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ABSTRACT

Plasma exhibits a full of variety of nonlinear phenomena.
Active research in nonlinear plasma physics contributed to
explore the concepts of soliten and chaos. Structure of
soliton equations and dynamics of low dimensional Hamiltonian
systems are discussed to emphasize the universality of these

novel concepts in the wide branch of science and engineering.
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1. Introduction

Plasma is a itreasure land of instabilities”, which give rise
to a full wvariety of nonlinear phenomena. It is formidable
challenge for scientists and engineers tc confine such plasma and
to heat it up toc high temperature over 10% K. Their sturdy effort
over the four decades, however, has achieved the break through to
produce high temperature plasma with properties specified by the
Lawson criterion®’. Endeavor of plasma research during these
periods may be best characterized as studies of collisionless
plasma, 1. e. physics of conservative systems. When nuclear fusion
reaction occurs in the high temperature plasma, species of the
constituent particles change into other species and produced energy
is carried away. Thus, we are confronted with dissipative systens.
No one will deny that physics of fusion plasma poses unexplored
problem and awaits new challenge of younger researchers for coming
decades.

Resisting provocation of such chalienge, however, I will speak
cn solitons and chaos in plasma as a summary report of what plasma
physics contributed to advancement in the field of fundamental
physics during the past half centuries. As a collection of charged
particles under influence of electiro-magnetic field, plasma exhibits
very complex behavior, which could be described in terms of the
interplay of the individual mode (particles) and the collective mode
(waves). When the level of fluctuations exceeds thermal level,
plasma 1is 1identified as in the turbulent state. The transport
properties of the coilisionless plasma are attributed to the
turbulent fluctuation in plasma.” Yet, studies of plasma
turbulence are suffering from critical limitations of lack of good
knowledge of nonlinearity. Understanding of the strong plasma
turbulence requires penetrating knowledge of genuine nonlinear

entitlies such as solitons and chaos.

2. Rediscovery of K-dV Equation

Examining nonlinear propagation of collisionless hydromagnetic

4)

waves, Gardner and Morikawa reduced a full set of nonlinear



magnetohydrodynamic equation to a simple nonlinear evolution

equation,
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which is known as the Korteweg-de Vries (K-dV in short) equation®’
for a shallow water wave propagation.

Observing that Gardner and Morikawa’s reduction is based on
proper account of balancing effect of the nonlinear steepening
effect and the wave dispersion, Taniuti et al.® have developed the
reductive perturbation theory for weakly dispersive waves as well
as for strongly dispersive waves. Analyzing contributions o¢f the
higher crder terms in the reductive perturbation theory, Ichikawa
et al.” have shown that the reductive perturbation theory isclates
fully contributions of the nonlinear terms in the lowest order
equation and the higher order equations become linear equations,
thus the reductive perturbation theory provides the scheme fo treat

spliton as the normal modes of the given system.

3. Birth of Soliton and Quest for Chaos

Upon the introduction of high speed electronic computer in the
early 1950’s, as one of the research program in the Sherwoods
Project, Fermi, Pasta and Ular® undertook numerical experiment to
observe the equipartition of energy among the normal modes of one
dimensional coupled system of anharmonic oscillators. On the
contrary to their expectation, energy is not distributed over the
entire mode of the system, but is shared among the lowest modes and
after a fTinite time of elapse the system returns to the original
state. This observation of the Fermi-Pasta-Ulam recurrence acted
as a holy spring of the novel concepts of soliton and chaos.

Examining the long wave length behavior of the discrete coupled
oscillator equation, Zabusky and Kruskal® have reduced it to the K-
dV equation, and numericailly examined the collision processes of
solitary wave solutions. In spite of its nonlinearity, two solitary
waves retains their original form after the collision. Thus, they
were led to propose to call the K-dV solitary wave as "soliton".

At the same time,the observation of Fermi-Pasta-Ulam recurrence



phenomena renewed active interest to investigate the ergodic
behavior of dynamical systems, and led us to examine "chaos" in the
low dimensional nonlinear dynamical systems. Here, it would be
appropriate to mention that the classical problems of orbital

0)

stability in stellar dynamics'® shares the common problems with the

long time behavior of plasma particles confined in the fusion

W 5r particle beams in the high energy accelerators!?’.

devices
Yet the most striking achievement of the studies on the
stochasticity is the discovery of the period doubling root to the

chaosm), which provides the new way of looking for the onset of

turbulence!? .
4. Inverse Scattering Transformation

The mysterious secret of K-dV soliton has been uncovered by the
genius discovery of the inverse scattering transformation for the
K-dVv equationm). Subsequent extension of the method to the cubic

16) inspired Ablowitz et al.!” to

nonlinear Schrodinger equation
formulate the 2 2 matrix representation of the inverse scattering
transformation, which succeeded fo unify the K-dV equation, the
modified K-dV equation, the cubic nonlinear Schrodinger equation and
the sine-Gordon egquation as the completely integrable soliton
equations.

We can generalize the A-K-N-S scheme to the fcollowing set of

Lax-pair operator equations,
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Considering the compatibility conditions (ui)xf' =(u[)fx under
the isospectiral requirement At: 0 , we obtain relationship among

the quantities A, B and C. Determining A, B and C, we can reduce



the nonlinear evolutieon equations for % and Y .
We list several cases here;
1) F=1iA,G6=1;
This is the scheme proposed by Ablowitz et al.'", The K-dvVv,
modified K-dV, cubiec nonlinear Schrodinger and sine-Gordon
equations belong to this scheme.
2) F=id” , G=X
Kaup and Newell'® determined the functions A, B and C, and had
shown that the derivative nonlinear Schrodinger equation is
integrable by the inverse scattering transformation.
3) F=tdX- 28 A, 6=} - p/2
Wadati et al.'® have shown that this scheme confirms that the
superposition of A-K-N-S and K-N scheme valid for the generalized

nonlinear Schrodinger eguation
- 9 ?° ., 9 2 2 B
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Under this scheme, Wadati et a1.2® derived the new types of

soliton equation such as
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Extending Eq.5, we?l) have studied propagation of a loop
spliton along a string. E1 Naschie?? ,referring to the Euler
elastica, noticed the close similarity of this soliton looping and
buckling of compressed strut and emphasized that the study of
elastic models will provide useful informations on ihe interaction
between the integrable soliton and the non-integrable chaos.

To conclude the present section, it would be important to

mention about multi-dimensional behavior of solitons. For the ion
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acoustic wave in plasma, Kadomtsev and Petviashvili derived an

equation now bearing their names as
3 2
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for which Zakharov et al 2% presented a two dimensional inverse
scattering transformation. The K-P equation ,Eq.8 accounts for the
phenomena of soliton resonance, photographed off the coast of

Oregon%’. Experimental studies of oblique interaction of two ion

acoustic soclitons were made by many authorsmk%), which were in
accordance with the result of theoretical prediction given by Yajima

et al.?9.

5. Alfven Solitons and Solitons in Optical Fibers

Investigation of the Alfven wave propagation in a gaseous
plasma attracts special interests in connection with plasma heating
in the fusion devices. In the field of space plasma physics, large
amplitude incompressible magnetic field variation observed in the
solar wind has been attributed to nonlinear propagation of the

Alfven wave, for which the derivative nonlinear Schrodinger equation
24 ) 2 vy Z(1EITE) = 0 7
at 28 £

plays the canonical role®®3?, 4 is defined as & =(Bg-+i Bz)/ZEL
with the uniform magnetic field B, . £ = X -t stands for the
coordinate moving with the Alfven velocity’b%. The coefficients are
given as Ho=( V:/zJZﬁ and :(!L;/4Ba). For the plane wave
boundary condition,setting & = 7 (5.t )explilkyg - wiyt)}, we®™
reduced Eq.7 to the generalized nonlinear Schrodinger equation,
Eq.3. Suggesting that the spiky soliton could explain the

k 34)

interstellar magnetic shoc » Kennel et al. have been carrying out

detailed analysis®’.

The most active interest for the generalized nonlinear
Schrodinger equation, however, arose in the field of optical fiber
technology. We notice Eq.3 had been derived by Tzoar et al.®in
connection with the nonlinear signal propagation in the optical

fiber, but the fact that Eq.3 is one of the soliton equations was




not recognized for a certain time®". Improving the accuracy of

numerical analysis, Ohkuma et al.®® have examined the soliton
behavior of pulses propagating along the optical fibers. It is
particularly interesting to observe that not only the K-dV equation,
but also many other equations such as the generalized nonlinear
Schrodinger equation posses their universal nature to describe
nonlinear behavior of the systems in the full varieties of different

branches of science and engineering.

6. Discretized Soliton Equations and Integrable Mapping

Although we have emphasized success of the analytical approach
in the soliton theory, advancement of computational physics plays
the key role in development of nonlinear scilence. In this regard,
there have been extensive studies on the discretized soliton
equations and the nonlinear differential-difference equations., For
example, the system of pendulums coupled with linear spring is

described by

> 8 _ ﬁ B Zﬁn—l- ﬁn"—Ks“m @n 8)
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of which continuum limit is the sine-~Gordon equation. The cubic

nonlinear Schrodinger equation, Eq. 3 with(x =0, is reduced to

li % = ZH-H_ Zzn—{_ lgn—l_{- ”Zl__ 2“ Z::E(zn-.ﬂ_{- 2”") V)

ot Un

for which Ablowitz and Ladik®® presented the exact theory to
construct soliton solutions. Observing there are other choices of
the discretization of the cubic nonlinear term, Ross and Thompson®®
discussed the static solution with real amplitude of Eg. 9 in the

form of symmetric difference equations

CEH“F - :]((q'{) 10)

obtaining an expression of the invariant curves of
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Extending this approach, Quispel et al.*’ have been discussing
relationships between the soliton equations and the integrable
mapping.

Turning to the sine-Gordon equation , I want to refer the

1.%% on the parametric instabilities of

recent paper by Goedde et a
the discrete sine-Gordon equation. They examined the dynamical
behavior of tLthe system at c¢oarse discretization {(chaos in few
degrees of freedom) and at fine discretization (integrability in the
continuum limit) when the tetal system energy is held constant. At
the same time, the discrete sine-Gordon equation attracts much
interests of solid state physicists, since the equation is known to
be the basic equation of the Frenkel-Kontrova dislocation model.
Considering the static solution of Eq.8, Aubry and many others?®”
have discussed the problem of transitions between the

incommensurate and commensurate states by the standard map,

P.=P, —(Kfw)sm(2w))
X,,+,= Xn +Pn+l )

which is reduced from Eq.8 by setting 8n:21FX; and d%+;-éa=:2ﬁ?i
7. Chaos in Low Dimensional Hamiltonian Systems

Having discussed a connection between the soliton equations and
integrable mapping, we are now led to study non-integrable mapping
in low dimensional Hamiltonian systems. Helleman??®’ emphasized that
mechanics 1is not in good shape,contrary to the preoccupation
implanted through the present day physics course on classieal
mechanics. The most Hamiltonian systems are non-integrable, and many
orbits exhibit sensitive dependence on the initial condition,
(though their temporal evolution is deterministic). Hence, the
chaotic behavior appears already in systems with only 2 or 3 degrees
of freedom®®.

All of these aspects of low dimensional Hamiltonian systems are
best illustrated by the two dimensional area-preserving standard

map, Eq.12. Statistical properties of the standard map have been one



of the central problems in plasma physics, since the magnetic
surface of toroidal fusion devices, the motion of charged particles
in the magnetic mirrors and many other problems are best studied by
the simple map of Eq. 1Z. We*"have shown that analysis of symmetry
properties of the orbits provides useful information on the
stochasticity of the Hamiltonian systems.

Recently, we have undertaken investigation of the relativistic

standard map4m,

F1+1:: Fﬁ. N (k< /27t) S&ﬂ.(l??)(n)
Xm«,: Xn + Pvm//(’ + IGIP,I:)\/L, p= U"P/C

which describes the relativistic dynamics of charged particies under

13)

the action of repetitive kicks of the electrostatic wave packet,with
the phase velocity of the fundamental mode U;:=QL/kb 49 1In spite
cf its naive appearance of the relativistic modification over the
standard map, we have discovered extremely intricate interplay of
the nonlinear effecti and the relativistic effect in determining the

chaotic behavior of the system.

8. Concluding Remark

In the present discussion on soliton and chaos in plasma, I
have tried to picturize the universality of the novel concept of
soliton and chaos in dealing with nonlinear phenomena in science ang
engineering. With regards to the proper problems in plasma physics,
I will refer to several investigators on interplay of soliton and
chaos, such as on the process of chaotic emission of scolitons in
nonlinear inhomogeneous media’®?. Though these works are based on
computational analysis, their observation provides us clear insight
to develop strong plasma turbulence theory. Furthermore, I should

mention that a number of experimental studies on chaos in plasmasn_

) awaits further investigation to explore the irue understanding
of the nonliinear phenomena in plasma. To conclude the present talk,
once again let me emphasize that success of controlled thermonuclear
fusion is going to open the new horizon of fundamental physics in

the coming century.
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