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Solitons are everywhere in the nature. The present
lecture surveys various soliton phenomena, after giving the
mathematical foundation to define solitons. Laboratory
devices for the studies of plasma soliton phenomena are
described together with experimental results. The most
interesting application of soliton physics is illustrated in
the discussion of soliton propagation in optical fibers.
Topics on chaotic behavior in nonlinear dvnamical systems

will be discussed briefly in concluding remarks.
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1 Splitons are Everywhere

In the month of August 1834, while riding on horseback
beside a narrow channel, a Victorian naval architect John
Scott Russell encountered with the singular and beautiful
pvhenomena which he called the Wave of Translation.'Y When
the boat he was observing suddenly stopped, the mass of water
in the channel "accumulated round the pow of the vessel in a
state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded smooth and well defined
heap of water". Its original form of some thirty feet long
and a foot to a foot and a half in height was preserved while
it was rolling on at a rate of some eight or nine miles an
hour and was running over the distance of one or two miles.

Over several years after his first encounter with the
solitary wave, Russell had carried out series of extensive
experiments. The speed of propagation of a zolitary wave in

a channel of uniform depth £ is given by

— (1)
U=J3Uh+7)
7 " being the height of the crest of the wave above the

plane of repose of the fluid and é} the measure of
gravity."(m Yet, it took another 50 years until Korteweg and
de Vries‘® succeeded to give theoretical foundation for the
sclitary wave observed by Russell. They derived an equation,

which bears their names, governing small but finite amplitude

(W]




shallow-water waves.

The Korteweg-Vries equation (the K-dV equation in short)

3
at?f+%_— +§5—§' =0 )

was the sleeping beauty in deep forest of nonlinear science
until Gardner and Morikawa®) discovered in 1960 that the K-
dv equation describes propagation of collision free
hydromagnetic wave. In the mean time, Boussinesq(m also
derived a nonlinear evolution equation for long waves with

small but finite amplitude. The Boussinesg equation

?z B 32 3 z VJ_ 2 gz
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admits solitary wave solutions travelling either along the

positive or the negative X direction.

In quest of light in the dark forest of nonlinear
science, the advent of high speed electronic computer was the
critical event. Challenging to resolve the Fermi-Pasta-Ulam
recurrence phenomena,W) in 1965 Zabusky and Kruskal'™
discovered that soclitary wave solutions of the K-dV equation,

eq.{2),

?(x H= A sech (J/S ( - %Af) (4)

retain their original forms through collision processes




governed by the K-dV eguation, and were led to call the
solitary wave "soliton".

Looking around the nature, we are much surprised to find
such localized disturbances that exhibit remarkable
stabilities and tendency to preserve their original
structure. One of such examples can be illustrated by a

8)

series of pendulums connected by linear springs.( Denoting

the twisted angle of the n-the pendulum by &L , we have

i
—
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which is reduced to the sine-Gordon equation in the continuum

limit as follows,

z
i — 5" G b :—Klsén& (6)
ot* 2x*

Eg.{(6) has a travelling kink (+) and anti-Kink (-) solution,
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As 1t will be discussed in the next section, the K-4V
equation, eq.(2), and the sine-Gordon equation, eq.(6),
belong to the Ablowitz-Kaup-Newell-Segur scheme!® of the
inverse scattering transformation. Hence, eq.(4) and eq.(7)
represent the soliton sclutions of these nonlinear evolution

equations. As for the Boussinesqg equation, eq.(3),



Zakharov”o’

proposed a set of Lax—-pair equations, though it is
difficult to solve by the inverse scatfering transformation
method. N-spliton solution of the Boussinesq egquation,
however, is constructed by Hirota’s bilinear transformation
method. 1V

In order to assure that solitons are everywhere, and to
indicate the wide scope of soliton physics, we conclude the
present section by listing the physical problems for which
the sine-Gordon equation plays the key role in the following.
Frenkel and Kontorova''?’ discussed the propagation of a slip
dislocation in a one-dimensional crystal by eq.(6). Fergason

and Brown(m)

examined a splay wave along the lipid membrane of
a biological cell. Eq.{(6) is noted as being relevant to the
description of the propagation of ultra-short optical pulses
through a two-level atomic system,‘“) dynamics of the Bloch
wall™®  and magnetic flux propagation in a Josephson

(16)

junction. It will be worth to mention that Perring

(A7) nave discussed nonlinear theories of elementary

Skyrme
particles on the basis of the travelling kink and anti-kink

solution of eq. (7).

2 Mathematical Foundation of Soliton Physics
Inspired by the discovery of unique behavior of a
solitary wave solution of the K-dV equation, Gardner, Greene,

(18}

Kruskal and Miura challenged to explore secret of the

soliton, and succeeded to discover an ingenious mathematical

on



method, called the inveérse scattering transformation, for
solving the Korteweg-de Vries equation. For nearly five
yvears after their invention, the inverse scattering method
had been believed to be effective only for the Korteweg-de
Vries equation. Then, suddenly around 18972, pecple realized
the inverse scattering transformation method is not a fluke
at all. Now, wvarious schemes of the inverse scattering
transformation provide us the firm mathematical foundation of
soliton physics.

Generalizing the scheme(JfAblowitz—Kaup—Newell—Segur,(m)
we consider the eigenvalue problen,

2w+ F(U = G B L,

U - FNUL= G)rad) U, ®
where F(}) and G{ ?\) are functions of the eigenvalue A .
Together with eq.(8), we assume that the eigenfunctionsl‘
and llz evolve in time according to the ifemporal evolution

eguation,

2y = A(),%,Y‘)u, + BIA, 9. DU,
ot @
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where A, B and C depend on ;R and functionals of the

potentials %a and Y and of their spatial derivatives in the

arbitrary order. It is quite natural to request that



L{)—— a‘é'u> vE oz (10)
The key point to squeeze out the soliton is to postulate that
the eigenvalue A does not change in time while the
potentials 2(x.t) am Y (x.t) change their shape in time.
We set the condition
2 -0
at (11)
Then, we find that A, B and C should satisfy the following

set of equations,

ZA -G8 -3() =¢ (12.2)

G(A):_f% ”%B —ZF(RJB—zGr(a)gA =g (1z.p)
G’U\);F -2 _2FA)C- 2G)YA=0 2.0

2%
For given expressions of F() } and G(A ), we construct the
functions A,B and C from egs. 12.a}-c), and obtain the
nonlinear evolution equaticn for z‘ and Y , which are the
soliton equation

We notice that for the cheoice of the set of equations,

F(N= A G(3)

{13)
eps. (8), (9) and (12) are reduced to the A-K~N-S scheme.

They have shown that setting Y‘ =const, they get the K-dV



equation, eq.(2), and for the choice of r =—gq {real),
defermining expressions of A, B and C, they reduced the

modified K-dV egquation

3
? 2 d 2
2y bt =0 e
2t ox ax?3
For the choice of r =—g* {complex), we get the cubic

nonlinear Schrodinger equation,

Gt a3 =0

In particular, setting
/ ] .
A::}—-COSS B:C:_‘P_A_szﬁ (16)

and

Z:—rz.—é—&f , (17)

we cobtaln

2
9 C; — g(}n 69 (18)
X
which 1is the sine-Gorden equation in the 1light cone
coordinates x =(§ -7T)}/2, t =(¥+7T)/2. Thus, we confirm
that the kink and anti-kink solution of eq.(7} is nothing but
the soliton.

For the choice of



()= —io(lz‘—‘/zfo_’_/-{ (19.a)
G(A): O(A - ll//ﬁ_zu (18.b)

with r = + 4%, we'®® couild determine the functions A, B and

C and integrable nenlinear evolution equation as

294 L3 {1 02 pla)'g =0 o

which could be called the modified nonlinear Schrodinger
equation. Eq.(20) describes nonlinear propagation of the

(21) It is alsc relevant in the discussion of

Aefven wave.
deformed continuous Heisenberg ferromagnet‘*® and in the study
of two-photon self-induced transparency and ultrashort light
pulse propagation in an optical fiber.‘*®

Furthermore, we'®®? have still other integrable nonlinear

evolution equations for the choice of

/"__[}) — !‘:A (20.a)
G = (20.b)

For the real potential r = £ g, with the expressicns of A,

B, and C determined from eqs. 12.a)-¢c), we get

2 rh  « _
E?J + 5 72 ({ - %2)3/2 — 0 (21)

While for the complex potential r = xq, egs. l2.a}-c}

determines the functions A, B and C with the integrable



nonlinear evolution equation

29 oF ;

0T 22\ 119

§
O

(22)

The above choices do not exhaust possible existence of
other integrable nonlinear evolution equations. For the

choice of

F() 8) LZ- ;\2 + [zfz {23.a)
CT()) ) (23.b)

with r = 9", we can construct another kind of the derivative

nonlinear Schrodinger equation

?

which has been shown to be integrable by Chen, Lee and Liu

3

120l =9 =0

9 X

(25)

some years ago.

We conclude the present section by referring to the
generalization of Morris and Dodd‘2®) to expand the two
compenents eigenvalue problem +to the three components
eigenvalue problem. Their covariant formalism allows to
adapt the method to solve the n-component derivative

nonlinear Schrodinger equation.

10



3 Experimental Device for Plasma Scoliton Studies

Various cbservations of space plasma phenomena suggest
many evidences of manifestation of plasma solitons. Kennel")
noticed that the Alfuen soliton'®® may account for the sharp
shocklets detected by ISEE-3 when it encountered the
interplanetary shock on November 12th, 1978, and also the
magnetic field shocklets detected in the Comet Giacobini-
Zinner shock interaction region on September 11th, 1985.
Temerin and his collaborators®® have observed solitary waves
in the auroral plasma with an artificial satellite. It is
important, however, to carry out controlled experiments with
good accuracy on laboratery plasmas, so that we can develop
guantitative analysis of experimental data referring to the
relevant soliton theory.

One of the standard experimental setup is the double
plasma device(w), using the plasma produced by the filament
discharge in the argon gas at a pressure of {1-5)«x 107° Torr.
The discharge voltage and current could be taken in the range
of (40-50) Volt and (50-100) mA. Typical plasma parameters
are electron temperature’n3z(1.5-3) eV, and electron number
density Nezilﬂs—lﬂg) c.c.. Ion temperature T; is much lower
than electron temperature, T; /T,<< 1. A chamber of (50-80)
cm in diameter and (100-120} cm in length is divided by a
fine-meshed metallic grid biased at -20 Volt, or is separated

into a driver and a target section with a floating grid.

Multipole walls with permanent magnets in a full line cusp

11



configuration improve ‘plasma confinement, so that the
discharge could be maintained at 'low neutral pressure. This
ensures that large volume of plasma is collision free. Fig,.
1 shows a twypical arrangement of the device.

After the pioneering work of Ikezi and his collaborators

G various

on the formation of 3ion-acoustic solitons,
extensions of experimental studies were undertaken. As for
the planar soliton experiments, measurements of the soliton
velocity and the soliton width are compared with the
theoretical values predicted for the cold ion K-dV equation.
Since a finite T makes the dispersion of the ion acoustic
wave less dispersive, the width of solitons becomes narrower
and the scliton velocity becomes faster than the cold ion K-
dV soliton. This is accord with experimental results of

32 por the larger value of density amplitude, however,

Tkezi.
it has been noted alsov that the cubic nonlinear correction

appears to be 1important to account the observed soliton

structure. ¥
Considering cyvlindrical and spherical symmetric
geometries, Maxon and Viecelli'®® have reduced the following
equation,
3
2 %+Z ZnL = 0 (25
at 2 oy

where 71 =1 and 2 for cylindrical and spherical geometries,

respectively. Modifying the double plasma device,

12




Hershkowitz and Romesser(®

performed experiments on
propagation of cylindrical symmetric ion-acoustic waves,
Fig.2 illustrates the cylindrical double plasma device used
by Nagasawa and Nishida.®® Tsukabayashi and his

collaboratorswq)

carried out similar experiment and compared
their result with computer simulation result. Observing the
Tt/2 phase change at the center of collapse, they found that
the convergence af the center of the inward moving soliton is
not a penetrating collision but a reflection of the pulse.
In Fig.3, we show the experimental result.

With regards geometrical effects on the one dimensional

K-dV soliton, Kadomtsev and Petviashvili‘®® have examined the

effect of transverse perturbation, obtaining

2 [ 2 >} 2 o .
;;{%4“552'?'2;% -1-0(;(—?—;2,—0’ oL=t{ (25)

which is called the K-P equation in short. The K-P equation
is one of the rare cases of mnulti-dimensional soliton
equation.wg) Oblique interactions of solitons were
investigated by Miles in the study of obligue reflection of

shallow water waves on a rigid wall.®® A beautiful

(41)

photograph of Toedtemier iliustrates oblique interaction

between two shallow water solitons. Experimental studies on

cblique interacticons of two ion acoustic solitons were

(42)

carried out by Nishida and Nagasawa, Tsukabayashi and

(37) (43)

Nakamura, and Khazeil, Bulson and Lonngren.

13



4 Solitons in Optical Tibers

To conclude the present lecture, we will discuss soliton
propagation on optical fibers as one of the most interesting
application of soliten physics. The study of nonlinear
optical effects in silica fibers has been of challenging
subject in connection with the development of fiber-optic
communication lines, generation of extremely short pulses,
and soliton lasers. Inspired by the pioneering work of

t,(44)

Hasegawa and Tapper experimental research on the

propagation of optical solitons continues intensively.

(4ﬂ, applyving the cubic nonlinear

Mollenauer, Stolen and Gordon
Schrodinger equation, have analyzed the experimental
observation of pico second behavior of the optical pulse
envelope. Further experimental research‘®® has revealed that
asymmetric modulation of the ocutput pulse spectrum occurs in
the femtosecond range.

The one-dimensional wave eguation for a linearly
polarized optical wave pulse 1is

T S

272 et b oot

where E and D are the electric field and the displacement
field, respectively. The subscript L refers to its linear
part, while n, characterizes the nonlinear part of the
refractive index n , which is written as

T, [Eff) = n(w) + ﬂsz{Z

(28)

14



The electric field is agsumed in the form

Et)= Gix.t)exp [z‘(/cOX— 6001‘)} (29)

where g (x, t) is a complex amplitude, k, :ajox% /c is the
wave number, QJO is the frequency, and ng =n{ oJ 0).
Transforming to coordinate system moving with the group

{47)

velocity of the carrier wave pulse, Tzoar and Jailn have

reduced eq. (27) to the modified nenlinear Schrodinger

245 g RIGG R (190 8) =0 e

- -
where £ = x, and T =(t — ¥ x )/ (3%k /@)Y with the group

velocity U, =ow/ok )o at W =at;. The coefficients R and )}

3

are defined by

R - - (nz/Ct)(dO
nz sz Yz
¥ = E‘/(XZS;) ey

The last term proportional to ]{ is important to describe the

{31.a)

short-pulse propagation over long distance. In the studies
of soliton propagation along optical fibers, the role of
space variable § and temporal variable ?r is interchanged in
the usual formulation of the soliten physics in terms of the

inverse scattering transfeormation.



The fact that the modified nonlinear Schrodinger
equation, eq.(30), is the integrable soliton equation has not
been recognized by researchers in the field of opto-

electronics. Golovchenko and his collaborators‘®®

reported a
numerical analysis of decay of optical solitons, regarding
the last term of eq.{30) as a perturbation term tc the cubic
nonlinear Schrodinger equation. They have shown that the
initial pulse for a three-scliton bound state of the cubic
nonlinear Schrodinger equation breaks into two peaks rather
than into three one - solitoeon components. This is
contradiction to the caomplete integrability of the modified
nonlinear Schrodinger equation, eg.({(30). We® have carried
out the careful numerical analysis of eq.{(30) with the same
parameter as used by Golovchenko.

With regard to a stationary pulse propagation, we can

write the solution of eq.(30) as

707.5)= pP(=)up {if Kg -JLT ~§(Z>}} (32)

where z = T-M¥ with the boundary conditions ,P =0, df7/dz
=0, (:lz/O/dz2 =0 and d&/dz: 0 in a limit z—5-% . The boundary

conditions specify ConstantS<Qfand K as

Jl,==P4 {(33.a)

3

K= LM = L (R=IME - <P o)

16



The amplitude f)(z) and the phase modulation B {z) are given

as

[D{z): P, [(z—v) coshz(/AZ)-Lv -——I]—UZ (34.a)

@(2)— 3 % [— ) fan [\/F—); Tanﬂ(}ki‘)} (34.b)

With the following definitions of/ﬂ and V

Mzz(R—XM)POZ —YZ}O:' (35.a)
y=(R=-ymp p*

The peak height fjo and the rate of time delay M are the

(35.b)

characteristic parameters to define the stationary pulse.
In order to compare the results of numerical experiment
with the analytical prediction, taking R = 1, we observe the
-evolution of the "initial" pulse q( T, ¥=0) = sech (7))
by numerical integratiocn of eq.(30). The asymptotic shape is
expected to approach the stationary pulse given by eq.(34-3a)
We observed that the peak position T (5 )= M¥ and determined
the rate of delay M as 0.0996, 0.244 and 0.477, for the
values of B’: 0.1, 0.25 and 0.5, respectively. At the sane
time, the asymptotic stationary peak amplitude fgo are
measured to be 0.995, 0.976 and 0.896 for the above values of
X, respectively.

Next,increasing the values of R to 4 and 9, we examined

17



effects of the derivative term on the two- and three-scliton
bound states. On the contrary to the results of Golovchenko
et al.,we observed that the initial pulses for R = 4 and §
split into two and three components. We show in Fig.4 the
results of numerical observation of the splitting process of
the sech-type initial pulse for the value of R = 9. In Tables
we list observed values of the asymptotic peak

I and 1II,

height and the rate of time delay for the wvalues of 2(: 0.1,

1.0, 3.0, and 5.0.

Y 0.1 1.0 3.0 5.0

o) 1.666 | 1.6847 | 1.183 | 0.382
pd? | 1.000 | 0.953 | 0.58 | 0.201
of® | 0.333 | 0.306 | 0.174 | 0.132

Table I. Asymptotic Peak Heights for R = 9

Y 0.1 1.0 3.0 5.0

M” | o.1es7 | 1.847 | 3.545 | 1.892
¥ | 0.09%0 | 0.957 | 1.755 | 1.275
M® ] 0.0333 | 0.307 | 0.408 | 0.414

Table II. Rate of Time Delay for R =

18
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In order to accouni for these observed resulis, we 0

have carried out the rigorous analytic calcuiation by solving
the Wadati-Konno-Ichikawa inverse scattering problem for the
sech-type potential. We obtained the following results;

i) the number of solitons associated with the initial

pulse CZ(T’ §=0): sech () is determined as

N = integer part of («ﬁi- + ?g-) (36.a)

ii} the peak height of the n-th component scliton is

(36.Db)

pas {2 MR Y= 1) - (zn-1) Y© o+l -R ﬂ}w

iii) the rate of time delay of the n-th component soliton is

{n)
M®P= ¥P, (36.c)

We conclude the present section by showing in Figs. 5 and 6
the dependence of the peak height /Qf“’and the rate of time
delay MM on the values of X, together with the observed

results.

5 Concluding Remarks
The discovery of the inverse scattering transformation
method in 1967 1is undoubtedly one of the most elegant
contributions to mathematical physics in the 20th century. In

the present lecture, we have tried to convince the audience

18



that solitons are everywhere and physics of solitons are
expanding its territory.

We should notice,however, that it is only the one side
of the preoblem inspired by Fermi, Pasta and Ulam. The other
side of the story is the quest of chaos. Since Fermi,Pasta and
Ulam failed to observe the energy equipartition among the
normal modes, intensive studies con the chaotic behavior have
been undertaken by many mathematicians and physicists. In this
connecticon, returning to eq. {5}, we examine its static

solution,
§ 20+ 0 = (xYw2)sm@, (37)
n+1 n h-|
of which continuum ilimit is
At :
— 2 2 {38)
dsz (*/w)) sm §

Introducing an action variable ]: by

IM,: 0.~ gn (39)

n+i

we can transform eq.{(37) into

]nfl - In t (Kz/a)oz) sm 8"1 (40.a)

@W - 6n + th (40.b)

Egs. (40.a} and b) are nothing but the celebrated standard
map(?) More than one hundred papers have been published with

referring to this simplest set of equations. The standard map

20



poses the canonical problem on the studies of intrinsic
stochasticity of low dimensional Hamiltonian systems. Af the
same time, it would be worth to note that Aubry‘w),Bak(ﬁ”,and
many others have been working with the set of eqs.(40.a) and
b} in the context of condensed matter physics. Discussions on
the discretized integrable nonlinear evolution equations are
the critical issues under the light of computational physics.
Here, we give few references on such subjects.(“)*sm

Since the time allocated to the present lecture is
limited,we are not able to explore these fascinating topics in
detail. The studies of chacs in dissipative systems, intrinsic
stochasticity in conservative systems and many other topics
are the current issue of nonlinear physics. We hope to have a

chance to discuss con these subjects in the next Tropical

College on Applied Physics.
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Captions of Figures

Fig Schematic of the double plasma device. Whole
chamber wall is covered with many permanent magnets.

Fig Cylindrical double plasma device.

Fig Spatial evolution of solitons converging to (t< 0)
and diverging from (t>0) the center (t=0) where the
collapse of solitons occurs.

Fig Spatial evolution of the initial pulse g (T, % =0)})-=
sech {7} for R= 9 and ¥=0.25.

Fig ¥ -dependence of the peak height ;™ for R - 9.
Black circies are the numerically observed
asymptotic values.

Fig X—dependence of the rate of time delay M® for R =

9. Black circles are the numerically observed
values.
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