the time, f. Equation (2) can of
course be conveniently converted to three autonomous equations of a ring model by
replacing ¢ by ¢ and adding the extra dummy equation 6°=] with 0<8<2x. We shall in
fact hold « constant at -0.2 throughout the paper. This equation describes the motions
of a forced oscillator with a nonlinear stiffness function, and is one of the most simple
and representative nonlinear systems {(Guckenheimer & Holmes, 1983; Moon, 1987): it
represents, for example, the lateral vibrations of ar elastic column compressed by an
axial force in excess of the critical Euler buckling load. In equation (1) the parameter «
is the linear restoring stiffness, and with « negative we have a twin-well potential given
by

V(x)=ax°/2 + 5 /4fa<0)o3)

With no forcing, A=0, there exist two stable equilibrium states at x = ¥/ -¢ )1/2 . The
linear natural (undamped) frequency of these free vibrations, A is given by the square
root of the stiffness, a+3x2, evaluated at either of the two equilibrium states:
hence mn=2/101/2, and the ratio of the driving frequency (wf=1} to this linear
frequency is 101/2/2 =~ [.58. With a2 small intensity of sinusoidal forcing, these two
point attractors become harmonic periodic attractors in the two wells, the one realised
in a given time integration depending of course on the starting conditions of the
motion. Notice that we use the adjective harmonic to mean isochronous, describing
motions that have the same period as the driviag function. These steady state solutions
within a single well are called ome-well motions. As we slowly vary the parameters,
making A4 large for example, a one-well motion will sometimes escape from its well to
become a cross-well motion. The one-well and cross-well attractors can be either
periodic or chaotic, depending on the system parameters (Ueda, Nakajima, Hikihara &
Stewart, 1987).

The periodically forced second-order oscillator (1) requires three coordinates, (x, y,
t) to uniquely specify an initial condition for a continuous trajectory. However, by the
device of taking a Poincaré section, we may reduce the problem to a phase space of

dimension two, provided that we implicitly substitute a Poincaré map, or



diffeomorphism, for the original flow (Guckenheimer & Holmes, 1983; Thompson &
Stewart, 1986). Throughout this paper we use the Poincaré section obtained by sampling
trajectories of (1) stroboscopically at t=27n (n=0,1,2...). As a resuit of this sampling,
periodic solutions of {1) become fixed points or periodic points in the Poincaré section.

Bifurcations of the attractors relevant to the escape process are shown in the three
diagrams of figure 2 for three values of the damping parameter k, the steady state
stoboscopically sampled x and y being plotted against the forcing amplitude A. The
computations for these diagrams used single precision, fourth-order Runge-Kutta
aumerical integrations with time step 2x/60: for every new value of 4 & few hundred
forcing cycles were discarded to eliminate transients, and the representative steady-state
points were projected onto the x and y axes. Such bifurcation diagrams indicate how
the dynamical behaviour would evolve in 2 physical system in which the forcing
amplitude is varied in a slow quasi-static manner. In each diagram there exists at the
largest value of 4 two one-well motions (one in each well) and one resonant cross-well
motion, the one-well motions having already started a period-doubling cascade in the
case of figure 2(c). Notice that we reserve the adjective resonant for the large amplitude
cross-well karmonic motions of period 27. Under decreasing 4, the cross-well resonant
motion is essentially unchanged, but the two complementary one-well motions exhibit a
cascade of period-doubling flip bifurcations leading to a one-well chaotic attractor, and
when A4 reaches Aesc the one-well motiens escape out of their respective wells.
However, in figures 2(a) and {c) the escape is to a chaotic cross-well motion, while in
(b) escape involves a jump to the large amplitude resonant state. Moreover, for case (c)
the cross-well chaotic attractor after escape undergoes a subsequent discontinuous
enlargement or explosion at 4 " A classic study of attractor explosion is that of Uedz
(1980).

The goal of the present paper is to elucidate and explain these three escape
scenarics, and to do this we must look, not only at the attractors and their bifurcations,
but also at the basin boundaries and their bifurcations. In doing this, we shall
throughout focus particular attention on bifurcations which are discontinuous in the
sense of Zeeman (1982} with the locus in phase space of an attracting set, and/or a

basin, changing discontinuously as a function of some parameter.
4. BASIN BOUNDARY BIFURCATIONS

Before presenting our studies of basin bifurcations (what Grebogi, Ott & Yorke

(1987) call basin boundary metamorphoses), we must here explain our notation for the



fixed points. We use the symbol 8 for a stable attracting solutien (a sink), D for
a directly unstable saddle with positive mapping eigenvalues, and I for an inversely
unstable saddle with negative eigenvalues: notice that our restriction to a positive linear
damping coefficient, k, eliminates the possibility of an unstable repellor (a source), U,
due to constraints on the mapping eigenvalues (see for example Thompson, 1989). These
symbols carry suffices, I, j, k, in the manner of I(Sij, with i indicating the order of the
periodic point (i=1 for a harmonic motion of period 2, i=2 for a subharmonic motion
of period 4w, etc), j indicating the sequence of movement from one point to the next
(so that l<j<i), and k representing the group of periodic points (a different number k
being assigned arbitrarily to each individual solution as a distinguishing code). Suffices
are however sometimes omitted, for simplicity, in cases in which no confusion is
possible. The symmetry of equation (2), associated with its invariance under the
transformation x --> -x, y --> -y, t -=> t+7, implies that one-well solutions always
come in pairs, one for each well; such pairs are given identical symbols, but are
distinguished by adding a prime to the solution in the right-hand well. Finally, in the
attractor-basin phase portraits, a solid black circular dot is used to denote an unstable D
solution; a hollow circular dot indicates a sink (8); while a solid square dot indicates an

unstable I solution.
4.1 REPRESENTATIVE ATTRACTOR-BASIN PHASE PORTRAITS

To summarise the phenomena under consideration, we show first in figure 3
examples of the attractor-basin phase portraits containing two symmetrically-related
one-well harmonic attractors, ]S and 1S’ together with the resonant ¢ross-well harmonic
attractor, 2S. These three attractors are all 2x periodic motions, and are represented by
the three open circles in figure 3(a). Notice that IS and 1S’ do not appear to be
symmetric in this figure because both are sampled stroboscopically at the same
phase =0 (mod 2n) ; their symmetry would only be apparent if one of the two were
sampled at t=rx (mod 2x). The shaded region in figure 3(a) shows the basin of attraction
of the resonant cross-welil attractor, while the blank region represents the union of the
basins of the one-well attractors, the fractal boundary of the resonant cross-well basin
being defined by the inset of the saddle solution 2D. In computing figure 3, and ail
attractor-basin portraits in this paper, a fourth-order Runge-Kutta difference scheme
with fixed step size equal to 2x/60 was used with double precision: initial conditions
were chosen on a uniform grid of 201 by 201 points, integrations being continued for

about 100 forcing cycles from each grid point.



Note that for brevity we shall hereafter describe all states other than the harmonic
cross-well resonant motion as non-resonant whether they be cross-well or one-well
motions: in particular, any one-well or cross-well motions that are not 2x periodic are
designated as non-resonant.

Figure 3(b) is a magnified blow-up of the non-resonant attractor basin, showing the
two one-weil attractors 1S andIS’ and their individual basins (distinguished by the white
and light grey tone) separated by the inset of the hill-top saddle point lD. We refer to
ID as the hill-top saddle because if we decrease the forcing amplitude to zero, l}D
evolves smoothly to the unstabie equilibrium point at x=y=0 which separates the two
potential wells. With non-zero forcing 1D represents a dynamic barrier between
potential wells. Some care is needed in formulating 2 precise definition of this dynamic
barrier in operational terms. In cases where iD is not homoclinic, we may characterize
the dynamic barrier in relatively straightforward fashion by the existence of a small
neighbourhood of initial conditions around ll'J whose right half (demarcated by the
inset or stable manifold of 1D) end up in the right-hand well, while the left half settle
to the left-hand weil. However, in the parameter regime of particular interest in this
study, 1D is homoclinic, implying that either the basin boundary between the left and
right one-well attractors has an infinitely fine fractal structure near lD, or else there
are no one-well attractors, only cross-well attractors. In this case, the following more
subtle characterization of the dynamic hilltop is appropriate: in a sufficiently small
neighbourhood of lD, initial conditions in the left half (demarcated by the inwards
eigenvector and its local continuation as the inset) always move to the left at the end of
the first forcing cycle, while initial conditions in the right half move to the right at the
end of the first forcing cycle. Indeed, we shall distinguish one-well motions from
cross-well motions with reference to the dynamic hill-top }D and not with reference to
the static hill-top x=y=0.

We can see that in figures 3(a) and 3(b) the boundary separating the basin of 1S
from the basin of 1S‘ is tangled and has a fractal character. There do of course exist
infinitely many higher-order unstable subharmonics in these phase portraits which are
not shown here, but they exert no significant influence on the phenomena under

discussion in the present paper,
42 FRACTAL-FRACTAL BASIN BIFURCATIONS

Figure 4 shows the attractor-basin phase portraits for two values of 4 on either

side of the critical value Aff of figure 2(a). In progressing under decreasing 4 from
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4(a) to 4(b) the one-well stable fixed points have experienced a period-doubling fiip,
but in both diagrams the union of the non-resonant basins is indicated by the white:
motions starting in the shaded region terminate on the cross-well resonant motion. We
see that in both diagrams of figure 4 the basin boundary has a fractal structure, but a
closer inspection reveals significant differences which are shown in the blow-up of the
framed regions in figure 5. In figure 5(a) the resonant region is limited by the inset of
the =3 periodic point 2D3 which prevents the tails of the resonant attracting region

passing to the right of 2D3

. However, in 5(b) it is the inset of the /=3 periodic point
1D3 which limits the penetration of the resonant attracting region. This change in what
Grebogi, Ott & Yorke (1987) term the accessible orbit occurs discontinuously at the
parameter value Aff and is called a fractal-fractal basin bifurcation (or
metamorphosis). For k =0.164 we have established that Aff lies in the interval
0.3418-0.3420.

Note here that in figure 5 the i=3 periodic points, ID3 and 113 have been created
by a fold-flip scenario similar to that illustrated for an i=6 periodic motion by
Thompson (1989) in his figure 9 (using data supplied by Ueda). Under decreasing A4 , a

fold at A ~ 0.3497 first creates a saddle-node pair, ID3 andIS3 (and the corresponding

1D3’ andIS3’) inside the basin of the one-well attractor. The stable solution, 183, then
experiences a period-doubling bifurcation at 4 ~ 0.3482 generating l13, followed
rapidly by a complete cascade to a chaotic attractor which finally vanishes at a blue-sky
catastrophe. This fold-flip-cascade-crisis scenario occupies an extremely small
parameter range, and the corresponding basins of attraction are restricted to very small
areas of phase space: indeed the aspects of this scenario can only just be resolved by
very precise numerical investigations.

The fold and flip in this scenario are precisely those described by Gavrilov &
Shilnikov (1972, 1973), who prove that similar events are expected for periodic points
of all orders; however, in our experience, the primary observable effect of these
complex bifurcations, namely the appearance of attractors, is extremely slight for low
order periodic points, and virtually nil for higher periodic points. Indeed, our main

13 L3

concern here is not with “S™ or "I-, but with 1D3 and its role in defining the basin of

the resonant motion.
43 SMOOTH-FRACTAL BASIN BIFURCATIONS

Figure 6 shows the attractor-basin phase portraits for two values of A just above

and below the critical value of As Y marked in figure 2(a). Here, with k= 0.164, AS y lies



in the range 0.3291-0.3292, and at Asf the fractal structure of the basin boundary
disappears instantaneously. Moreover, with decreasing 4 a cascade of flip bifurcations
transforms the two one-well periodic attractors into chaotic attractors. Each of these
chaotic attractors, visible in figure 6(b), is a simply folded band, containing the
inversely unstable fixed point lI (or lI’), whose outstructures intersect in
a dollar-sign pattern; see Rassler (1976, 1979),

We have also made during the course of this investigation a white and light-grey
study to observe, in addition, the boundary between the two one-well chaotic attractors.
This diagram, not reproduced here, shows clearly that the inner boundary is still fractal
although the outer boundary is now smooth.

The sudden and dramatic penetration of the bulk of the white basin during the
small parameter change from figure 6(b) to 6(a) could have severe consequences for the
integrity of an operating engineering system: it is an example of the type of basin

erosion highlighted recently by Soliman & Thompson (1989).
5. THE INVARIANT MANIFOLDS AND THEIR TANGENCIES

To understand the mechanisms governing these various phenomena, we now logk
more closely at the invariant manifolds of the saddle cycles. We adopt the neat
terminology introduced by Christopher Zeeman, referring to a stable manifold as
an inset, an unstable manifold as an outset: and we call the totality of the invariant

manifolds the owtstructures, following Abraham (1985).
3.1 SADDLE OUTSTRUCTURES AND THE BASIN BIFURCATIONS

The recent studies of Grebogi, Ott & Yorke (1987) have shown that a basin
boundary bifurcation {metamorphosis) of the Hénon map is governed by a homoclinic
tangency of the inset and the outset of a saddle. Here we identify a similar situation in
the discrete Poincaré mapping derived by stoboscopic sampling of our forced Duffing
oscillator, when we investigate the mechanisms underlying figure 2.

The schematic diagrams of figure 7 are sketches of the outstructures of the hill-top

saddle 1D and the i=3 periodic point 2D3

, corresponding to the fractal-fractal
metamorphosis of figures 4 and 5. These are based on detailed numerical constructions
of the outstructures; however, because some features are difficult to see in the original
computer-generated plots, we have drawn schematic diagrams for clarity. Insets and

outsets can be distinguished by the arrows. In figure 7(a) the branch of the outset of



2.3

D~ which tends towards the non-resonant attractors (indicated by double arrows) is

. 2 . .
close to, but does not cross, the inset of D3, and so does not form a hemoclinic cycle

3

(the other outset does). Any orbit starting on the side of the inset of 2D which faces

the non-resonant attractors can never reach the other side of the inset of 2D3, and 50

can never reach the resonant attractor. The inset of 2D3 thus acts as a barrier shutting
out the tails of the resonant attractive domain, and constitetes the basin boundary for
the non-resonant attractors. But remember that the resonant attractor 2S has a fractal
basin, and outside the insets of 2D3 there are accumulated the infinitely narrow fractal

3

tails of the resonant basin. This is because the branch of the outset of 21) directed

away from the non-resonant attractors (indicated by single arrows) is homoclinic, so
orbits started on that side of the inset of 2D3 may eventually reach either the resonant
attractor or the non-resonant attractors. (indeed, this outward branch of the cutset of

2D3 transversely intersects the inset of 2D, and the outset of 2D intersects the inset of

2D3: 1.e. there is 2 Smale cycle involving 2D and 2D3.) We should emphasize that in

figures 7(a) and 7(b) the dotted region is not a basin of attraction, the dots serving
simply to high-light the position of the relevant inset.

In figure 7{b) the branch of the outset of 2D3 tending toward the non-resonant

attractors (indicated by double arrews) has now moved to intersect the inset of 2D3,

creating homoclinic ¢ycles. As a consequence, the inset of 2D?’ no longer forms a

barrier to the incursion of the narrow resonant tails: this role is taken by the inset of
1D3 3

new accessible orbit. So we see that in this case the fractal-fractal basin bifurcation
2.3
D

which has already appeared. In the terminology of Grebogi, et al, lD is now the

coincides with 2 homoclinic tangency of the inset and the outset of at A

As a nrote of explanation, it is perhaps worth emphasizing here that nof{rajectory
can ever 'climb the wall' represented by an inset. However, when the inset becomes
tangled, *climbing the wall’ should be understood in a local sense: although there are
still two sides of the wall, the global structure of a tangled inset is often so complicated

that a trajectory may superficially appear to end up on the other side.

1.3

In figure 7(c) we give a sketch of the outstructures of the i=3 periodic point 'D
corresponding to the left-hand well, for the same parameter values as figure 7(b). We
note that the inward branch of the outset of 1D3 is not homoclinic in figure 7(c), just
as the inward branch of the outset of 2D3 was not homoclinic in 7(a). For this reason,
]D3 forms a barrier to the incursion of the narrow tails of the resonant attractor basin;
this explains why in Figure 5(b) we find no poirts of the basin of 23 in the region
lying roughly to the right of 1D3, that is, on the inward side of the inset of lD3.

Finally, we observe that the inward branch of the outset of 2D3 {indicated by
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double arrows) is always heteroclinic with the inset of 1D, both in figures 7(a) and 7(b).
For this reason, when 2D3 becomes homeclinic, the tails of the resonant attractor basin
become tangled with the (previousiy tangled) basins of lS and IS’. That is, in figure
7(a) the basins of 1S and s’ are tangled but adjacent and complementary, whereas in
figure 7(b) we expect to find tails of the resonant attractor basin separating portions of
the basins of lS and IS’.

Turning now to the smooth-fractal basin bifurcation of figure 6, the relevant
outstructures of the saddle point 2D are sketched in figure 8. Figure 8(a) corresponds
qualitatively to figure 5 of Grebogi, Ott & Yorke (1987), but the mapping within our
tangie has a rather different structure. Most noticeably, our mapping contains
the i=] unstable periodic point ]D with positive multipliers inside the tangle, pius 2 pair
of i=] unstable periodic points l{ and lI' with negative multipliers; whereas their Hénon
map tangle encloses only a single inversely unstable (I} i=] periodic point with negative
multipliers, and no directly unstable (D} i=1 periodic point. This difference of structure
inside the tangle also corresponds to a different Birkhoff signature: in our case, when
we number the points of homoclinic tangency consecutively ..., H-Z’ H_], HO, H 1° HZ’
...y S0 that H0 is adjacent to Hl’ etc, we find that H0 is mapped after one forcing cycle
to HZ’ while H_ ] i1s mapped to Hl‘ So in our tangle the dynamics defines two distinct,
interlaced sequences of homoclinic tangency points, whereas in the Hénon tangle there

is only one sequence of tangency points.
5.2 CODIMENSION-TWO BIFURCATIONS OF BASINS AND ATTRACTORS

Having examined in detail the major basin bifurcations occurring in this region of
parameter space, and the underlying structure of insets and outsets of the most
important saddle points, we are prepared for a more comprehensive view of bifurcation
patterns in parameter space. We continue to focus attention on the region of the (4,
k) parameter space shown in figure 9; here a number of important bifurcations come
together in an intricate pattern which can be regarded as a backboae for the bifurcation
set in a more extended regime, as seen in figure 1. Parameter values corresponding to
the attractor-basin phase portraits of figures 4, 6 {(and 11) are marked in figure 9(b) by
small circles on the horizontal line (a). The lires (a), (b) and (¢) in figure 9(b) show the
paths of the attractor bifurcation diagrams of figure 2.

We can note first that the steady state 2r-periodic resonant motion exists
throughout the whole domain of figure 9. Additionzlly, we have to the right of

arc Aesc the non-resonant single well motions, there being no single-well motions to the
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left of this bifurcation arc. The fine arcs running roughly parailel to the escape arc are
the low-order flip bifurcations corresponding to the start of the period-doubling
cascade which converts the single-well motions, under decreasing 4 , into chaotic
single-weil attractors (cf. figure 6(b)) which then undergo catastrophic bifurcation
at Aesc' The numerical values (1,2,4) in the regions in figure 9(b) show the order of
these one-well periodic attractors.

Apart from the arcs locating these flip bifurcations, there are three major
bifurcation arcs indicated in figure 9(b), labelled Aesc' As 7 and 4 i Each of these arcs
has an intrinsic definition as a homoclinic tangency of certain invariant manifolds, Thus

3hasa

the arc labelled A4 1f is intrinsically defined as the locus in {4, k) space where 2D
homoclinic tangency, involving the inward branch of the outset. Although this intrinsic
definition of the arc applies over the full range of {4, k) values in figure 9, it will be
noted that the effect of this global bifurcation on the attractor-basin portrait will differ
depending on which segment of the arc is crossed. The intrinsic definitions and the
attractor-basin descriptions are summarized in figure 9(a); we shall now examine further
the relationships among these bifurcations,

For example, we have seen that crossing Aff on the horizontal line (a) in fxgure
9(b), there is an explosion in size of the basin of 2S at the expense of the basins of S
and S’. The same 1s true crossing Aff anywhere in the dot-dashed segment,
below Asf' But if Aff is crossed abozveSAsf, in the dashed segment, there is no
explosion in basin locus, even though “D~ still reaches homoclinic tangency.

These facts are summarized by figure 10(a}, in which simplified schematic diagrams
suggest the relations of the insets of the key saddle points to the loci of basins of
attraction: of course the representation of insets by circles is only a schematic device:
for any uniformly dissipative dynamical system in Euclidean phase space, insets and
basins must always extend (backward in time} to infinity. We have chosen bounded
representations for insets and basins in order to clarify the relative locations of the sets.
It might be imagined, for example, that a transformation of phase space has been
applied which brings the outer reaches of the phase space into a bounded region.

We note that the use of a circle to stand for an inset has a specific justification in
cases where the inset is transversely homoclinic: the circle may then represent not the
inset, but the maximal bounded invariant set associated with the tangle; that is, the
ensemble of homoclinic points and related periodic points, the latter being dense in the
invariant set. This bounded invariant set has a roughly annular shape, and may act as a
separator if the underlying fixed point is of D type. The bounded invariant set of a
tangled separator has been called a chaotic saddle (Stewart, 1987).
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Beginning in the upper quadrant of figure 10(a), we have a basin configuration
similar to figure 6(b), with the basin boundary of 2S being smooth. Moving to the right
quadrant, a homoclinic tangency of 2D causes a first inward explosion of the basin of
2S, similar to figure 4(a). Proceeding to the lower quadrant causes a second inward
basin explosion, similar to figure 4(b). If instead we move from the upper quadrant of
figure 10(a) to the left quadrant, no explosion is observed; only upon crossing to the
lower quadrant do we find a chained or compounded basin explosion, which was
prepared by the tangency of 2D3 but only realized by the tangency of ZD. We believe
that such a chained explosion pattern is a generic codimension two global bifurcation of
dissipative dynamical systems. In particular, any small change of a parameter other
than (4, k), such as o, would simply alter the location of this codimension two point in
the (4, k) parameter space, leaving its qualitative features unchanged.

Note that the inward branch of the outset of 2D is always transversely heteroclinic
to the inset of 2D3 in this regime. So if the outset of 2D3 transversely intersects the
inset of D then D and D3
of 2D is necessarily homoclinic. In this regime, the converse is also true: if the inward

branch of the outset of 2D is transversely homoclinic, then 2D and 2D3 form a Smale

form a Smale cycle, and the inward branch of the outset

cycle. (If this were not the case, we would find it necessary to take account of some
other unstable point of D type, generating an additional, intermediate circle in our
schematic diagram) Likewise the inward branch of the outset of 2!)3 i1s homociinic

3 form a Smale cycle. Figure 10(a) should be read keeping

precisely when D and D
in mind that the dashed circle stands both for the inward homoclinic intersection and
for a Smale cycle with the saddle in the next circle inward.

Another codimension twa bifurcation apparent in figure 9 lies at the intersection
of Aesc {homoclinic tangency of lD3) with Asf (homoclinic tangency of 2D). Here
three of the four bifurcations involve attractors, so it may be helpful to refer again to
figure 2.

Crossing A at k=0.130 as in figure 2(b), we see that the one-weil chaotic

attractors suffeer(; blue sky catastrophe at A=Aesc; transients from either of the
formerly stable chaotic attractors lead to the resonant cross-well periodic attractor. At
the bifurcation threshold, the one-well chaotic attractors just touch the saddle points
ID3 and D3

saddle D at the bifurcation threshold; ID became transversely homoclinic prior to the

respectively. The one-well chaotic attractors do not touch the hilltop

attractor disappearance. Note that ID is the lowest order unstable periodic orbit in the
basin boundary of either one-well attractor; indeed we take an orbit crossing the inset

of ID as our definition of escape. Since the fundamental saddle remains at a distance
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from the chaotic attractor when the catastrophic bifurcation occurs, this is a chaotic
saddle catastrophe in the sense of Stewart (1987). This qualitative description holds
whenever 4 crosses Aesc below As £ in figure 9(b).

Crossing Aesc above Asf at k=0.164 as in figure 2(a), we again find the one-well
chaotic attractors losing stability, this time via an attractor explosion to a large
cross-well chaotic attractor, as illustrated in the phase portrait of figure 11. This
cross-well chaotic attractor is numerically identical with the closure of the outset of
2 3 ; 1t contains the outsets of D?J and ID as well. Note that in figure 11, 2D is near
homoclinic tangency; if we hold 4=0.325 and decrease k from 0.164 so that 4 f
crossed to the left of A the homoclinic tangency of D causes a blue sky catastrophe
for the large cross-weli chaotic attractor. This is a regular saddle catastrophe; the
fundamental saddle in the basin boundary is 2D, which reaches homoclinic tangency
precisely as the blue sky catastrophe occurs. Equivalently, the basin boundary
approaches a loss of regularity at the blue sky catastrophe threshoid.

These events are summarized in figure 10(b), using schematic diagrams similar to
figure 10(a). Here solid curves represent attractor bifurcations; the thinner arc is
explosive, while the thicker arcs stand for blue sky catastrophe. The dot-dashed
segment, as in figure 10(a), stands for an explosion in locus of a basin. This fourth leg
of the codimension two bifurcation can be seen as preparation for a chained or
compounded bifurcation, combining the attractor explosion with the blue sky
catastrophe, which occurred as distinct evenis on the left side of figure 10(b). The
chaining is prepared by completing 2 heterociinic connection from the outward branch
of the outset of 1D3 to the inset of 2D3 and thence via the outward outset of 2D3 to
the inset of 2D.

A third generic type of codimension two event occurs near the top of figure 9
where the bifurcation arcs labelled Aff (homoclinic tangency of 2D3)
and Aesc (homoclinic tangency of ]Dg) intersect. As shown in figure 2(c), there are two
distinct chaotic attractor explosions above this codimension two point. Crossing Aesc the
one-well chaotic attractors explode to a single cross-well attractor. This chaotic attractor

Is intermediate in size, since it contains the unstable points 1D3 and lD?” and their

outsets, but does not contain the unstable motion 2D3

. This intermediate size cross-well
chaotic attractor subsequently explodes to a larger chaotic attractor when A If is crossed;
the larger attractor does contain 21)3 and its outset, and is essentially the same as the
attractor shown in figure 11,

Starting again from the smaller one-well chaotic attractors to the right of Aesc and

below the codimension two intersection with Aff‘ we find that crossing Aff now has no
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effect on attractor size, whereas crossing Aesc results in a chained or compound
attractor explosion. This situation is schematized in figure 10(c). Here the dashed

segment of bifurcation arc can be seen as a preparation for the compound explosion:

when the inward branch of the outset of 2D3

branches of the outsets of ID3 and ID?” simultaneously form a heteroclinic connection
3. Thus ID?’ and 1D3’ are chained to 2D?', and the subsequent
3 13 3,

as well as "D~ and lD

becomes homoclinic, the outward

to the inset of 2D
attractor explosion will bring 2D inside the chaotic attractor.

Note that in this case, the preparatory bifurcation causes neither a discontinuous
change in attractor nor in basins, but only a discontinuous change in part of the
non-wandering set in the interior of a basin. This change in the non-wandering set
effects only the structure of transients in the basin. As in figures 9 and 10{a), this most
subtle type of global bifurcation is indicated by a dashed segment of arc.

In short we have identified three distinct types of codimension two global
bifurcation in the regime of figure 9. Each is an apparently generic pattern in which
two distinct discontinuous bifurcations in the attractor-basin phase portrait become
chained to produce a compound event, A preparatory bifurcation is required in each
codimension two pattern. For the compound blue sky catastrephe, the preparation causes
a basin explosion; but for the compound attractor explosion as welil as for the compound
basin explosion, the preparation is a subtle global bifurcation which hkas no
discontinuous effect on the loci of either attractors or basins. The three types of
codimension two bifurcation dovetail neatly together, organizing the bifurcation arcs in
the regime under study. The codimension one bifurcations extend to a much wider

range of parameter values, so that the regime under study, although rather small, 1s

central to the overall behaviour of equation (I).
6. CONCLUSIONS

We have studied the occurrence of basin boundary bifurcations in the forced
twin-well Duffing osciilator, as well as global bifurcations of chaotic attractors which
lead to escape from single-well to cross-well motions. We observed that in the regime
considered, escape always occurs as a result of decreasing the forcing amplitude. Upon
considering the underlying invariant manifold structures of the low order unstable
points (harmonic and subharmonic of order 3), we found that the escape bifurcations
and the abrupt, discontinuous basin bifurcations are intimately related, forming three
distinct types of codimension two global bifurcations. These codimension two patterns

appear to be generic for dissipative two-dimensional diffeomorphisms. At these
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codimension two points in the (4,kj parameter space, it becomes ciear that the
codimension one global bifurcations are only fully characterized when both their
intrinsic definition as tangencies of invariant manifolds, and their attractor-basin phase
portrait consequences are considered together. Similar phenomenza can be expected to

occur in the response of many driven nonlinear oscillators.
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FIGURE CAPTIONS

1. A sketch of the major bifurcation arcs in the (k,4) parameter space: the rectangle

_ shows the region of the current investigation.

2. Projected bifurcation diagrams of steady state motions at phase ¢ =0 (mod 2x) for:
(a) k= 0.164, A = 0.32-0.35; {(b) k =0.150, 4 = 0.32-0.35; (¢) k =0.230, 4 =

0.30-0.33. In each diagram A4 is decreased from 3 distinct starting conditions at the
right-hand edge corresponding to the 2 one-well motions and the single harmonic
resonant cross-well motion: in (c) the one-well motions have already begur their

period-doubling cascade at the starting value of A.

3. Typical attractor-basin portrait and its blow-up, for k = 0.164, 4 = 0.345. Fixed
points shown are: lD, (-0.0429, -0.2966), IS, {-0.2187, -0.3315); IS’, {0.1142, -0.3203);
2D, {-0.3309, -0.9492); 23, (-0.7785, 1.0949). In the left-hand portrait, dark grey
denotes the basin of the cross-well attractor 25, white denotes the union of the basias
of lS and 1S’. In the right-hand enlargement, dark grey denotes the basin of the
cross-well attractor 2S, light grey denotes the basin of the one-well attractor IS, white

denotes the basin of the one-well attractor 1S’.

4. Attractor-basin phase portraits for two values of A straddling Aff of figure 2(a)
with: (a) k =0.164, 4 = 0.345; (b) k = 0.164, A = 0.340.

5. Enlargements of the small frames of figure 4, showing attractor-basin features above
and below Af of figure 2(a). In the left-hand portrait, k = 0.164, A = 0.345, with
fixed points: D3, (-0.2590, -0.3463}; 113, (-0.2682, -0.3545); 2D3, (-0.3194, -0.3855).
In the right-hand portrait, k = 0.164, A =0.340, with fixed points: 1D3, {-0.2666,

-0.3434); 1P, (-0.2776, -0.3544); 2D, (-0.3251, -0.3833).

6. Attractor-basin phase portraits for two values of A straddling A f of figure 2{a). In
the left-hand diagram, k = 0.164, 4 = 0.332: in the right-hand diagram, k = 0.164, 4 =
0.327.



7. Schematic diagrams of the out-structures (invariant manifolds) for the fractal-fractal
basin bifurcation, with (a) and (b) corresponding to the diagrams of figure 4. Sketch (c)
is a blow-up of the neighbourhood of the left-hand-weil attractor. In (a) and (b) the
. dotted region is not a basin of attraction, the dots being used as a visual aid to highlight

the position of the inset.

8. Schematic diagrams of the out-structures (invariant manifolds} for the smooth-fractal
basin bifurcation corresponding to As / of figure 2(a) and to figures 6(a) and (b). The

dot screen represents the resonant basin.

9. Two representations of the bifurcation arcs in the region of interest in the (A4,
k) parameter space. The 3 codimension-two events serve to organize the bifurcation set

of figure 1.

10. Schematic representations of the three codimension-two events, showing attractor

and basin explosions.

11. Attractor-basin phase portrait for k = 0.164, 4 = 0.325, showing the large cross-well
chaotic attractor approaching a blue-sky collision with 2D as k is reduced towards the

bifurcation arc As 7
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Fig 11




