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ABSTRACT

Particle orbits and loss regions in both real and velocity spaces are studied on the
basis of the guiding center drift equations in magnetic coordinates. The boundary of
loss region in pitch angle-radius (x — p) plane is determined from the condition whether
the drift surfaces for helically trapped and transition particles reach the cutermost
magnetic surface or not. The loss boundaries for the absolute particle confinement,
within of which boundary no particles are lost, is evaluated. Effects of the radial
electric field, F, on drift orbits and loss regions are discussed in detail. When ion
motion is considered, the poloidal rotation modified by a positive E, reduces a number
of trapped particles and consequently it leads the improvement of particle confinement.
For a small negative E., there is a possible particle loss caused by the helical resonance.
The loss rate of ions caused by loss cone in collisionless limit is evaluated in the presence

of E.. Effect of ripple modulation on the loss region is also discussed briefly.
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I Introduction

The torsatron configurations with low to moderate aspect ratios have recently been
attention with the advantage of a compact size and a high - beta operation. In these
configurations, however, the distortion of magnetic surfaces caused by the toroidal
perturbation is generally large and drives the radial drift of helically trapped particles,
which enhances the collisionless particle losses. Since the large loss region in core
plasma, region is harmful to efficient heating and high energy particle confinement,
the minimization of loss region is one of the important issues in compact torsatron
configurations. Effects of the various types of modulations of helical field (HF) and
the control of poloidal fields (PF) such as vertical and quadrupole field components
are discu;sed associated with the improvement of particle confinement at design stage
of a large helical device (LHD) *~3. It has also been pointed out theoretically that
the presence of radial electric field can prevent the loss of helically trapped particles
through E x B poloidal orbit rotation *~°. Generation of the radial electric field E, has
been observed in Wendelstein VII-A(W 7-A)7 and Heliotron -E (H-E)® experiments and
recently, the poloidal rotation profile is also measured and its electric field is spatially
resolved by using emission spectroscopy technique in Compact Helical System (CHS)
device °. A

The analytic formula *'! and the numerical analysis ** based on the theory of J-
invariant have been discussed to evaluate the loss region in both velocity and real spaces
in the presence of the radial electric field. In Refs.[10] through [12], the minimum energy
of particles entering the loss cone and an analytical expression have been obtained.
However, we note that this evaluation of the minimum energy gives the upper bound
because the transition particles with a smaller pitch angle may enter more easily into

the loss cone. I the deviation of very energetic particle orbit from a magnetic surface



is large, the analytic treatment becomes intractable.

The purpose of this paper is to investigate the effect of radial electric field on the
drift orbits of particles with an arbitary pitch angle and also its influence on the loss
regions in the velocity space as well as in the real space, using a model magnetic field
but by solving the guiding center drift equations in magnetic coordinates.

In Sec.Ii, the drift equations in magnetic coordinates are described. Drift orbits
and loss regions in both real and velocity spaces for two cases without and with the
radial electric field are studied in Sec.III. The minimum energy of trapped particles
entering the loss region is also discussed in this section. Simple evaluation of loss rate
caused by the loss cone is given in Sec.IV. The last section is devoted to the summary

and discussions, which includes a brief consideration on the effect of ripple modulation.

II Drift Equations in Magnetic Coordinates

Following particle orbits in magnetic coordinates has the computational advantage
of requiring only information about the magnitude of magnetic field B, not its vector
components. Although the orbit equations in magnetic coordinates are derived for both
vacuum and finite-bata fields é, they are the simplest for a curl-free field. In this paper,
we use the magnetic coordinates (1,6, ¢). The orientation of the coordinate system is
shown in Fig.1. We apply the following collisionless guiding center drift equations in

magnetic coordinates (¥, 8, $)%;
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Here we choose a model magnetic field as
BU$,6,9) = 1 — a(y) cosB -+ ex(1,6) cos(ld — M), ©
with
a8) = e, 6

a(v,0) = {le— (61(1,_1) + 653'])) cos ]2
+ [(6%_1) - egfl)) sin 9]2}1/2,

(7)

where particularly, for [ = 2 torsatrons under consideration, we can take the forms of

-1 +1
eh,eg ) and fs(a ) s 134

€ = Eha(zlp)’ (8)
&7 = & Va2, (9)
&0 = 60D 20y, (10)

In these equations, uB = mv? /2, py = yymc/eB(v) is the parallel component of the
veIocitj), ® is an electrostatic potential, ¢ is the rotational transform, § = ¢! with
€, = af Ry ( ais the plasma radius and Ry is the major radius), and all quantities are
mormalized in the same manner used in Ref[15]. For example, the flux y(= Byr®/2)
is normalized to 3.(= Bqa®). As for the helical ripple terms €;(1,6) is concerned, we
chose the lowest-order polynomial for €,{v, ) and also retained only the [+ 1 side-band
components of the helical magnetic field associated with the ripple modulation. We
note that Eq.(7) is a generalized form of the ¢-optimization model, ¢; = ¢,{1— o0 cos§),
which is used for the transport optimization.!® The modulating envelop of ripple term

caused by the ! & 1 side-band components

1- [(eg,—l) + efl))/eh] cos 6



localizes the ripple to the inside (# ~ =) or the outside (# ~ 0) of the torus (see,

6 0,6

Fig.1), depending on >0 or < 0. In the following calculation, the rotational

transform ¢(%) in Eqs.(2) and (4) is assumed to be

() = to + (te — 20)(2¢), (13)

where (g and .. are the values of 1(¢} at the locations of magnetic axis (¥ = 0 or p = 0}
and the plasma edge (2¢ = 1 or p = 1), respectively, with the definition of p = r/a.

Also, we assume the electrostatic potential in the form

B(v) = o[l — (24)°, (12)

where @ and /3 are the potential profile adjusting parameters.

111 Effect of Electric Field on Drift Orbit Loss

We consider a [ = 2 torsatron type device, the parameters of which are M =
14, Ry = 5m,a = 0.55m, ¢, = 0.11, €3, = 0.241, 49 = 0.58 and 1, = 2.0. It is practically
important to study the drift orbits and loss regions in real space as well as velocity space
from the evaluation of the device capability of the | = 2 low aspect ratio torsatrons.
Here, we investigate the structure of loss region in a poloidal plane with toroidal angle
¢ = w/M, which is shown in Fig.2. Since it has been pointed out that the electric field
has a considerable influence on the high energy particle confinement as mentioned in

Sec. 1, we here study the effect of radial electric field on the drift orbit loss.

1II-1 Orbit loss in case of ® =0

Particle orbits possible in toroidal helical systems are classified into several types,

namely, the passing, helically trapped, locally trapped and transition particles. Typical



drift orbit projected on the poloidal plane with toroidal angle ¢ = 7 /M (hereafter, we
shall fix M = 14) are shown in Fig.3 for the case of ® = 0. For this calculation, we
followed a monoenergetic particle with the kinetic energy fixed 10 KeV, and the pith
angles; (a) 50°,(b)85°, (¢)77.5°,(d)85° for typically 6 drift time {tziy: = a/vs, Where
vy is the drift velocity). Particles were started from the location on given flux surface
(p = 0.5,8 = 0) or {p = 0.5, = 7), namely, outside or inside the torus. Particles
shown in Figs. 3(a) - 3(d) correspond to the passing, transition, locally trapped, and
helically trapped particles. The relationship between these particle orbits and the

typical boundaries of loss region in velocity *™®

as well as in real '? spaces has been
discussed on the basis of the theory of J-invariant.’®?° In the present paper, however,
we study in detail the loss region, by solving the guiding center drift equations (1) -
(4). For these calculations, typically 2112 particles are initially distributed uniformly
in the region of pitch angle 40° to 140° and in the radius p = —1 to 1 in the poloidal
plane with torcidal angle ¢ = 7/14 (see, Fig.2). Figure 4 shows the mod - B contour
map in torcidal - poloidal angle plane and the initial particle positions are also plotted
by & sign in this fugure. We traced these particles for typically 12 drift time or until
they pass through the outermost magnetic surface, where the particles are assumed to
be lost. A typical result of loss region in the real space is shown in Fig. 5. The kinetic
energy K = 10 KeV and no ripple modulation (6?1) = 0) are assumed. Passing,
locally trapped, helically trapped and transition particles are classified in Fig.5 by
open circle (()), triangle (A), star(x) and lonzenge(o), respectively. The loss region
is represented by the void space. The boundaries among existing regions of these
particles are shown by solid lines. Thus we can easily understand what kind of particle

determines the boundary of loss region. The result of loss region is in qualitative

agreement with the previous results derived by J - invariant method.’? It should be



noted that the loss region plot in real space is practically useful to evaluate two typical
loss boundaries, przp and pryp, which have been discussed in Ref[12]. These two
boundaries are plotted in Fig.5. One(prrp) represents the boundary of the absolute
particle confinement and no particles are lost at the interior of this boundary. Another
(pLrp) gives the boundary of confined region of deeply trapped particles with vy = 6.

Analytical farmula describing pryz will be discussed in the next section.

IIT1-2 Orbit loss in case of ¢ £ 0

We here study the effect of radial electric field E,, on the drift orbit loss. To see how
the drift orbit changes topologically under the influence of E;, we followed a transition
particle with energy fiexd 10 KeV and pitch angle 65° during 6 drift time or until they
pass through the outermost magnetic surface. Particles were started from the position
(¢ = 0.5,6 = 0). We applied a parabolic profile for ®(¢), by choosing @ = § = 1 in
Eq.(12). The variation of drift orbits projected on the poloidal plane is shown in Fig.6
when the magnitude and polarity of @, are changed; (a) ®, = 0.0, (b) 2 KV, (c) 4 KV,
(d} ~ 2 KV and {e) - 4 KV. Figure 6 shows that the deviation of drift surface from
magnetic surface becomes small monotonically with increasing the potential in case of
o > 0 and the result becames more profound for negative potential (® < 0). To
explain this situation, we note that the deviation of drift orbit is approximately given

as

6 =~ va/(Qvs + QEexB), (13)

where v, is the toroidal drift velocity, Qvp is the poloidal precessional frequency due
to VB - drift and Qgxp is the poloidal rotation frequency caused by E, x B drift.
The reason that the positive potential is effective at reducing the particle orbit loss is

that the radial drift of helically trapped / transition particles is reduced because the



E, x B rotation is in the same direction as the poloidal rotation by VB - drift. We
note that the E, x B rotation may dominate the poloidal rotation, even at a relatively
low potential level, e®g =~ T (T is the temperature). If a negative potential is created
in the plasma, a resonance may occur when the E, x B drift cancels the VB - drift.
In this case, the particle drift changes the direction of rotation at the local resonance
point, where Qup + Qgxp ~ 0, and the resonant supper - banana orbit is formed.?
Examples for this type of orbit are shown in Figs. 6(b) and 6(c). If the banana width
is large enough, the particle easily drifts out the plasma region (see, Fig.6(b)) because
no compensation mechanism for the toroidal drift exists. Although the potential is
negative, however, the further increase of the potential (| Qexz [>] Qv |} may reduce
the banana width and consequently, the particle is again confined (see, Fig.6(c)). Thus,
we expect that the large electric field can reduce effectively the particle orbit loss,
regardless of its polarity. It should be noted that the role of electric field on orbit loss
depends on a lot of parameters such as the particle energy, pitch ange, potential profile,

and location(outside or inside the torus).

I11-3 Effect of electric field on loss regions

We here study the effect of electric field on the particle confinement. In the following
discussions, we assume a porabolic potential profile, ® = ®4(1 — 2¢), by choosing
@ = B = 1in Eq.(12). Typical results of loss region in real space are shown in Fig.7
for the positive (A) and negative (B) potentials. The particle energy is assumed to
be 10 KeV. In Fig.7(A), the boundary of loss region is represented by solid curves for
(a) B¢ = 0.0, (b) 2 KV, and (c) 4 KV. The region surrounded by dotted line denotes
the existing region of locally trapped particles (see, Fig.3(c)), for the cases (a} and

(b). The boundary for passing particles is indicated by dot-dash line. Figure 7(A)



shows that the loss region decreases monotonically in case of the positive potential by
increasing the potential amplitude. In Fig.7(B), the boundary of loss region is shown
for several values of the negative potential ; (2)@y = 0.0, (b) - 2 KV, {c) -4 KV, and
(d) — 8 KV. It was found from Fig.7(B) that all tzapped particles are lost due to the
helical resonance in case of (b) but the further increase of the potential may reduce
again the particle loss (see, {c) and {d)). For the case (c), the loss region separates
the two regions at both inside and outside of the torus. With further increase of the
potential, the loss region is localized ouly at the inside of the torus.

We next study in detail how the potential changes the spatial structure of loss
region in real space. The relationship between the potential magnitude normalized to
kinetic energy, ®;/K and the major radius normalized to plasma radius, p(= r/a) is
shown in Fig.8 for several values of pitch angle; (a) 70°, (b) 80° and (c) 90°. For these
calculations, we traced the 64 x 31 particles with the energy, K = 10KeV during 12
drift time or until they pass through the outermost magnetic surface. These particles
were intially distributed uniformly in the region of ®o/K = —1to 1 and p = —1 to
1. Here, we assumed no ripple modulation, namely, 6?1) = 0. In Fig.8, the shaded
region denotes the confined region and the void space represents the loss region. Also,
the passing particles are shown by the dark shaded region. In the case of pitch angle
90° (see, Fig.8(c)), the loss region is localized at the cutside of torus and decreases as
the potential increases in the region of positive potential. On the other hand, the loss
rgion spreads over the whole region if the condition for helical resonance is satisfied
for a nagative potential and the loss region separates at both inside and outside of the
torus in some range of negative potential. Further increase of negative potential tends
to localize the loss region only inside of the torus. These results are also understandable

from Figs.6 and 7. For different pitch angles (70° and 80°), the spatial structure of
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loss region is topologically same except around the magnetic axis. As was shown in
Fig.8(a) and 8(b), the passing particles prevent some of trapped particles from the
helical resonance loss. This situation becomes notable as the pitch angle decreases
from 90° to 70° because the fraction of passing particles increases as the pitch angle
decreases. Moreover, we found from Fig.8 that for ®; ~ 0, the loss boundary caused
by helically trapped particles approarches toward the axis as the pitch angle decreases.
This result is consistent with the one shown in Fig.5. We note thaf these results are
sensitive to the potential profile. Sheared E, x B poloidal rotation probably modify the
drift orbits and resultant loss.!® It was also pointed out that the appearance of so-called
toroidal resonance may degradate the particle confinement provided that the passing
particle resonates with the B, x B rotation.?? For the simple magnetic configuration
such as no ripple modulation and for the parabolic potential profile, we can derive an
analytic formular 12, which describes the loss boundary in case of pitch angle 90°
as was shown in Fig.8(c). The analytical forms, which describe the upper and lower

boundary of loss region in ®;/K — p plane, are given as

_ 6@0 ~ 11— (Eta/fha)’ (14)
oK 1-p
e®p (5&1/6}14)

- ~ 42—t 15
eha K * 1-p (15)

where we assumed pBp ~ K. When ®; = 0, Eq.(14) gives the loss boundary (pzyg)

for deeply trapped particles with vy = 0 in a form

pLuB = 1 — €afena. (16)

Taking the limit e®; — +oo, pryp approarches the outside and inside of the plasma
edge, namely, pzyp — +1. The deeply trapped particles are easily confinred in a
configuration with small €, /e, because the loss boundary and the width of loss region

are sensitive to the value of e, /¢s,, which is seen from Egs.(14)-(16).
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We now study the effect of radial electric field on the minimum particle energy
entering into the loss region. Typical results of the loss cone in velocity space are
shown in Fig.9 for several values of the potential; (a)®, = 0, (b) 1 KV, (¢) 2 KV, (d)
-1 KV and (e) - 2 KV. Here we plotted the loss cone at p = 0.5 and chose the range
of particle energy from 5 KeV to 20 KeV. The loss region is represented by the void
space in this energy range. Figure 9 shows that the loss cone structure depends on the
direction of the radial electric field. if the E, x B rotation is in the same direction as
the poloidal rotation due to the helical ripple, i.e. ®, > 0(E, > 0) for ions, then the
deviation of the drift orbit from the magnetic surface becomes small and consecuently
the loss cone is reduced (see, (a), (b} and (e)). For the case of a negative potential
®y < 0(E, < 0), however, the particle drift has a large deviation from the magnetic
surface when the E, x B rotation cancels the poloidal rotation due to VB, a typical
drift orbit of which are shown in Fig.6(b). Loss cones associatecd with the resonant
supper-banana orbit such as Fig.6(b) are shown in Figs.9(d) and 9(e). We next examine
the energy dependence on the loss boundary in phase space. The results of loss region
in the énergy and radius(K — p)plane are shown in Fig.10 for values of the potential
; (a)®e = 10 KV, (b) 0 KV and (c) - 1 KV. For simplicity, we considered only the
deeply trapped particle with vy = 0. The confined and loss regions are represented by
the shaded and void spaces, respectively. As was shown in Fig.10{b), the loss regicn is
almost independent of the energy in the limit &, — 0. In this case, the loss boundary
is given by Eq.(16). Figure 10 (a) shows the ion loss region in K — p plane for the case
of a positive potential. The minimum energy of particles entering the loss region in
this case can be evaluated approximately by an analytical form®®

e®o(1 —p)

K>K,=
€t — €na{l — p)

(17)

provided p > €, fep,. Figure 10 (c) shows the case of a negative potential. In this case,
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as was seen from Fig.6, the banana orbit rotates in the counter - clockwise or clockwise
direction, depending on K > e®¢/¢;, of K < e®y/e;. The loss region forms a band in
phase space, namely, K, < K < K,. The upper limit of the particle energy is given as

e®o(1 — )

K, =—>_F
P €ha(1 - P) - Eta)

(18)

which becomes infinite at p =~ 1 — €;, /€5, and the outside region with p > 1¢, /ey, is
also the loss region. However, the particles with the energy less than the minimum

energy, wheih is given as
__e®(1+9) (19)
" ena(14+p) 4 €’

are again confined.

IV Simple Evaluation of Loss Rate Caused by Loss
Cone

The loss rate in the presence of loss cone has been discussed in mirrors® and also
in steliarators.?*. Recently, Itch et al. derived an approximate form, which describes
the loss rate in stellarators under the influence of a loss cone in the collisionless limit.™®
Following Ref.[10], we evaluate the loss rate by employing the expression for the loss

rate of deeply trapped ions,

1 Cv;T/Knexp(—=Kn [T}, (Kn > T) (20)
Tloss 2 (K << T)

where T is the temperature, »; is the pitch angle seattering frequency evaluated at
K =T, K,, is the minimum energy entering the loss cone, which is given by Eq.(17} for
E, > 0, and by Eq.(19) for E, < 0. The coefficient C in Eq.(20) stands for the bounce

averaged quantity over the magnetic surface and it is close to unity if there is a loss cone
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for all poloidal angles on the magnetic surface but it becomes smaller if the loss cone is
localized to a limited region of poloidal angle. Recently, a three dimensional analysis
of drift orbit % shows that the loss region is localized at the outside of the torus (6 ~ 0)
at inner magnetic surfaces and it spreads towards a wide range of poloidal direction
at outer magnetic surfaces. In order to evaluate C in detail, we must determine the
functional dependence of # and p on the coefficient C. In this paper, however, we do
not consider the C-dependence and assume C=1, for simplicity. If we assume that the
temperature and density profiles have the forms, T(p) = Tof1(p), n(p) = nofa(p), and

use the notation X,, = K, /T, the substitution of Eqs.(17) and (19)into Eq.(20) yields

1 Vi/XmeIp(-Xm)y (_X‘m > 1)7 (21&)
Toss | 2, (X << 1), (21b)
with

1-— 6@0
[Gta —(ﬁha(‘;)— P)]fl_l | ?0 I’ ((I’O > 0)’ (22a)
Xm =
1 c®
[fta. _l_(e‘::(i)_}_ p)]fl_l I ?ﬂf_ I) (QU < 0)) (225)
vi=vafafi 0 (23)

where y;q is the pitch angle scattering frequency evaluated at p = 0. In the following
discussions, we use an approximate connection formula between (21a) and (21b}, which

1s given as
1
TlossVi0 \/1 —p

where X,, is given by Eq.(22a) for ®; > 0 and by Eq.(22b) for &, < 0.

=[1+ {2X nexp(Xm) V%%, (24)

Typical results for the loss rate normalized to v;, versus p are shown in Fig.11 for

several values of e®y/Ty;(a)e®o/To = 0.01,(b) 0.05, (c) 0.1, (d) 0.15 (solid curves),
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(e) - 0.2, (f) - 0.3, and (g) — 0.4 (dotted curves). The loss rate in the region of
X << 1(see, Bq.(215)), is also shown by broken line. Here, we assumed that
filp) = 1= 22, fulp) = 1 — p*, @ = B4(1 — p?), and C = 1, for simplicity.

As was seen in Fig.8 or Fig.10, the loss region is localized at the outside of the
torus for ®, > 0 and it is also localized at the inside of the torus provided T < K,
for ®; < 0. The particle loss induced by these loss regions decreases as the magnitude
of the potential increases regardless of its polarity. This loss cone loss reduces more
rapidly in the case of E, > 0 than in the case of E; < 0. But, we note that these results

depend sensitively on the choice of density, temperature, and potential profiles.

V Summary and Discussions

In this paper, the boundary of loss regions in real space as well as velocity space
is studied in a ! = 2 torsatron type configuration by solving the guiding center drift
equations. We evaluated the loss boundary for absolute particle confinement. These
results may be practically useful to evaluate qualitatively the capability of particle
confinement and heating efficiency. The effects of radial electric field E, on drift orbits
and structure of loss regions were investigated in detail for the case of uniform E, x B
rotation. Although the nonuniform E, x B rotation may affect strongly the structure
of loss region,'*? we restricted our discussions to the case of uniform E, x B rotation
in this article. When the ion motion is considered, a positive F, reduces a number of
trapped particles and can prevent the loss of helically trapped ions through E, x B
poloidal orbit rotation. For a negative E,, so - called helical resonance occurs when
the E, x B drift cancels the VB - drift, and the particles easily drift out from the core
plasma. region in this situation. It was confirmed that a large electric field can reduce

effectively the particle orbit loss, regardless of its polarity. However, the reduction of
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the loss due to this effect is expected, only when a particles kinetic energy K is on
the order of or less than its potential energy, K < e®. Energetic particles created
by plasma heating systems have energies higher than those for which electric fields
provide confinement, and these lost particles degradate the heating efficiency. From
this point, we studied the relationship between the radial electric field E, and the
minimum energy K,, for deeply trapped particles entering the loss region for both
positive and negative electric fields. These estimations of the minimum energy have
been made for deeply trapped particles. As we can see from Fig.7 and Fig.8, however,
the loss boundary determined by the transition particle is much wider, i.e., closer to
the magnetic axis rather than the boundary caused by deeply trapped particles in case
of E, > 0. On the other hand, the severest loss boundary is determined by helically
trapped particles with a smaller pitch angle in case of E, < 0. Therefore, the estimated
minimum energy, Fq.(17) gives an upper limit, in other words, the real minimum
energy is equal to or smaller than Eq. (17) in case of E, > 0. For E, < 0, however,
the evaluation of the minimum energy, Eq.(19) may provide a good approximation.
Also, we carried out a simple evaluation of loss rate caused by the loss cone in the
collisionless limit in the presence of radial electric field. We found that the loss cone
loss is appreciable for a small negative electric field and decreases as the magnitude of
the potential increases regardless of its polarity provided the potential is large enough.
Generally, this loss cone loss reduces more rapidly for £, > 0 than E, < 0, when the
ion motion is considered. It should be noted that the loss cone loss is sensitive to the
density,temperature and potential profiles. In low density plasmas heated by electron
cyclotron resonance heating, the electron temperature is often much higher than the
ion temperature. Since the electron loss caused by the loss cone may increase the total

loss in such plasmas, the loss cone of electrons should also be considered.
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In the high density NBI heated plasmas, the negative ratial electric fields have been
measured in W7 — A7, H — E® and C HS® experiments. In the low density ECH heated
plasmas, the positive radial electric fields have also been measured in these experiments
except for W7 — A, where a negative field has been observed even for the ECH heated
plasma. Recently, an attractive idea of high ion temperature mode operation in the
so-called electron root (F, > 0) is proposed associated with the design studies of
LHD configuration. Since the coniribution of the loss cone loss raises the temperature
necessary to get a positive radial electric field, a much higher heating power is required
than has been predicted by the neoclassical theory for realizing this mode operation.'?
To understand the experimental observations and to discuss the possibility of high T;
mode operation, futher extented studies are required by taking account of the effect of
loss cone loss in addition to the neoclassical process.

It has been pointed out 1~3%-%2 that the inward shift of magnetic axis plays an
important role on the improvement of particle confinement. The loss region can be
reduced effectively by simultaneous control of vertical and quadraple fields. We here
consider the effect of the harmonic components of ripple field on the loss region by
using the ripple modulation model, Eq.(7). These field components are practically
provided by the shift of magnetic axis, the variation of mod-B surface and the shaping of
magnetic surface due to the virtical and quadrupole fields, and the pitch modulation of
helical winding. For simplicity, we here retain only the ¢;*! components with { = 2 and
M = 14 fixed. Particle loss regionin real space is plotted in Fig.12 in the following three
cases; (a)6¥1 = 0,(5)6S™ = 0.5 and 6" = 0.0 and ()5 " = 0.8 and & = 0.0. In
this case, we assumed no electrostatic potential, ; = 0 and other parameters are the
same as in Fig.5. The result shows that the positive ripple modulation (5}(1—1) > 0), in

other words, the inward shift of magnetic axis has a good effect on the reduction of
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particle loss associated with both helically trapped and transition particles. In studying
the actual configurations, the form of ,(p) and €;(p, §) are not always as simple as in the
present paper, and the inward shift of the axis in the experiments would cause changes
in the plasma radius and harmonic components of €,. Therefore, the quantitative
conclusion requires the studies on the realistic inagnetic field. Recently, the effects of
the magnetic axis shift on plasma characteristics are actively studied in both # — E*
and CHS? experiments. These measurements show that the plasma stored energy
depends sensitively on the position of magnetic axis. Whether the observations are
correlated to the change in the magnetic shear and / or the variations of loss region,
awaits further investigations.

We finally note the loss condition to determine the loss reigon. In the present paper,
we assumed that the particles are lost if they reach the outermost magnetic surface.
The choice of loss boundary at a position outside of the ontermost magnetic surface or
larger limiter radius may give a wider confined region, in other words, a narrow loss
reigon, in principle. However, the particles drifting close to the surface are subject
to the strong Colulomb collisions with cold electrons and /[ or the charge exchange
loss with neutral particles.?* We should discuss carefully the choice of loss condition to

evaluate the actual boundary of loss region.
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Fig. 1
Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Figure Captions

Coordinate conventions used in the present analysis.
Poloidal cross sections of the magnetic surface at ¢ = 7/14.

Typical drift orbits projected on the poloidal plane with ¢ = #/14. {a)
passing particle (pitch angle 50°), (b) transition particle (65°), (c) locally
trapped particle (77.5°), and (d) helically trapped particle (85°). Here,
® = 0 and K = 10 KeV are assumed.

The mod - B contour map in toroidal - poloidal angle plane. The initial

particle positions are also plotted by & mark in this figure.

Loss region in pitch angle - radius (x — p) plane. Here, & =0, 6%1) =0,
and K = 10 KeV are assumed. Passing, locally trapped, helically trapped
and transition particles are classified by open circle (o), triangle (A),
star(x) and lonzenge(o), respectively. The loss region is represented by
void space. Boundaries among existing region of these particles are de-
noted by solid lines. prrp is the boundary of the absolute particle con-

finement and pryp represents the boundary of confined region of deeply

trapped particles with o = 0.

Variation of drift orbits of transition particle with K = 10 KeV and pitch
angle 65° under the influence of radial electric field. (a} ®, = 0.0, (b}
2 KV, (c) 4 KV, (d) - 2 KV and (e) - 4 KV. Drift orbits (b) and (c)

correspond to resonant supper- banana orbits.
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Fig. 7

Fig. 8

Fig. 9

Effect of electric field on loss region in real space for positive (A) and
negative (B) potentials. For the case(A), (a) @¢ = 0.0 (b) -2 KV, (c) -4
KV and (d) - 8 KV. In (A), the boundary of loss region is represented by
solid curves. Existing region of locally trapped particles is shown with
the surrounded region by dotted line for cases (a) and (b). Boundary for
passing particles is indicated by dot - dash line. Here, X = 10 KeV and
no ripple modulation, 69) = 0 are assumed. L and C denote the loss

and confined regions, respectively.

Spatial structure of loss region in ®,/K — p plane is plotted for several
values of pitch angle ; {a) 70°, (6}80° and (c) 90°. The confined and loss
regions in this plot are represented by shaded region and void space,
respectively. Existing region of passing particles is also shown by dark
shaded region. Here, K = 10 KeV and 5?1) = 0 are assumed. The
boudary of loss region in case of pitch angle 90° is given approximately
by Egs.(14) and (15).

Typical results of loss cone in velocity space at p = 0.5 for several values
of @g;(a)Py = 0.0, {b) 1 KV, (¢) 2KV, (d) - 1 KV, and (e) - 2 KV.
The loss region is represented by voide space. Here, K = 10 KeV and

6%11) = 0 are used.
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Fig.10

Fig.11

Fig.12

Loss region in energy and radius (K — p) plane for potentials ; (a) &, =
10KV, (b) 0 KV and -10 KV in case of deeply trapped particles with
vy = 0. The confined and loss regions are represented by the shaded
region and void space, respectively. Boundaries of loss region are given
approximately by analytical expressions, Eq.{17) in (a), Eq.(16) in (b)
and Eq.(18) and Eq.(19) in (c).

Loss rate normalized to vy versus p, where yg is the pitch angle scat-
tering frequency evaluated at p = 0, are plotied for typical values of the
potential energy normalized to the temperature Tp at p = 0. Here, (a)
e®o/Tp = 0.01, (b) 0.05, (c) 0.1, (d) 0.15 (solid curves), (e) - 0.1, (f) -
0.3 and (g} — 0.4 {dotted curves). Loss rate in the case of K,,/T << 1,
where K, is the minimum energy entering the loss cone and K ~ T is

the particle kinetic energy.

Effect of ripple modulation on loss region in real space for three cases; (a)
5§ =0, (365 = 0.5 and 60 = 0, and (c} 80 ¥ = 0.8 and 5{*V = 0.
Here, K = 10 KeV and ®; = 0 are used. L and C denote the loss and

confined regions, respectively.

25






z bTa

-y ey
1 1
1 1
T
) '
1 '
R
T '
t 1
L} 1
[ A
1 L}
1 '
[P
' 1
L} 1
[ M
V i
L} ]
1 )
“mmgm ey
'
'

:
!
STt T
'
s

[
L
6
E

s
£

'
]
1
L
i
[

e am—e pr . ———— - -




Na)

N
N

A
N

7/

1.2

1.2

/

1.2

11 '21

T2-12

-1.2



319NV 1vdlio0od

TOROIDAL. ANGLE

Fig.4



0000000000000 0Y
D000 0000D0D0R
=) OD00000000D0DOM
100008 DDREROY
Q00000 PODODD #
VODIL0OVRNVO DR
I 0000DLQ00000g Y
1000000C00000 8
‘000000800008
1J0D000CO000Y
L0002 28A4
WYL 0DA
D00IOR0OBDO MY
OODUSU0OTaf
lopaseogoad
LoD 000L
Q0009808
O a0oonalfg
EIRA IR R R 4 ]

4

fooooe o y
g <

eoeend a

1000009 LRR A

'o00a0990 R X OO0 O00T
00000008 poto

000000000 ecta

5009069068 LE-2-2-X X1 00080900680
[I3X733 13305013138 3] ] [a]3iak=¥sYsRalalan
'DO00U00909800R8LCF0DDOFODDA0DDDDL
1000099000008 Cd$0 00N DDODONDNA:
19920000000 DaRFA$OREFOODOODDDOOF |
2322330 STORRORONST R0 -0 .- 00200V 0O0,.
QD00 ON0DNOAEI I RYPOOEDROOOODNE
D000 0000 S 09898000000
iz isiaiaisia s ialatata 4 AOADIAANOSINTS 0
ROy Sduuwd § YODORUOOBEOU I

000INOORLOUL-
00009002u0QOaY-
D000VVOAVOTOT
(2192305132001 88 Y TR
000000 TRODOO0-
00009020 ONNA.
000000V 0OO ]
QRO EDD0OB0000
9221330 LI fa R Talo K
000090 auTy,
00009000
(210 F IR LR O N AT Ay ]
Al A SIS E Rl e
009000 LT

HBHYUDDNL
000OH0LG
ODaDHOR S
QD00
SRO000N
ERE )

SRR D
DO O
SIS NS RNV
1E) €1 Eavy

O
o

(99489p) 88Uy yoiid

0.5

-0.5



1.2

1.2-12

~-1.2

1.2

1.2-12

-1.2

Fig



Pitch Angle (deg.)

Pitch Angle (ueg.)

1N
o

O
@

140 |




Do /K

Do/ K

Do/ K

-1.0 -05 0 0.5 1.0

Fig.8



v, [eV] v, [eV]

v, [eV]

<
o
X
o
<
o
X
o :

4 4 4 4
2X10° 1x10 0 1X10° 2x10
<
° =
X * T
N o
<
2 ©
x x
o ok

4

: ,
2x10* 1x10° o 1x10° 2x10* 2x10®1x10* 0o  1x10° 2x10°

hog
A
9 (]
x v
x
N o
b3
=
9 o}
X x
O ot s o)

2x10% 1x10* 0O 1x10* 2x10° 2

Fig.9

0 1x10° 2x10°



[AeX] ASasu [AoM] A8usuz [AeX] AddauT

Fig.1l0



TT*bTa

- ——— i ra——

P = -
‘l!‘"'l.lo-lll — i — -

e
o ——

[
—
—
—_—

e —————

L0l

(O!A-SSOIJ. /1) @1y Ss07]



e
—

<
B @ L
\..“m: =
i pz 110
O
O
1 | 1 | 1 1
OO
@ <t
0)’ -

40

(s@ugdep) 9|3uy yoiid

1.0

Fig.1l2



