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Abstract

The theory on the longitudinal adiabatic invariant valid for the
helical megnetic field is developed on the basis of the variable
transformation from the guiding center variables to the new adiabatic
variables. The theory uses the Hamiltonian formalism with non canonical
variables. Under the assumption that the rotational transform per period
is small, the adiabatic invariant is defined by integral along the
toroidal direction, not along the field line. The transition between the
passing and the ripple trapped states is investigated; the jump of
adiabatic invariant and other variables in the transition process is
evaluated. The change of distribution function in the variable

transformation is also discussed.
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81. Introduction

Understanding of particle orbit is important for containing high
temperature plasma in the asymmetric magnetic confinement systems. The
particle orbit in the toroidal helical devices is very complicated, and
their primary knowledge are obtained by integrating drift equations of
motion in a given magnetic field for various initial conditions. A lot of
works are devoted to such vast calculations. The other technique to study
particle orbit in the magnetic fields is that based on the (longitudinal)
adiabatic invariant.!™

The usual concept of the adiabatic invariant is
Jy = imv,dl, Sy

where mu, 1s the momentum parallel to the magnetic line of force and the
integration is along the magnetic line of force. Unfortunately, in the
helical torus with non-zero rotational transform, the label for the
magnetic lines of force can not be used as coordinates. The particles
circulating along the toroidal direction may not be considered as doing
periodic motion along the magnetic lines of force.

The purpose of this paper is to formulate the theory of the adiabatic
invariant in the helical torus. The Hamiltonian formalism in terms of
non—canonical variables®” is used to perform the systematic perturbation
expansion. We first introduce the Hamiltonian system to the guiding
center variables. and then define the transformation to the new set of
adiabatic variables, which correspond to the periodic motion along the
toroidal direclion.

The helical torus with our interest has many periods in the toroidal



direction, N. and the rotatiormal transform per periocd is considered as a
small parameter, ¢/N«1. The particles are considered doing fast periodic
motion in the toroidal direction, periocdic motion between magnetic hill,
or circulating motion in the toroidal direction. depending on the pitch
angle between their velocity and the magnetic field. In this description
the particles are divided into only three types: ripple trapped particles,
passing particles in the positive direction, and passing particles in the
negative direction. This is very much simplified picture, compared to the
theory based on the average along the magnetic lines of force, where there
are many kinds of trapped particles: trapped in single well. trapped in
double well. and sc on [ see Fig.1 ].

In the theory of the adiabatic invariant, the transition between the

trapped and untrapped state is important.&

The adiabatic invariant may
change its value in the course of transition. The collisionless diffusion
as well as the chaos of particle motion can be caused by the change of
adiabatic invariant.

The adiabatic invariant is closely related to the description of
plasma on the basis of the bounce averaged particle distribution
function. The relation of the bounce averaged distribution function to
the distribution function of the guiding center is also important to
establish the entire understanding of the pariicle behaviors in the
helical torus.

In Section 2. the drift equation of motion is written in Hamiltonian
form with non-canonical variables. The adiabatic variables describing
fast bounce motion in the toroidal direction and slower motion across the

peloidal direction are introduced: In Section 3, the perturbation

expansion with respect to the small parameter is carried out to obtain the



concrete form of the transformation. The transition between the different
states 1s discussed in Section 4. Section b is devoted to the discussion
of the transformation of the distribution function associated with the
transformation of variables introduced in Secticn 3. Summary and
ceonclusions of this paper are stated in Section 8.

The scope of this paper is restricted to the formal development of
the thecretical method. Application of the theory to the problems of
interest such as the evaluation of particle loss or evaluation of
transport coefficients in the helical magnetic field configurations is

left to the other paper.

§2. Basic Fquations

The drift equation of motion in the static magnetic and electric

field can be written as ©
r = %f{B+—curl (psB)} 2.1

where dot denotes time derivative and

pr = T2y = (B)HE-pBed)'?, 2.2)
and
By = bB., b=B/B, B.= B+p,curl B. (2.3

Here E is the energy, p is the magnetic moment, m and ¢ are mass and
charge of the particle, and ¢ is the static electric potential. We also

use the notation

4. = bcurlp = BcurlB C;ng, o 43



so that B.=R(1+p,L,}.
We shall write eq.(2.1) in the Hamiltonian form.
We introduce the curvilinear coordinate (i, 6, ¢), in which the

magnetic field can be expressed as

B

Vi VO- Vi, () xVop,

B, Vo+BsVOo+B V. 2.5

The rotaticnal transform is

dy 0
W) = G = 2.6)
The Jacobian is
_ (8r oryor _ 1 Vo)
NG —( X >6§D = (VixVe-Ve) . 2.7

&y o0
The covariant and contravariant component of any vector are expressed by
the subscript and superscript, respectively. Assuming the magnetostatic
equilibrium with scalar pressure
ixB = Vp{y), 1 = curlB, (2.8)
we adopt the coordinates such that B, and By are constant on each magnetic
surface (Boozer coordinate).g) Since Bp is proportional to the toroidal
current within the magnetic surface, By=0 in the vacuum field, or in the

currentless equilibrium. Also By;=0 in the vacuum field. In this

coordinate
JaB =1, JgBR - ., B -0,
b o _ OBy dB, o _ 4By 2By .
and
B® - BB, BBy = ——(B,+¢By], B =~ j'Bo+i®B,. 2.10)

Ve

We dencte the canonical coordinates and momenta g and p,



. 2 3 4 .
respectively, and put z=(2£pz 2z ,z 1=(¢,0,0,ps). Then z' = Z*{q,p). The

1

time derivative of the variable z' is given by

z' = 2%, 51, 2113

vhere
- o oG _aF oG N
IF.GY = 505~ 3p 50" (2.12)

is the Poisson bracket and H{g,p) is the Hamiltonian. Since Hamiltonian

H is considered as H(z), eq.{2.11) is rewritien to the form

7 - o‘f':—’i, (2.13)
v
where
gt = [2', 2} (2.14)

Because of the invariance of the Poisson brackets with respect to the
canonical transformation, the matrix ¢'’ does not depend on the choice of
canonical variables {(g,p). With use of Hamiltonian form of eguation we
can treat to non-canonical variables which have no explicit relation to
the cancnical variables, and to perform the systematic calculation to find
the constant of motion.

If we introduce the quantities

pi = pa, (2.15)
oz
and the Lagrange brackets

3P, &P dq 3p 3q 3 ;
o, = 20 20, _ 09 9P 99 op (2.16)

the matrix [u;,) is inverse of the matrix {¢'’}. Since

Po =P, = epBy, P, = Po = elpBoti),



P = Py = epBp—dp, P =P, =0, 2.1
we have

0.  eJgBl, —e /GBI -eBy)
_eﬁB\z, 0! 0, _eBH .
e/gBl, 0, 0, -eB, | (2.18)
eBﬂM eBG, quD’ 0

(@) =

This matrix can be easily inverted to yield the matrix (¢%’).

Thus, eq.{2.1) can be expressed in the form

b= wH - woodllew.a-0.u,

b - 18.H1 = 10,015 +10, U -10. 015

b = io.Ht = 10,0t 008 .01,

bs = oot = ~ 1.0} 10,005 -10.0n! 2.19)
vwith the Hamiltonian

Hips 0.0.6) = Y& obf uBred, 2.20)

The values of Poisson bracket are given as

J
.0, =0, 108.p41 = E;%‘B"*', le,pst = E?E,

- P 1001 = o Wl = e (2.21)
These Hamiltonian equations of motion is different from those given
by Boozer. 12! If one assume that By=0, egs.(2.17) give relations
between the set of variables (¥.p,) and the set of momenta (Ps,P,)
Py = Pe(hopg), P = Pol¥.ps) (2.22)
that is, the variables ¥ and p, are related to the momenta conjugate to 0
and .

b= WPaP) s py = psPoPy). (2.23)



Since we do not assume By=0, no explicit relation between physical
variables and canonical variables exists. This is the reason for using
the rather complicated form of equations in con-canonical variables.

In the next section, we will consider the transformation to the new
variables Z = (21,22,23,24) such that Z4EJ,¢ 18 the adiabatic invariant
associating with the fast periodic motion along the toroidal direction.
Before doing the concrete calculations, we will discuss some features of
our problem due to the smallness of dimension.

¥e shall consider the transformation to the new adiabatic variables
Z = (Z') = (a.B.w,J,), anticipating that J, is the adiabatic invariant
relating fast periodic motion between magnetic well, and w is the angle
variable. The standard method of transformation is to construct the set
of variables satisfying the relations

sal = 1.8 = o0t = B0} = 0, {(2.24;
and

H = Hia,B8,.Js). (2.75)
If the transformation satisfying egs.(2.24) is found, the pair of
variables (J,, w) becomes canonical conjugate, and the time derivative of

J/becomes
Jo = UsHy = tde &, 2.26)

which vanishes because of eq.(2.25). Hence J, becomes constant of motion.
or adiabatic invariant.
However, the Jaccbi’s identity
i 19, hit+{g, th, fH+h, 1f .9l = O, (2.270)
incorporating with egs.(2.24) poses restrictions to the other Poisson

brackets {«.J,} and ja.B}. The Poisson bracket {J,.«} cannot depend on «



and B and it is essentially constant. On the other hand {a,f8} is only
function of « and §. These restrictions are too strong, so that we cannot
find such a transformation, as is shown later. To avoid this difficulty
we will relax the constraint to the following

{0 = 44,581 = 0. (2.28)
with eq.(2.250). The time derivative of J, also vanishes under these
conditions.

In the following we shall use the nofations

Y = fw, /1, (2.29)
o** = [8,a}, (2.30)
o = la, w0}, o = 18,01, {2.31)
and
_ 8F oG oF oG
(F-G} = 37,00 ocs],” (%)
- FaG_3FaG
[F.6) = oa sl af o 2.3%)
Then

-2 g _gralOF 3G _SFaG | _ 8] 0F G _dF 3G
(7,01 = ~HF .6} -o(F,G)-om{ 8L LLY_gei{sF o oG}

P

2.34;

"'in the first term of this equation expresses that the

The facter £
periodic motion related to the action variable J, and the angle variable «
is the fast one.

The equation of motion in the adiabatic variables are written as

& = —o‘*-@%, B = ove, (2.35,
i, = O. @ = Zﬁ_omﬂ_owﬂa[’{ (2.36}

£aJ, o B



$3. Adiabatic Variables

We now describe the physical meaning of the small parameter £. Since
the particle energy is considered to be small, it is natural to assume
that p, scales as €. If we assume that the rotational transform ¢ is of
order of unity, trapped particles carry out the periocdic motion along the
magnetic lines of force. For passing particles, however, the motion along
the magnetic line of force is not periodic because of the rotational
transform. Therefore. the rotational transform ¢ is assumed of order of
£, in order to meke the motion periodic in the lowest order. Since the
rotational transform appears in the combination q/N, our ordering is

expressed as

a img« 1, (3.1)

ap being the characteristic length in the poloidal direction, say minor
radius of the plasma.
As the explicit form of the transformation, we express the old

variables in terms of the new variables, in the form of expansion

v = arebV (U, 00,80+ -,
8 = B+e0'0 Sy 0,0,8)+ =,

@Q(JﬂsU’&yB)+£¢:i} (J,;’,Q,(I,B}'f‘ "t

pr = e{Py(Jy.0,0,8)+ePY (U, 0,0, B0+ = ). (3.2)

The coefficlents in eq.{2.34; as well as the Hamiltonian are also expanded

as

- 10 -



T = 1+€Y(”<a765‘]£’96‘))+ =
o - é{“w““” (0, B) +€50™ D <a,s,1,,,w>+---},

o = Eooa(l)(a’B’J’,Q)+ I
O“)'@ _ EOQM”(G,B,JI,@)"' .

H = 2H (Jp e, B)+eH " (Jp 0. B8)+ = }. (3.4)
The Jacobi’'s identity yields

wee (1) wf (1) oB(2)
a0 ag 1a0 _
e Tt o, — O (3.5)

aowa(i) ay(l} ao.uB(l) a},(l)

3¢ a8 w o - (3.8)
The transformation required can be obtained by substituting these
expressions (3.2),(3.3) into egs.(2.19), and using relations (2.34).
Then, the lowest order equations are
1
(Por®} = g (8.1
e’ p?

H, (P, %,.a,.8) = %WPEBZ+HB+8@E = E(Js.a.8), (3.8)

which can be solved in terms of the generating function
&y
S5{J;.9%,.a.8) = ef (PB,~¥p)de, {3.9)

where the integration is carried out to the direction of the particle
velocity, for fixed ¥ and 0. The longitudinal invariant J, and phase

variable @ are defined by the following integrals

J/(E.c.8) = %ﬁ(m&-%)d@, (3.10)
-1 pd,

N S vy [ 8ds ‘f" oP,

o< 2 = alinabe) - (% )| e Sdp. (3.11)

11 -



The lower bound of the integration in egs.(3.9) and (3.11) is not
explicitly vritten, which may depend on « and 3.

¥We consider the case that the potential

U= uB+ed,_, 38.12;

has only one maximum and minimum per period in the toroidal direction.
The maximum of U is denoted as Upny(¥,6). If electric potential & does
not depend on ¢, Upax=pBuax+e® , where Bu.y is the maximum of the magnetic
field strength vith respect ¢. Then, there are three types of particles:
particles with E<Up trapped between helical ripple (r), and the
particles circulating around the torus with E>lUu., (=) or {-) depending
on the direction of its movement. For the ripple trapped particles (r),

eq. (3.10) becomes to
11(E.0.8) =0iE 0 8) = £PP B, (3.13)
For passing particles (+) and (),

JAE,a.8) =l E.q.8) = EIMIP (B d@:% (3.14)
FACER A ] EACERACEN )Y 275 0 PLER" [’V . . /

The double sign in eq.(3.14) correspond to the direction of particle
movement .

We now consider the next order equations:

PP o) - 0, (3.15)

{cbo,zzxcz>}+é—[@c,a] - % (8.186)
f P aB*‘ dBl 5

(P00} 4 (P.B) - o8 % 4o eB (3.17)

0.2} +5(8.2) - e%- 8.18

~ 12 -



From these equations. we can obtain

(1 _ 188 t )
¥ - RBR (0B), (3.19)
o =-188,pp +0fV (0.8, 3.20)

where, Wé” and Cé” include constant of integration, which will be chosen
appropriately.

We note thet the term in S in the first term in RHS of eq.(3.20)
gives an lnteresting contribution. We shall put the toroidal angle of the
two turning points of the ripple trapped particles as ¢, and 9,. Because
of

S(0,)=S(0) = Tt elp(0,-¢,) - (3.2t
the difference of ©) betveen these two points becomes

0 (000" (¢) =t(p,-0,). (3.22)
This means that the actual orbit of the ripple trapped particles is along
the magnetic line of force, even if ithe integrals for J, is carried out
along the ¢ direction for fixed 6. For passing particles, on the other
hand, the movement in O direction along the magnetic line of force is not
included in ®V, but in 8.

The first order Hamiltonian is

aH. aH aH oH
Hf?) _ ‘I‘ 1 ;+®\1) O_I_@(n ¢ P\U ¢ _ 0 3 23}
YRR TR (3.23;
The equation (3.23) yields
™ iy 3 0P, dP,
Pt - qr”a%g +o(n =2 q:‘” %, (3.24)

We nov consider the equations derived from the second order contribution

of {6,+1 and {2,p.}

L™ gl+lia,00 4004 51 01

- 13 -



—L{LB@WQ—(B- curl B)PO} , (3.25)

o
8]
(P, @V (P 8} +L{p, 2+ L
__vdB, By (3B _dB, x o
B eB da gp2 ¢ 0\6@ da> (3.26)

From eq. (3.25), using egs.(3.19) and (3.20}, we obtain

f t
a¢§>+a®§) _

aff 1)
o3 + 3 30

(3.27)

The equation (3.26), which determines &'V and ym, is more complicated.
Eliminating PV by using eq.(3.24), multiplying eq.(3.26) by B, and adding

eq. (3.25), after some algebra we obtain

an ) ( Py ) ( 0P, \,))
a@(“” Bogp?" ) ol eBoggt’ )+l eBegpe” ),

+(y W 4o ‘f") aE +8/g2, = 0. (3.28)

The quantity y“) is determined so that eq.(3.28) yields periodic solutiocn

8" If we choose the additive comstant for ¥‘" and 8" such that
35xp<”dm - f@“)dm -0, (3.29)
we have .
D, el _ _@__m_weEi ‘ \
R +0 Bp 2—954' A/aﬁbdpr \3 30)

which implies the relation

N _Gaﬁu)_%, (3.31)

@

for trapped particles, because the second term in RHS of eq.(3.30"

- 14 -



vanishes. Note that eq.{3.31) is valid for both trapped and passing
particles in case of vacuum magnetic field.
If we retain only terms up to first order., the equations of motion in

the adiabatic variables become to

3, [od
- 5t (3.32)
; al, [ad
4 =_é aof/ ag’ 8.38)
and
. )
o = “”(U)/aif' (3.34)

§4. Transiiion Between Ripple Trapped and Passing State

The particles are in either state:! positive passing (+), negative
passing (-}, or ripple trapped {r). Within each state, the motion of
particles are well described in terms of adiabatic variables, «, 8. J,.
¥hen particles moves following eq.(3.32)-(3.33), they often reaches to the
point

Umax(0te,B8t) = E. {4.1)
and the transition between different states occurs. In the lowest order
description without considering the displacement of the particle orbit
from adiabatic coordinates, getting to the transition point {a.8t) in the
state {J), the particle start the motion in the new state (F) with the nev
value of invariant J,=J,{a:.8).

In the vicinity of the transition point, the distance from the

- 15 -



transition point d is defined as

E-U Unax—E
d—ad— = 7Ms = "'_jlax—t (4.2)
| VU] © | VUl
where the gradient in the denominator is evaluated at the transition
point. Since [.+J. = [J., on the curve Un.=E. the change of the distance

from the transition point sheould satisfy the the relation
d +d +2d =0. (4.3)

This means that three terms can not have the same sign. If the sign of d
in one state is different from other two state, the state is called as the
majority state,” and the other two state is called as minority states.
When the initial state is the minority state, the final state after
transition is the majority state. On the contrary, when the initial state
is the majority state, the state after transition is either of the
minority state; the final staie is determined by the phase of the
particles at the transition.

If we assume that the phase of particles approaching to the
transition point distributes uniformly, the probability of transition to
each minority state can be obtained by simple argument. We introduce the
distribution of particles in each state as f,, ¢ being (+}, (-) or {ry;
then the particle flux crossing the transition point satisfies the

relation
df. + df + 2dfr =0. (4.4

Here, factor 2 in the third term means that ripple trapped particle have
positive and negative velocity. If (+), say, is the majority state. and
the probability from {+) to (-), and from (+) to (-} are denoted by wi.,

and w;._. . respectively, we can write

- 18 -



—d—f— = Hz‘.(+—-)&+f+a _Zdr.fr = w(+—or)d+f+. (4.5)

Since the transition follows the mechanical precess., and the distribution
function conserves in that process,
f-=f = J. (4.6)

Thus we can conclude

weey = =5 wen = EE 4.7)

These resulis agree with the transition probability given in Ref.5.

Let us study the mechanism of the transition in detail. If we take
into account the first order quantities, the jump of adiabatic variables
is possible in the course of the transition. The jump in adiabatic
invariant is especially important in the particle confinement in the
helical torus.

In some transition process such as the orbit approaching to the
X-point, the motion along ¢ direction slows down to the same order of
magnitude of the motion across the magnetic field lines, and the treatment
is only possible by integrating the original equations of motion egs.(Z2.1)
or (2.19). However, when the separairix crossing occurs apart from the
X-point, we can construct the theory on the basis of the adiabatic
equations of motion.

At first we consider the case that {+) is the majority state.

The schematic situation of transition from (+) state is shown in
Fig.?. The Fig.2/a) shows the orbit in (8,¢) plane. The orbit (1)
initially in {+) staite is reflected by the magnetic hill, and the final
state is (~). The orbit {2) is the example of the transition resulting

to the {r) state. The same situation is shown in (p,,¢) planes in

- 17 -



Fig.2{(b). The orbit (I) cross the separatrix at the points shown SX! and
SX2; while the orbit (2) cross the separatrix only once at the point
S,

We assume that the tranmsition from (<} to {-) or (r) occurs at
{&..8,>. This means that Unax(«,.B.) = E. The transition from (+) to (-)
1s considered as composed in the following two steps: i) transition from
(+} to {r) at {$,6,,¢,), i) transition from (r) to (-) at (¥,.9,,0,). At
the first step, the orbit crosses the separatrix from the positive passing
to the ripple trapped state (SX1}. The toroidal angle of the X-point are
denoted as ¢, o, such that ¢ —¢ =2P7/N. Although the real orbit has no
Jump, adiabatic variables may have jump from («,, 8,.) to {(q,.B,) at the
Separatrix crossing.

Jump of the adiabatic variables at SXi can be calculated from the

relations

o, +8Y (0, 8,9 -

6 = B +0 (0,80 0) = B 40 (008,000 (4.8)
with use of eqs.(2.19) and (2.20) for ¥V and 6V, and put Q=0 =g

3
wl = a]++¢£l’(a1¢75|+y@l)

8,=8,=8,. in the firsi order terms. For instance,

B.-B.-0V (2) = 08 (a,,8,,00-0 ()-8 (0, B,.0,) »

- j; "2ipp, wp;| de+ L j%(POquxp) 2
=_,[, {acx\P“BV‘I"D} aE apﬂ&ldy
L {5(PB; \pr) 2};&;%,
- {gjfgg‘gj/gg}f,, SEBA:. 4.9

- 18 -



This calculaticn is only in formal meaning if the integration is carried
out along the separatrix, because integral on the separatrix
logarithmically diverges at the X-point. Hence the integration should be
carried out along the pass distant of ¢ from separatrix inside for (r) and
outside for (+). This causes error of the order of ¢ log (1/¢) for the
result.

If we introduce the quantities cbtained by integrating along the pass

distant ¢ from the separatrix

V(o) = (22)! B"I_1d’°’ (4.10)

- aJu _

Vo) - ()" [eBf3lde = 2100, (4.11)
then we obtain

o, = ¥y = ¥V (e,

BB = §¥e(o) @V (0) =—e(o)+0:" (). (4.12)

Here ¥V (g, ¥V (g}, 0P (,) and fV () are displacement of the ripple
trapped orbit at the reflecting point. (For passing particles, the
constants in eqs.(2.19) and (2.20) are chosen such that ¥‘V=0V=0 at
=0,.)

WWie) = V), o e)-TE - oY (p)+ L. (4.13)

The quantities defined in egs.(4.10) and (4.11) are related to the
phase of the particles at the transition
Y. (o) = ®lw.) = 21-6F(e) = 2P(w,), (4.14)

Y. (o)

2P (w) = ®lu) = 2(f{er)-1), (4.1b;

where 02F(w) <Pz stands for the principal value of ¢, defined by

®lw) = wlgr—wle). (4.16)

- 19 -



Thus, once the quantities Y, or Y. are related with the phase «, we can
tend € to zero without losing its meaning.
The conditions for continuity of orbit at the second separatrix

crossing SX2 are

i

.4’/': = (12_""‘11&1) (C{g_rgg,:@g)

2 Cxlr_i-‘zlr(\l) (G'Zr ’B2r ’@2) r
8, = B, +0V (o .8, ,0,) = B,.+01 (o, ,B,.,0,). 417

Noting that the sign of P, is negative, from these relations we obtain

- = B () = WY (),
By By =5 ¥e(0)40{V () = £Ve(0) 50" (). (4.18)

The change of adiabatic variables between SX! and SX2 is calculated

by using egs.(3.32}-(3.33) as

oJ
0, —Q,, 218 agr{ e(@1>+Ye (@32)}‘7
J Pl
BBy = Zleam Yele)+Yelo) ] (4.19)

Summing up eqs. (4.9),(4.17) and (4.18), we obtain

Je +
mm = S Yelo)) - Mo B ¢ Ve B}

aJr
BB = EYele)~Yelo ) L e Y (o) 4V ()

=_i{}re(©|\% + Y. (o Py %{;} CA-ZO)

Since Upa(0,.8, }=F, we have

/
(- ) &, -p,) Lo — o, .21
or
Vol s J-1 = Va9, Unsee—J-]. 4.22)

Hence, when



é&a (@) <

IUmax —J —],
[Umax.*iéf i

(4.23;
since the second separatrix crossing can occur, the final state is (-); on
the other hand when

1+ WUpas»> Je)
2;_:}6(@1) < [Umaxul-i-]’ (424)

the final state is (r).
If the phase of particles reached to the tramsition point («..8,.)
are uniformly distributed, the probability of the transition from {+) to

(-} state is

_ Waax, -] 5

Ve T W 11 (4.25)

while probability from (+) to (r) stale is
. D= £Umaxa=1rr]

Wienpe) = T I {4.26)

This is just the relation given in eq.{(4.7).
At the lowest order, we can take

J-(0B) = d=(@B) = J(eB) + ol (@) (4.27)

To the first order we have
2evy o~ 0d-
M- = (0 By =J- (e B = —5Yele) 5 (4.28)

Now we consider the case that (r) is the majority state, and the
transition from (r) to (+) and {(-). The schematic situation is shown in
Fig.3. The particle meking transition to (+; state crosses separatrix in
the phase range ®u.<7, and one making transition to {-) state crosses
separatrix in the phase range 7#<®u,<@7. The probability of itransition is
determined the ratio of the velocity of separatrix crossing. To be noted

is that the transition points from (r} state is not determined by the
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condition Upax(¢:-,8;)=E, but
U 02800, 61080 (0) L)) - E. (4.29)

In the case of mE/eBa«t/N, we can put ¥V (g )=0. As for the 8!V,

eq. (4.28, shows that

{ 5”(@9—%}’5}%& < 0, (4.30)

in order that Un{r.Br)2E. This condition puts restriction to the choice
of Cﬁ” of the additive constant to egs.(3.19)-(3.20), depending to the

nature of the transition and the direction of the motion.

The analysis of the other case is made completely in the similar

manner. The properties on the transition are summarized in Table I.

§5. Distribution Function

In this section, we consider the transformation of the distribution
function associated with the transformation of variables introduced in
Section 2. The distribution function of drift particles f (ps.i,%,0,0) is
transformed to that of the adiabatic variables .z u,a,8,@). The average

of an arbitrary function w(ps,p,¥.8,¢) is defined as

(@) = [0lor,.9.8,0) 1,0y b¥.8.0) 2./ TBBdp,dpdidbds, 5.1)

which can also be expressed in terms of f, as

(w) = ZSIw(Df,u,1&,9,¢)fA(J,y,p,cs,B,m>ﬁdhdudadf}dm, (5.2)



vhere s=x1 is the sign of pariicle velocity. Here we have used the

relation

a(th,B,@) I
= 3 (5.3

e@&Ba(Jl’@’a,B) - Toa

The quantiiy w is expanded with respect to ¢ as

= (ow  n(1)oW, 5(D3W, i) oW
W w(Po,u,(xB@o)+g{qJ +@ ag.,.q; +p aP} F o,

(1ydm
+& o6,

1) 3w
- w(Po,gt,a,B,@o)Jrs{ “m

(1) ow
+@ a¢l} + e {(5.4)

It is convenient to consider the function f, as function of E,a,8,

and o, instead of J,s, «, §, and .

() = 35 [0, 0,008, (.t 0L L en earudodia®,  (5.5)

Then, from the condition that eq.(5.1) and eq.(5.2) give same results for

arbitrary function w, we obiain the following relation

@(l)af

.- 1. -¢f el

af,
@(1) aqo} (5.8)

In deriving eq.(5.6) we have used the approximation
(evo®)! =1-e(yD+0¥ D)4, (5.7)

and eq.{3.28).
Equation (5.8) can be also derived from the drift kinetic equation

I A AL
SF Ve Hagtegs = CUL). (5.8)

vhere C is the collision term. Expanding f, into small parameter ¢ as

I, = forefi+ -, (5.9)
with

a7,

a_@o -0, (5.10)



and assuming the time derivative as well as the collision term is of

smallness of £, we have

afo@JyLlaJ[a.fo 16},51‘0 _ ‘V@—Brf

and
;- ‘I‘(U%*@m%’ (5.12)

vith ¥V and 0" given by egs. (3.19)-(3.20).

As an application of eq.(5.8) we consider the number density and the
parallel velocity of drift particles. The distribution function f, is
assumed independent to ¢. or « {bounce averaged). For the number density

we put

(n,y = egﬁd@@ f B.Bf dp,du, (5.13)

(n) =;sgﬁd@ f vf.dJ,du

- Dforfo

Then we have

0P,
ok

f.dEdy. (5.14)

‘If(l)fAdEd,u

\ 2} 8P,
() = (u)-eXpao{ 2 [ var| 3

4ot

O“)fAdEdu} . (5.15)

As is easily seen, the total number of particle remains constant.
For the parallel velocity, since vg—paﬁ/e is the real parallel

velocity of the particle., we have

f {el'I_H&g}f:&deﬂdu
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- Y's| f.dEdu
s

+aZsf{eB[§w[—l“Bl ]f -yl f‘—@w%}dﬁ'dﬂ. (5.16)

The odd part of the distribution function with respect to v, contributes
to the first term while the even part coniributes to the second term in
eq.(5.11). This is just the analogy to the diamagnetic current in the

2y . -
5 For instance, if the

non-tmiform plasma in the drift particles.
distribution function f, is nearly Maxwellian, independent to §. then f,

for passing particles can be approximated as

{
¢ af, B, dy
fo = 1OE 0+E gf& U‘;#g‘; - (5.17)

Here we have assumed the inegquality ~mE /eBay«t/N, and the effects of

collisions are ignored. The parallel electiric current can be written as

I oY 2 _B
BF-Le [vet Bedosd pad

) { >aﬁf[ <>]d@+——< } - (5.18)

vhere

< >¢ = P22, (5.19)

stands for the average with respect to ¢. The second term in the right
hand side of the first line of eq.(5.18) is ihe parallel component of the
magnetization current. The second line corresponds io the

Pfirsch-Schliiter current in the torus.



86. Summary and Discussion

In this paper the new theory on the longitudinal adiabatic invariant
in the helical torus is presented. The introduced adiabatic variables
describes not only the averaged motion with respect to the toroidal
direction, but alsc the motion deviating from its averaged position.

The difference of the adiabatic invariant in this paper and that
given in Ref .5 should be noted; the integral in eq.{3.10) is not along the
pass of the actual orbit but a fictitious orbit described by the adiabatic
equations of motion [egs. (3.32)-(3.33) ]. If eq.(3.10) is rewritten in
terms of the actual coordinates of particles with the aids of egs.(3.19)
and (3.20), its constancy on time is only up to the first order. The
invariance of J; in our theory is correct up to any order asymptotically.

The transition beiween the passing and the trapped state is also
discussed. At the transition the jump of adiabatic variables occurs, and
as its result the value of adiabatic invariant changes. Such jump may
make the particle motion chaotic., as the particles repeat the transitions
between the positive and negative passing states.

The jump of adiabatic variables at the transition is expressed in
terms of the phase «. the time dependence of which is described by
eq.(3.34). However, since the phase grows very fast any small error in
eq.(3.34) may cause substantial difference after long time interval, and
the phase of the particle at the transition point cannot predicted by
eq.:3.34;. In thal sense the phase of the fast motion at the transition
point can be determined only statistically.

The relation between distribution function for guiding center

particles and that for bounce averaged distribution function is



established. The expression for the parallel current is derived.
The use of bounce averaged distribution function is useful in the the

study of the neoclassical transport in heliecal torus, ¥

The average with
respect to toroidal angle reduces dimensionality, and the relation between
helical torus and axisymmetric tokamak becomes more clearly observed.
Application of the theory to the neoclassical transport will be given in
future.

The application to the particle orbit is discussed in the other
paper , 1518

The formulation given in this paper is restricted to quasi-static
magnetic configurations. The time derivative of the fields does not
appear 1n the equation of motion. The allowance of the slow temporal

variation of the magnetic field as well as the electric field is not

difficult., but it is out of scope of this paper.
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Table 1.

Change of variables at the transitionm.
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Figure Captions

Fig.1 The change of magnetic field strength {a) along a field line, and
(b; along the toreoidal direction. In the case of {a) there are many

trapped states, while in (b} only one irapped state.

Fig.2 The transition from {(+) to {-) or {r). f{a) The orbit in 8-¢
plane. The bold line shows the locus of E-{/ = 0. {b)} The orbit in
ps and @ plane. The separatrix is drawn by thin line. The particle
(1) making transition from (+; to {-; crosses the separatrix at the

two points. SX1 and SX2. The particle (2) making transition from (+

to (r; crosses the separatrix only at SX1°.

Fi1g.3 The transition from (r) to (+) or {1}). {a) The orbit in 6-9
plane. The bold line shows the locus of E-U = 0. (b} The orbit in
pr and ¢ plane. The separatrix is drawn by thin line. The particle
{1} making transition from {r) to (- crosses the separatrix at the
point SX1. The particle (2) making transition from {r} to {-)

crosses the separatrix at SX2.
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