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Abstract

Spatial and temporal evolution of the distribution function
is theoretically discussed in the presence of the rf waves and
microscopic fluctuations. Using the gquasilinear formulation,
Fokker-Planck equation is derived in terms of the parallel and
perpendicular energies and the distance across the magnetic
surface. The energy dependence of the anomalous spatial
diffusion term is studied for the case of the drift wave
fluctuations. Cases for the intense ICRF heating is also

discussed.
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£1 Introduction

The high power heating experiments in large tokamaks have
revealed the important role of the loss of energetic particles.
Nonthermal energetic particles often appear in confinement
experiments. The generation and confinement of the fusion
products such as the tritium burn-up experiments1’2), the intense
ICRF (ion cycrotron range of frequencies) heating experiments3),
and the rf current-drive in low density plasma4) are the typical
examples. In these situations, the relative magnitude of the
loss rate of the energetic particles to the thermal particles is
the key parameter. If there are mechanisms to cause the
selective loss of high energy particles, then the heating/current-
drive efficiency may degrade as the increments of the heating
density and plasma parameters. On the contrary, if the
mechanisms which cause the presently-cbserved anomalous loss do
not affect the transport of the high energy particles, then the
future improvement of the plasma parameter would enhance the
heating/current-drive efficiency.

The transport analysis on the rf-heated plasma has been
performed intensively.S_G) In studying the transport in the
presence of nonthermal particles, it is usually assumed that the
nonthermal component is represented by the fluid with higher
temperature and smaller density, and the spatial transport of
this hot compcnent is independently treated from the thermal

component., This multi-fluid approach seems to succeed in



simulating the present high power experimentsS‘s), where a simple
model of diffusion, such that the spatial loss is neglected for
the hot component, is taken. Nevertheless, more firm basis for
the choice of the transport coefficient is necessary to have a
better understanding of the heated plasma. 1In some cases, it is
reported that the existence of a small but finite value of the
diffusion of hot component simulates the experiments better.

The temporal evolution of the distribution function has been
studied in many literatures®=12) poth theoretically and
numerically. The energy dependence of the velocity diffusion is
known to be the key parameter which dictates the energy partition
of the absorbed energy and the content of the nonthermal

particles.B)

The collisional drag term becomes small for high
energy particles, so that a2 small but finite value of the gpatial
loss would affect the asymptotic form of the distribution
function, thus changing the heating and current-drive

efficiency.13'17)

In studying the competition between the
heating, collisional drag and spatial diffusion, the energy
dependence cof the spatial diffusion term must be determined based
on the fundamental basis. The flux which is driven by the rf

18-21) The formulation

wave has been discussed in literatures.
which includes both heating and anomalous loss is necessary.
The purpose of this article is to develop the gquasilinear
theory for an evolution of the distribution function in the
presence of the rf heating/current-drive and the microscopic

fluctuations. The energy dependence of the spatial diffusion

term is discussed for the case of the drift wave fluctuations.



In principle, the fluctuation level is influenced by the
existence of the rf wave or nonthermal compcnents. In this
article, we assume that the total energy content of the
nonthermal part is small and that the fluctuation spectrum is
given to be fixed. Averaging over the gyrophase, we obtain the
three-dimensional Fokker-Planck eguation; variables are the
perpendicular and parallel energies and the distance across the
magnetic surface. In usual applications, the nonthermal
component often appears either in the parallel direction (such as
the current-drive) or in the perpendicular direction (such as
cyclotron heating). 1In these cases, the equation can be reduced
to two-dimensional, i.e., one spatial variable and one velocity

variable, allowing direct numerical computations.



82 Quasilinear Equation for Distribution Function

2.1 Model

The z-axis is taken in the direction of the strong magnetic
field, and the (y,z) plane coinsides with the magnetic surface.
The x-axis is taken in the direction of the spatial gradient. 1In
this article, we neglect the particle drift and trapping effects
owing to the megnetic field inhomogeneity.

The distribution function f is assumed to be expressed in
terms of the sum of slowly varying part, f,;, oscillating part

with rf frequency,f ¢, and the fluctuation part, f4, as
f = fO + frf +fd, (‘l)

where we employ the time scale separation between them. The
slowly varying part f; (the equribrium distribution function) is
expressed as fu( W, ,W,,p ) in terms of the particle energies W.
and W, {suffix,; and, represent parpendicular and parallel,
respectively) and the normalized canonical momentum p = x + vy/Q.
¥ is the coordinate of the gquiding center, and £ is the cyclotron
freguency, eB/m (e and m are the particle charge and mass,
respectively). The phase of the gyromotion is given as & = of -
fit, and the distribution function fo dees not depend on @,

The temporal evolution of the slowly varying part of f is
derived by using the guasilinear theoryzz). Introducing the

collisicon operator C[f], we have



3f e 3 3
0 e = 2 ~ =
= = - - <(ET+v<B W (£ g+Eq)> + C(fp) (2)
t m
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where E and B are the rf and fluctuation components of the field,

the asterix indicates the complex conjugate, and <> stands for
the average over the oscillation period. The oscillating field
is expressed as

ey 5 o> + >
(E!B) = (EIB)rf + (EIB)d' (3)

We assume that the rf wave and microscoplc fluctuations do not
directly interact to each other, and that they are subject to
change associated with the evolution of the equilibrium
distribution function f;. Standing on this assumption, we take
the averages of the rf field part and fluctuation part

independently and obtain

2£0/3t = Q + L + C, (4)

e ~
Ik ¥ >

Q = - (ETvxBT) LV E e (5)
m
= A

L= - <(F5oxBY) v £ o (6)
£}

where Q and L are the phase space diffusions due to rf wave and



microscopic fluctuations, respectively.

2.2 Quasi-linear Operator

To obtain the distribution functions frf and fd' we assume

that the collision is neglected compared to the oscillation

.

frequency @, The wave vector is denoted by k. They are

claculated from the Vliasov equation as,

of ~ & ~ ~
> ~ ¢
+ VeTE+- (IxBIV £ =-- (B+9xB) T,
ot m m

Noting the relation

ViEy =(mv 8/3W, +mve (3/Wa-0/3W,) + y8/3p]f,

we have
35 3 > 3 )
(E+V'XB)vaO = (E-v')L1f0+(1—k'v'/w)L2f0

where Lq and L, are defined as

L, md/ oW, +mk v (3/3W\-3/3W' ) /w + (ky/m)a/ap'

111

L, = mE,vy(3/8Wh-3/0W))/u + E,3/%p'

3>

The argument v' is the particle velocity at t'=t-T.

Eg.(9) into Eg.(7), we have

(7)
(8)
(9}
(10-1)
{(10-2)
Substituting



”~

e [ . .
£ = —ZQ,ij(C)alfdre(kﬂvb‘m+29)1+1(f'3)(?‘9)L1f0
113

+ - —f, (1)

In Eq.(11}, ap is defined as

ag = a,dg q(8) + a_Jg_4(8) + a,Jdg () (12-1)
v

a, = —JIEX—iEy)exp(+iW), (12-2)
2
)

a = —(E,+iE,)exp(-iV¥), {12-3)
> * Y

gz = VzEg (12-4)

where ¥ is defined as k,=k cos¥, Z=k v /€, and Jg is the f%-th

order Bessel functicn of the first kind. Using Egs.(9) and {11},
S |
the guasilinear term, -(e/m)<(E +vXB )va>,is calculated as,

3, e ? . 1
—  =(-) IpljagagIm(———)L f, (13)
Bt m ann—-’.LH-/Q-Q

Note that the terms containing L4Ls, LoLy and LoL, do not appear



in Eg.(13). Since the term which contains Lo in Eg. (11} 1is a
nonresonant part, this does not contribute to the modification of
fy-

The qusilinear term consists of the derivatives with respect
to the velocity and space coordinates. In the absence of the
inhomogeneity, Eg.{(13) reduces to the usual representation for

the quasilinear velocity space diffusion.



§3 Reduced Set of Equations

3.1 Rf Heating Term

The quasilinear operator Eg.(13) is the extension of the
usual velocity diffusion operators'zz) which has been derived in
the absence of the spatial diffusion. Here the contributions
from the spacial diffusion and from the velocity diffusion are
compared for the case of w = 28 (£=1,2,3++2). The case for the
low freguency fluctuations, the freguency range of which is the
drift frequency pix, 1s discussed in the next subsection. In this

high freguency range, the typical heating term in Eg.{13) is

given as,
3ty CA 1 3
— = ez——a_a_JE_1Im(—————*——-)—-fo (14}
3t /h oW kovu-w+8 3w g

and the spatial diffusion term is given as,

2 2
CE e k23 1 3
— =(-)—,—ala Jf_Im(————) —%, (15)
9t /@if m £240Q%3x knvo-w+f2 3x

We compare the contributions, taking the ratio of Eg.{15) to

Egq.(14}), i.e.,

N E (8£q/3t)gye/ (355/3E)y, (16)

10



which is evaluated as

( y~ (17)

where we introduce a typical length of a spatial inhomogeneity a
and write azfo/axz o fo/az.

When the heating power is small ( and/or in the initial
phase of the heating ), the tail distribution is not generated.

In this case the velocity derivative can be estimated as
ofg/oW .~ -£4/T, (18)
where T is the plasma temperature. The ratio /) is obtained as
= ky2pt/a?y? (19)

where ¢ is the gyro radius. We see that this value is much
smaller than unity.

When the heating density is high, and the heating time is
longer than the slowing down time by collisions, Tsr the tail
distribution developes. 1In the stationary state in which the
heating and the slowing down balance with each other, the energy

derivative satisfies the relationB)

11



for the fundamental heating, £=1. In Ref.(8), the parameter & (

the normalized heating density )} is defined as
€ 2 PpoatTs/nT, (21)

Pheat 1s the heating density per unit volume, and n is the number
density of the species which interacts with the launched rf wave.

In this case, we have

n o= {(1+8)kg0%/a)2. (22)

This term can be of the order of unity if the value of £ reaches
the value of a/kypz, Considering the heating level of present
experiments, & V10, we see that N<<1, We therefore conclude that
the spatial loss due to the rf heating wave itself gives a small
correction, and that it can be neglected at least in the usual
heating level??) . 1In the 0th order argument the operator Q

reduces to
Q[fO} = eng[a/awl +kzvz(8/3wn—a/8wi)/w]ﬁ(ann—ﬁ'«w)aEag
[a/awi_"' kzvz(a/aw"—a/awl)/m]fo (23)

and contains only the derivative with respect to the velocity.

3.2 Diffusion due toc Microscopic Fluctuations

12



The contribution of the real space diffusion to the
modification of f; becomes large if the frequency is much lower
than the cyclotron freguency. We treat this case separately. We
derive the simplified form of the operator L in the case of the
electrostatic fluctuations.

We keep the {=0 component in Eg.(13). The fluctuating
electric field is expressed in terms of the electrostatic
potential as E = —Va. The temporal evolution due to the

fluctuations is given as
2 2 A
8fo/8t = Lme?J§ |¢|2Lod (krvu-w)LoZg, (24)

where the summation is taken cver the wave spectrum and the

operators Ly and Ly are defined as

Lo

1l

k,v, /3%, + (ky/mﬂ)a/ax. (25-1)

~

Lo

w 9/3W, + (ky/mQ)a/ax. (25-2)

In deriving Eg.(24), we assume that the real frequency of the
fluctuating mode, w,., is large compared with the imaginary part,
w; ( the typical value of the growth rate }. We only keep the
rescnant contributions in the framework of the gquasilinear
theory., 1If the eguilibrium distribution is given by the
maxwellian distribution, equation (24) reduces to the usual

representation for the fluctuation driven diffusion term?3).

13



We derive a reduced form of Eg.(24) by imposing assumptions
for the mode spectrum. We assume that the spectrum ¢ can be

separated as
ik, , ky) = 66 (k,)0(k,), (26)

where ¢(k, ) and ¢(k,) are normalized, i.e., the average of them
over the spectrum is unity and <$(kL,k”)2> = ¢2. Using Eg.(26),

Eg.(24} turns out to be

2
e Wy 3 3 kg P 3
L{fy] = T !¢j3_§[<ku2>———HO(VL)——-+-——-<ku1>m—-H1(vl)—~
m WE gvn gvn  § avn 3x
k 2 p k2 d 3
Y knT—a, (v, ) 0 kn® (v, ) — 18, (27)
4+ — 1" — vV, I—m + —— ir - A —
Q 3% Y dyn 02 % 2 T ax O/

where functions <kus"> and H, are defined as

ka™> = Jdwfdk, k6?2 (w,k, )8 (knvn-w), (28-1)
and

Hy(ve) = Jak k3102 (x, 108 (kgva /) k5", (28-2)
where kp, is the typical perpendicular wave number of the nmode.

14



The origin of micrscopic fluctuations are considered to be drift
waves, and the wave vectecr is mainly oriented to the
perpendicular direction with respect to the magnetic field.

Note that the first term in Eg.(27) is the diffusion term in
velocity space due to low freguency modes, the second and the
third terms contribute to the anomalcus viscosity and the forth
term is the spatial diffusion term. When we apply the result to
the case of ion cyclotron heating, the first term is small
compared with that of the heating term, Eg.(14). If we neglect

the viscosity effect on the change of fo, we have

2 2
LIfn] ne ]¢|2wi <0 BH (v, ) af (29)
0l = 7= — 5 -
m2 wg 92 ox 2t 2x 0.

The energy dependence of the operator L is determined by that of
the function H_ . The small kgv,/& limit and the asymptotic
formula for the large kOVL/Q limit can be obtained. Taking the

Taylor series and asymptotic expansicn of Jg, we have

h (v,+0)
H, > (30)

gnf/mkovy (> =)

The numerical coefficients hn and g, are evaluated as

15



n, =fak k1162 (k, kg™,
(31)

g, =/ak kP2 (k) )k,

The simplified form of the diffusion term is derived from

Eg.{30). Taking the order estimate of W, * Wy, we have

wy ed 8 3
Llfg] * —(—)%=Hy(v,)—%; . (32)
K T ax 9x
or we have
3 )
Ox O3

where the coefficient D is defined as

D = (—)2 (34)

VT W, ed
2 K T

L]

In the usual estimation of the fluctuation level, ed/T is
estimated as K/ko, where 1/x is the typical scale length of the
density gradient, reducuing to D = wi/koz.

If the wave spectrum has a peak at ky:kO with the half width
of the order of k,, and the spectrum function ¢2(ki) is

approximated by a Gaussian distribution,the integral B, is

16



written as

H, (vy)=Jab(sind)P*1 ] (2/¥T)s%* exp(-s2) 3§ (kvis/Q)ds. (35)
Function Hy(v, } is given as

Ey(vy) = 5F,(1/2,5/2; 1,1; -k§v2/92 ) (36)

where ,F, is the generalized hypergeometric function. The

approximated formula, which satisfies Eg.(30) is given as

Hy(v,) = Hy(kgv, /Q) = (i-gz)exp(-Bb) + gp/vi+b (37-1)
b = kfv2/02 (37-2)
g, = 4/3™/7 (37-3)
B = (5-295)/(4-4g,). (37-4)

Figure 1 compares H, (solid line) with H, (dashed line). If the
spectrum is peaked near k;* 0 and has a typical half width of the

order of ky, H, is approximately given as
- b
Hy(v)) * Hylkyv, /%) = 3/3blbe™ I;(b)], (38)

where IO is the 0-th order modified Bessel function of the first

kind.

17



84 Summary and Discussion

In this article, we obtain the reduced set of equations
which describe the evolution of the distribution function in the
presence of rf heating and spatial loss. The level of the
microscopic fluctuations is treated as a given parameter, the
enercy dependences of the heating term @, loss term L and
collision term C are determined.

The reduced set cof eqguations are
9f,/9t = QU] + LIfy] + Clfy], (39-1)

Qlfy] = ezzz[3/3Wl+kzvz(3/awn—3/awi)/w]é(kuvn—m)aﬁag

[3/3W, +k, v, (9/3Wn-3/3W )/w]f, (39-2)
and
9 2
3x T ox

with the eguation of the wave propagation as,

-~ e ~

TxVxE 2 1. (G
XUXE o +{W/c)“E g = 1Ug(OE ¢ + J ) (40)

ant

where J, s+ 1s the current on the rf antenna. The conductivity
>
tensor for the rf wave 0 is calculated if fy is given. The

18




-~
explicit form of ¢ in terms of £, is given in Ref.[12] and is not

reproduced here. To make a closure of this set equations (39)
and (40), the charge neutrality condition is to be incorporated.

This set of equations yields the basis to analyze the
evolution of the plasma under the strong and localized heating.
The competitions between the heating, slowing down and spatial
loss are to be studied. The loss influences the heating and
current-drive efficiency, the partition of the absorbed energy to
plasma species and the deposition profile. The more guantitative
compariscn with the experiment would be possible.

Note that the second and the third terms of Eg.(27)
contribute to an anomalous viscosity due to micro-turbulence.
The relative magnitude to the diffusicn coefficient is roughly
estimated to be <ku>Q/Kvth<k0> for the maxwellian distribution.
For usual tokamak operations, (kn)/(K0> is order of (KDi)zKLS
where L. is the magnetic shear length%4'45) For the mode of <kp>

'1, the ratio becomess (Di/pe)sziLS for electrons and k?2

Py Pilg
for icns. The value of viscosity for electrons can easily be
order of the diffusion and the anomalous flux is affected by the
gradient of the parallel flow velocity. Futhermore, if we
consider the case of current-drive, the tail formation of the
electron distribution is influenced by the anomalous viscosity.
The ancomolous viscosity under the strong heating and/or current-
drive are to be examined. Analysis is left for our future work.
Assumption of the independence of the fluctuation from the

rf wave (the validity of time scale separation) must be examined

in applying the result to experiments. The effect of the



fluctuations on the rf wave propagation has been discussed26'27).

If this process would be important, the coupling must be first
included in the wave propagation equation, (40). The other
simplification is that the rf wave itself does not affect the
nature of the micro-turbulence. Finally, it is noted that the
analysis is done in a slab geometry. 1In the toroidal geometry,
the toroidally trapped particle exists and which can influence on
the evolution of the pitch angle dependence of f07). This kind
of effect is not incorporated here. The relevance of these
assumptions must be examined through the comparison study of the
experiment with the theoretical calculations.

By choosing the particular form of the loss term, the

effect of the spatial loss on the change of f; has been

studied by analytic and numerical calculations. The asymptotic
form of the Fokker-Planck eguation is written as'®)
1 9 g-i-q af T
——t W2 — s W3 -2 s e (41)
u“du 2z 3u 19

for the case of the fundamental cyclctron resonance, where
u:v/vth, Tp 1s the typical time scale associated with the spatial
loss, index s indicates the asymptotic form of H, and the limit
of £>>1 and w>(m;/my)1/® has been discussed. We see that s=-1
is appropriate for the case of drift wave fluctuations. The WKB

solution £ « exp(fgdu) is given as

£~ £, = expl-u?/(£:1)], (42)



where the relation (30) is used. The distribution function is
characterized by 3/3W = 1/(£+1)T, which is not explicitly
affected by the spatial loss ( operator L). The number density
of the tail compenent is reduced in comparison with the case
without a spatial loss. In the case of higher harmonic heating,
either the effect of spatial loss or the finite gyroradius effect
on the power absorption is to be included to obtain the
stationary state distribution?}. The gquantitative comparison
with the heating experiment by using the formula derived in this

article would be discussed in a separate paper.
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Figure Caption

Fig. 1 The approximated formula Eg.{37) { dashed line ) is

compared to the value of Eg.(36) ( solid line ).
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