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Synopsis

General expressions for +the ponderomotive {force as a
second-order average force acting on a single charged
particle is derived in the form of a potential force. The
result is wvalid for arbitrary spatial structure of the
ambient static magnetic field. Sum of the resulting drift
flux and the second-order magnetic flux due to the induced
magnetic moments of the particles is found to agree with
the second-order averaged flux calculated by the fluid

model.
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§1. INTRODUCTION

Ponderomotive force has received considerable attention
as one of the most important nonlinear effects due to large
amplitude oscillating fields. It is an average second-order
force which acts on a plasma as a result of spatially non-
uniform oscillating fields and yields a modification of the
average Dplasma profile, thereby causing a quasilinear
modification of the stability characteristics of the
original high frequency oscillating fields. The most well-
known example of such effects is the excitation of a low
frequency wave by the ponderomotive force due to a couple
of high frequency waves, one of which is then destabilized
accompanied by the excitation of the low fregquency wave
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The ponderomotive force is also receiving interest in

(parametric excitation)

cennection with rf stabilization of the flute mode in a
. .2 . .
mirror machine™, as it can also cause a non-ambipolar
particle flux across a static magnetic field.
Both single particle and Tluid calculations have been
carried out to derive a general expression for the

3)

However, there seems to exist a controversy

ponderometive forces and their inter-relations were

discussed4)5)
concerning the reasoning for the equivalence of the single
particle and fluid thecries of the ponderomotive drift
across the static magnetic field. Moreover theses
calculations are restricted to the case of uniform static
magnetic field. In the present paper, we confirm the above
equivalence by a straightforward vectorial analysis which
is wvalid even for a nonuniform static magnetic field, and
thereby clarify the relation between the single particle
picture and fluid-based picture on the ponderomotive drift.
Using this calculation, we also show that the ponderomotive
force acting on & single particle is a potential force
independent of the spatial structure of the ambient
magnetic field.

In 82, we Tirst derive a general expression for the
penderomotive forece acting on a single particle and show

that it can always be expressed as a potential force. In
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§3, the difference between this expression and the
expression obtained by the fluid model and the resulting
difference in the averaged flow across the magnetic field
are discussed. In 84, we calculate the second-order
magnetizing flow based on the single particle picture and
confirm that this magnetizing flow can account for the
above discrepancy in the averaged flow. In the 1last
section, brief summary and discussion of the impertant
results are elucidated.

Throughout this paper, we, for simplicity, ignore the
thermal motion of the particles, but no assumption is made
concerning the spatial structure of the magnetic field and
the plasma density profile apart from the fact that the
oscillating field amplitude is sufficiently weak that the
second-order perturbation analysis be Justified and that
the Larmor radii of the particles are sufficiently small

that the guiding center approximation can be used.

§2 Ponderomotive Force on a Single Particle as a Potential

Force

e consider a plasma in the presence of electromagnetic

fields given by

E(r,t)=E1(r,t)

(1)
B(r,t)zBO(r,t)+B1(r,t)

where B0 is the static magnetic field in the absence of the
oscillating fields and E1 and B1 are oscillating electric

and magnetic fields which are assumed to be of the form

El(r,t):El(r)exp(-imt)+El*(r)exp(imt)

(2)
Bl(r,t):El(r)exp(—iwt)+§1*(r)exp(imt)

They satisfy the Maxwell relations

atBIZ -vxEl, v-BO: v B, =0 . (3)

We assume that the oscillating fields are sufficiently
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weak that the excursion lengths of the particles due to
these fields are small as compared with the scale lengths
of the spatial variation of the fields. This permits us to
treat the effect of the  oscillating fields as a
perturbation. For simplicity, we ignore the =zero-order
electric field, 1i.e., EO=O

The eguation of motion of a particle of mass m and

charge q is

m %%ill = q[E[r(t), t]+v(t)xB[r(t), t]] “

We neglect the zerg-order motion - (including the
cyclotron motion and the associated drift motion) and
denote the first-order induced motion due to the
oscillating field by rl(t) and Vl(t) . They can be written

as

. 9 o BX(OXE") b(b-E, )
ViU= g g bxE+ 5{ 2,2 3 J (6

W - o -
C C

__4a ¢ 1 q _
R T S R Z
W “(I.)C [ w '“OJC [

I bxE.” qirbx(bel) b(b-El)q]

where wc=qBO/m, b:BO/BO and the prime denotes the time
derivative. In eq. (8), the first term on the right-hand
side 1s the ExB drift and the second-term (the bracketed
part) is the polarization drift.

The ponderomotive force G acting on the particle is the

second-order averaged force which can be written as follows:

€=G,+C, (8)
where
Glzq[(rI~V)E1+ v B ] (9)



the bar dencoting the time average over the oscillating

peried 2z/w. Using the relations

leslzrl'xslz—rlel’zrlx(vxEl) (11)

le(rl-v)BO:—rlx(vl-v)BO

1
= i[le(rl-V)BO—rlx(vl‘v)BO] (12)
and taking the x-component of G, we calculate as follows:

1o _ - T -
(C1xma [ E T XWEN] =Tr VE 4y, (3, Ey =8 By )

_Zl(azElx—axElz)

=r1'aXE1 (13)
1

_1 , _ ;
EGZX‘Z[le(rl V)B,-T X (v, v)BO]x

1 ; _ ; _ : ;
—Z[VIy(r1 V)BOZ Vlz(rl V)Boy yl(v1 V)BOz+Zl(v1 V)Bd;]
-.-1 - Tr vv 3y .

=5 [(rxv ) -3, Byt (ryxvy) v B,

Ao svTam (14)
21771 x 0

where aX represents the partial derivative with respect to
x, and X ¥y 2y are the components of r and we used the

relation {3). We now calculate both sides of the identity

7

r ‘g mv '=mv 3 T
1 x 1 1 x 1

using the equation of motion as foilows:

rl-axmvl’=qr1-aX(E1+v1xBO)

:q[rl'axE1+r1X(ale)’B0+r1XV1'aXBO]

wv,” 8 r1=q[ (9, 1) (B +v xBgT]

=q[E 3,7~ (3,v;XT7 By

Equating the right-hand sides of the above two equations,
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we get
— . _2
El-axrl—r1 aXElfrIle axBO_qGZX' {(15)

Combining egs. (14} and (15), we obtain

- -4 :
GX—G +G =5 0 r El) . (16)

1x' " 2x

Similar calculations for Gy and GZ finally yield
G=v[2r, ‘E,] (17)
271 71

which proves that the ponderomotive forece acting on a
single particle is a potential force. We specifically note
here that the above derivation 1is wvalid for arbitrary

spatial structure of the ambient magnetic field and that if

it is spatially uniform, I.e. v, =constant, then the
ponderomotive force G due to a plane-polarized
perpendicular electric field (b-E1=O) changes its sign or
direction at zzwz .

C

§3. Relation to the Ponderomotive Force on a Fluid Element
The equation of motion for the cold plasma fluid element

is given by

(Y + wvul= q[E + uxk] (18)

where u(r,t) is the fluid velocity. Since the linsarized
version of eq. (18) is exactly of the same form as that of

eq. (3), we have

]

-4 € q
u (r )= DTy be1+ m{

© -

bx(bel') b(b-El’)7

5 9 9 T i=vy o
W —w [0 =
C C

(19)

The displacement vector R(r,t) of the fluid is given by

. 4)
the relation

R+(uvJR=u, %SR.=u (2.0)

a_
at
where Rl and Uy represent the first order oscillating parts.
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The ponderomotive force acting on the fluid element is

the second-order averaged force derived from eq. {18):

F= -m (ul-v)u1+qu1xB1 . (21)

The first term on the right-hand side can be written as

~I (ul-v)ulzm(Rl'v)ul’

=q (R, -v) [E{+ uyxB]

=q(R1-v)E1+qL(R1-V)ulijO+qu1X[(R1-v)B0] : (22)

Substitution of eq. (22) into eg. (21) yields

F=F +F,+F (23)
where
Flqu(RI-V)E1+u1xBlJ7 (24)
Fzzqulx[(Rl'v)BO] {25)
F3=q[(R1-v)u1]xBO : (26)

Obviously, FlzG1 and F2=G2 , so that we have the relation
F =G+F3 . (27)

We now discuss the drift across the magnetic field BO due
to the ponderomotive force. First, in the single particle
picture, the drift across BO due to ponderomotive force is
given by
Gxb (F1+F2)xb

1 -
2=UGxB™q N = . (28)
0

On the other hand, the drift velocity of the fluid element

across B0 due to the ponderomotive force has a term

stb
Yp xB ! (29)




in addition to the drift given by eq. (28). Using the

relation (26), we can write this term as

u =—bx[(R1-v)u1xb]

FSXB

=—[(Rl-v)u1}l=[(u1-V)Rl]l (30)

where the suffix , stands for the component perpendicular
to BO' We note that the right-hand side of eq. (30) is
nothing but the perpendicular component of the convection

flow velocity.

8§4. Magnetizing Drift

In the single particle picture, in addition to the
ponderomotive force there exists another second-order
effect, which is the induced magnetization due to the
osciliating fields5).
The second-order magnetic moment of a particle induced

by the oscillating fields is given by

- 8
Bo= 5 TXV, . (31)

Sum of the magnetic moments of the particles constituting
the fluid element yields a macroscopic induced

: . o)
magnetization

M, = %n R, xu. . (32)

When MZ has a spatial profile, it gives rise to a

magnetizing flux

- L - L Roxur
o= Jvxb,= va[noRIXUlj : (33)

We calculate this flux as follows:



1
F2= E[vnOX(R1XU1)+n

va(Rlxul)]

= & (R (u; vng)-u, (R, vay) |

+%nO[R1(v-ul)uul(V-R1)~(R1-v)u1+(ul-v)Rl]

= no(ul-V)R1 +Rlv-(nou1) . (34)

The first term on the right-hand side is the convective
flux, whose perpendicular component yields the second-order

flux due to the drift Up R given by eq. (30).

The second term on the right-hand side of eg. (34)
can be calculated by wusing the first-order continuity
equation:

3 y=0 35

gtV (Rguy)= (35)

which yields

Rlv-(noul) = —Rln' = U (38)

This term is & second-order average flux due to the density
oscillation and is different from the {flux due to the
ponderomotive force acting on the fluid element. The latter
contributes to noﬁzl in the fluid picture, where, u, is the
second-order fluid velocity.

We therefore confirm that the allowance for the induced
magnetizing flux can indeed account for the relaticn
between the single particle picecture and the fluid picture
concerning the second-order average drift acress the
ambient magnetic field.

As a final remark, we note that the total average second-
order flux due to both the ponderomotive potential force
and the induced magnetization calculated by the single

particle picture, that s,

NyVy + T, = n.v, + n

2 0Ve u

1Y + no(ul-v)R1 (37)

can be derived from a more general consideration based on

the fluid picture. The average flux due to the fluid
_9_,,



picture can generally be written as

nu=nu + {(n-n){u-u) (38)
in which the average fluid velocity can be written as4)

u = c R +(ul-v5R1

QJ‘Q)

=<v> + (VR (39)

where < v > is the average guiding center velocity of the
particles {of charge q) which constitute the fluid element.
Substituting egq. (39) and retaining only the second-order
terms, we Iimmediately obtain the right-hand side of eq.
(37). This clarifies the relation between the single
particle picture and fluid piecture including both the
parallel and perpendicular components of the second-order

average flux.

85. Summary and Discussions

We have derived ) generzal expression for the
ponderomotive force as a second-order average force acting
on a single charged particle, and have shown that it can be
written as a potential force. The derivation is valid for
arbitrary spatial structure of the ambient magnetic field
In particular, the result is applicable even to the case in
which the wavelengths of the oscillation are comparable to
or longer than a spatial scale length of +the ambient
magnetic field. The vresulting drift across the static
magnetic field is compared with the drift due to the
ponderomotive force acting on a plasma particle as a fluid
element and the difference is accounted for as due to the
convective flow in the fluid model. The induced second-
order magnetization 1is calculated based on the single
particle model and the total flux due to this induced
magnetization and the ponderomotive potential force 1is
found to agree with the second-order average flux
calculated by the fluid model.

[t is clear that the magnetizing flux is divergence-
free, but the flux due to the ponderomotive potential force



is not divergence-free except for the case of spatially
uniform density and uniform ambient magnetic field. This
flux aslo depends on the mass and charge of the particle.
As a result, a non-ambipolar partiecle flux across the
ambient magnetic field can be produced. Since the
interchange flute mode instability arises frem the non-
ambilolar flux due to the centrifugal force acting on =
particle associated with a magnetic field curvature, its rf-
stabilization effect 1s determined by the pondercmotive
potential force. On the other hand, the plasma profile
modification is governed by the ponderomotive force acting
on the fluid element. We note that a second-order static
electric field can be produced by the nen-ambipolar
particle flux, but 1its effect on the plasma flow 1is
obviously the same for both the single particle and fluid
picture.

In the present calculation, we have totally ignored the
thermal motion of the particie as well as the =zero-order
static electric field. Allowance for these effects requires
a complicated calculation, but the &essential feature
concerning the equivalence of the single particle drift and
the fluid drift will be unchanged. For actual calculations,
some specific form will have to be assumed for the
oscillating field. The calculations are underway and will
be reported elsewhere. We , however, note that the present
calculations can be Justified provided that the following
conditions are satisfied:

1) The excursion lengths of the particles due to both the
static and oscillating electric fields during the one
oscillation period 2z/w are small as compared with the
characteristic scale lengths (including the wavelengths
of the oscillation) of the electric and magnetic fields;

2) the =zero-order velocity (including both the thermal
velocity and drift wvelocity due to the zero-order
fields) is small as compared with the phase velocity of
the oscillation.

These conditions are satisfied in many cases of interest in

the present-day plasma physics, so that the present results

are applicable to many actual situations of nonlinear wave-



plasma interaction. Of course, resonant wave-particle
interactions are neglected, but they are not responsible

for the ponderomotive drift.
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