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Abstract

The remarkable feature of the bootsirap current in stellarators is it’s strong depen-
dence on the magnetic field configuration. Neoclassical bootstrap currents in a large
helical device of torsatron/heliotron type (L =2, M =10, R=4m, B=4T)is
evaluated in the banana ( 1/r ) and the plateau regime. Various vacuum magnetic
field configurations are studied with a view to minimizing the bootstrap current. It is
found that in the banana regime, shifting of the magnetic axis and shaping of magnetic
surfaces have a remarkable influence on the bootstrap current ; a small outward shift
of the magnetic axis and vertically elongated magnetic surfaces are favourable for a
reduction of the bootstrap current. It is noted, however, that the ripple diffusion in
the 1/v regime has opposite tendency to the bootatrap current ; it increases with the
outward shift and increases as the plasma cross section is vertically elongated. The

comparison will be made between bootstrap currents in stellarators and tokamaks.
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§1 TIntroduction

The exsistence of the bootstrap current in a tokamak was predicted theoretically
by Bickerton, Conner, and Taylor in 1971 [1]. At the same time this neoclassical
current was investigated by Galeev and Sagdeev [2], and by Kadomtsev and Shafranov
[3]. This automatically induced current is beneficial to tokamaks which require a
toroidal current to maintain the equilibrium, but it was not observed in tokamaks
for a long time. This was partly due to the difficulty of obtaining low collisionality
in a high poloidal beta regime. However, in 1984, neoclassical Pfirsch-Schluter and
bootstrap currents have been observed in a toroidal octupole [4], and in Proto-Cleo
stallarator [5] by probe measurements. Further, in 1988, it was found that the observed
currents in beam heated TFTR plasmas can be explained only by models including the
neoclassical bootstrap current [6]. Since then bootstrap currents have been observed in
JET [7}, and in JT-60 [8]. Especially, in JT-60 the experimental data are analyzed such
that nearly 80 % of total toroidal current are attributed to the neoclassical bootstrap
current. The neoclassical theory for tokamak plasmas are almost completed [9, 10]
and the above mentioned experiments are compared to the calculations based on the
neoclassical theory. However, plasma transports are governed by anomalous diffusions
in tokamaks and stellaraters while the observed bootstrap current seems to be explained
by neoclassical processes. The gap between the two would be filled by theoretical
works for fluctuation-induced current or the effects of fluctuations on the neoclassical
bootstrap current [11, 12, 13].

It is interesting that the existence of bootstrap current is being confirmed in stel-
larators of Heliotron-F [14], W7-A [15], ATF [16], and CHS [17]. It is possible that
the bootstrap current is induced automatically (without the necessity of supplying a
seed current) in stellarators, the seed current being replaced by an externally produced
rotational transform [1]. For stellarator plasmas the neoclassical theory has not yet

been completed, but neoclassical bootstrap currents are formulated in the limit of 1 v



and plateau regimes [18, 19, 20, 21, 22]. These formulations in the 1/v regime [18,
19] show that the bootstrap current in stellarators depend strongly on the magnetic
field structures. In the stellarators of heliotron/torsatron type with 7 = 2, dipole and
quadrupoole components of the magnetic fields are very effective, suggesting that the
bootstrap current can be controllable by externally applied poloidal fields.

In §2 we survey the parallel currents of stellarator plasmas in the 1/v regime. The
bootstrap currents are calculated for the Large Helical Device and the geometrical
dependences are investigated in §3. In §4 the geometrical dependences are compared
between the ripple diffusion and bootstrap current. §5 is devoted to conclusion and

discussion.

§2 Parallel currents

In order to analyse the bootstrap current in JT-60, Kikuchi et al. [8] have solved
directly the parallel momentum and heat balance equations for electrons, ions, impuri-
ties, and fast ions, with the friction and viscosity coeflicients evaluated by Hirshmann
and Sigmar [10]. Tokuda et al. [23] have also developed a computer code of equilibrium
including the neoclassical parallel currents consistently. We summarize the plasma cur-
rents in the direction paralle! to the magnetic field in the same way as Kikuchi et al.
s’ [8] for the plasma in the 1/v regime of stellarators. The parallel momentum and

parallel heat balance equations are given by
<§-V-wa>:<§-fal>+<§-fam>+<§'naeaﬁ(“")> (1)

<§.V-Qa>:<§'fag>+<§‘F_‘a62> (2)

where < > indicates the flux surface average and subscript a refers to species of elec-
trons or plasma ions. < B-V-x, > and < B-V-Q, > are parallel viscosity and parallel
heat viscosity, < ﬁ-ﬁal > is the inter-frictional force, < B -ﬁabl > is the friction force of

species a with fast beam ions (say, produced by netral beam injection), and E@) is the



induction field. The forces with subseript 2 are related to heat frictions. The relations
between the frictional forces (fal, Flg, ﬁabl, fabg ) and flows are given by Hirshmann
and Sigmar [10] with viscosity coefficients evaluated in all collisionality regimes. The
evaluations in the banana regime of tokamak plasmas are correct in the 1/v regime
plasma in stellarators. The differences between the frictional forces in tokamaks and
stellarators appear only through the distribution of trapped particles. However, the
parallel viscosities are quite different between the two, resulting in different bootstrap
currents in stellarators from in tokamaks. Parallel viscosities < B -V - 7, > and
<B-V- Q. > are calculated for stellarators in the 1/v regime by Shaing et al. [18,
19].
Equations (1) and(2) can be expressed by matrix equations as follows ;

MX =< Gy > V- K%

< Bu”b > §(b) —en, < BEi(IA) > §(A) (3)

S

Here M is the matrix of 4 by 4 including frictional coefficients and viscosity ccefficients.
The factor < Gy, > is the geometric factor [18] which depends strongly on the magnetic
field structures. In Eq. (3), ne, ms, 7, and v, are the density, mass, slowing down

time, and parallel flow velosity of fast ions. The vectors are given by

= 2< Bq”e > 2< Bg”,' > .7
X =1 < B e~y T T 3 v~ T ¢
[ < By > I < By, > A | (4)
V=V, Vo, 5, W ¥ (5)
0 3 T
S =11, 5 0, 0] (6)
SH=[-1,0 1, 0) (7)

where 7' denotes the transpose of the vectors and v,, qy,, and p, aze the particle flow,
heat flow, and pressure of a species, respectively. Vi, Vj, V3, and V; are thermodynamic

forces and are given by




T. p, e¢ T,
Vo = —pheg—(==% — 5=
b #ze(e Te)‘i‘#se (9)
T p.  eZd T
= —(= — = 10
3 #162(l Ti) 'MZe ( )
T, p. eZ¢ T
Vi = pn—(= — pip— 11
4 'uzeZ(p;—i_ z) Fia (11)

T,
The matrix equation corresponding to Eq. {3) derived by Kikuchi et al. [8] is 7 by 7,
since they included the bootstrap current due to impurity ions and fast ions (the heat
flow of fast ions is not taken into account). We can solve Egs. (3) to (11) for . and

u); to obtain the parallel currents ;
< BJy>=en. < B(y, —u) >=< BJy > + < BJy >p+ < BJy >p (12)

where we have decomposed the parallel currents into the Spitzer current, the electron
return current due to frictions with fast ions and the bootstrap current. If we add
the fast ion beam current < BJy >r= eZyny < By, > to < BJj >p, we obtain the

beam-driven current {Ohkawa current). The resuits for parallel currents are

< BJy >p=oxc < BE(Y > (13)
< BJ” >o= Fye < BJH >p (14)
< BJy >p=— < Gy > {Laa(p, +p,) + LyneT, + LipnT,} {(15)
with
ezneTei
oNe = Ao (16)
Z(Iee + 'u 3)
AO — 22 & 17
NC .D ( )
” lee e — e lee
Ly = e (155 + p S)DM AULRED). (18)
e _ Healis — pealss
Iy, = ten s (19)
: /-412132
L, =-L 20
- . pia(lh + h3) — piy 20)
Z 3
Fye = 1_76{A?\rc+‘2“A}vc} (21)



Z(I55 + piea)
D

D= (lﬁ + .uel)(igg + HeS) - (ﬁ; + #52)2 (23)

A}vc =- (22)

Here we have neglected O(y/m./m,}. As noted already the bootstrap currents depend
strongly on the field geometry which may quite different for tokamaks and stellarators,
while the expressions for neoclassical conductivity and beam driven current remain the
same. It is noted, however, that the frictional coefficients (I5¢,--+ ) in Eqs. (16) to
(23} are constants {including the ionic charge number Z ), while viscosity coefficients
(te1, -+ ) are proportional to -)-fic where f; is the fraction of trapped particles and
fe = 1— fi. Thus the differences in oy and Fy¢ between in tokamaks and stellarators

appear through the distribution of trapped particles.

§3 Boostrap current in a Large Helical Device

In stallarators the equilibrium are created only by external currents, not requiring
the inner plasma current. The stellarators are then often characterized ”currentless”,
but actually there may exist bootstrap current, beam-driven current, FCT current and
others. Among these currents the bootsirap current could be enhanced in a stellara-
tor, since the bootstrap current in stellarators depends strongly on the equilibrium
configuration and the plasma profiles and the externally produced rotational trans-
form plays a role of the seed current, which is necessary to drive a bootstrap current
[1]. The neoclassical bootstrap currents in both Pfirsch-Schluter and banana regimes
in non-axisymmetric toroidal systems have been studied by Shaing and Callen [18]. In
the banana regime, their formulation is restricted to the 1/v regime, and it is found
that the bootstrap current in the banana regime depends strongly on the magnetic field
structure and can be reduced with increasing toroidal bumpiness. The paper by Shaing
and Callen has been revised by Shaing et al. [19] to study the role of helically trapped

particles on the bootstrap current in the banana regime. The viscosity coeflicients




for neoclassical transport in the plateau regime of non-axisymmetric toroidal plasmas
have been calculated by Coronado and Wobig [21], and the bootstrap current has been
obtained by Shaing et al. [20]. Tt is shown that the helical modulation contributes
significantly to the parallel viscosities and that it changes the direction of the boot-
strap current and the Ware pinch flux in the plateau regime. In Ref. [24], it is pointed
out that the bootstrap current in the banana regime in stellarators would be similar
to that in tokamaks at comparable beta values and safety factors since stellarators are
intrinsically high aspect ratio devices.

In this section we review the results of bootstrap currents in the Large Helical
Device (LHD) to be constructed in The National Institute for Fusion Science (NIFS).
The basic machine parameters for LHD are as follows [25} ; L =2, M =10, By =14
m Bo=3~4T, v =120~125 F,=0~ 01, Pha =20 MW, where L and M
are the poloidal and toroidal pitch numbers, respectively, Ry is the major radius, By
is the magnetic field strength, v, = %%ﬁ is the pitch parameter for the helical winding
coils, P, is the coil pitch modulation parameter, and P, is the heating power.

The bootstrap current in the 1/v regime in non-axisymmetric toroidal systems is

given by Eq. (15) or by Ref. (18} ;

dn dT, dT.
< Jy. B >= "’2‘95%6;55{0.1({1; + Tl)&’f + agﬂd—v + azn dV}

(24)

where J;, is the bootstrap current density, B is the magnetic field strength, < >
indicates the flux surface average, n is the density, T. and T; are the electron and
ion temperatures, V is the volume, and the numerical factors are a; = 0.554, a; =
—0.0941 and a5 = 0.1404. In Eq.(24), f; and f, are fractions of trapped and circulating
particles, respectively, and G, =< G, > is the flux averaged geometrical factor, with
G, given by Eq.(75b) of Ref. [18]. Equation (24) has been solved numerically for the
LHD parameters [26]. In Eq.(24), the geometric factor Gy, fi/fc is determined only
by the magnetic field configuration and the rest part is determined by plasma profiles

of density and temperatures. The behaviours of the geometric factor Gy f:/f. are



investigated for vanous vacuum magnetic fields by changing the dipole and gquadrupole
components, By, Bg, of poloidal fields. It is found that Gy, fi/f. changes little for
different values of A4, but when By is changed so as to shift the plasma outward
(or inward), Gy, fi/f. becomes smalier {or larger). A reduction by a factor of 2 to 4 is
possible through the control of By. The polidal quadrupole component By can alter the
elipticity of the plasma cross section. If the toroidally averaged plasma cross sections
are horizontally elongated, the geometrical factor increases and if the cross sections are
vertically elongated elipse, the geometrical factor decreases drastically. Control of Bg
can lead to variation of Gy, fi/ f. from 600 to several tens or even nagative values. Thus

the bootstrap current in the 1/ regime can be controllable by the poloidal fields.
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Fig. 1 Bootstrap currents in the banana regime for the high density case.
{(a) Bg = 150%, (b) By = 0%, {c) Bg =-50%, (d} By = -100%.
Sclid lines : bootstrap current density, Dotted lines : vacuum rotational trans-
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Figure 1 shows an example for a set of plasma profiles of n, T, and 7, which
are given by a transport code calculation. The average density is ~ 10°m™3, the
profile of which is slightly hollow. The average electron and ion temperatures are
around 3 keV. The position of the plasma magnetic axis is shifted by the application
of By by 5 cm. The poloidal quadrupole fields are varied ; (a) By = 150%, (b)
By = 0%, (c) Bg = —50%, (d) Bg = —100%, where By = 150% means that the 150
% of the axisymmetric quadrupole components created by helical coils are cancelled
by the quadrupole components of the poloidal coils. In the case of By = —100%,
the quadrupole fields by helical coils are doubled. In the case of (a) the plasma cross
sections are slightly horizontally elongated and the case of (d) is vertically elongated
elipse. Negative bootstrap current are seen in Fig.1, but this is attributed to the hollow
density profile. Total bootstrap currents Iy, are : (a) [, = 512 kA, {b) I, = 231 kA,
{c) I, = 87 kA, (d) I, = 6 kA. These values show that the bootstrap current in the
1/v regime is controllable by changing the poloidal fields.

We employ the formula given by Shaing et al. [20] for the bootstrap current in the

plateau regime.

UTe
Ve,

< JyB >= —Hy, x 1.9351y/7—= x {1.16(P, + P} + 1.5449nT" + 0.58nT7}  (25)

The geometric factor Hy, is expressed in the Hanada cooodinate system [27]. As
described in Appendix, many Fourier modes of the magnetic field B are required when
H,, is calculated in the Hamada coodinate system. We derive H,, expressed in the
Boozer coodinate system [28] by the transformation of the Hamada coodinates to the
Boozer coodinates to calculate Hy, using less Fourier mode numbers. The calculation
results of the bootstrap current in the plateau regime is shown in Ref. [26]. When
the plasma axis is shifted outward by 5 cm and the quadrupole fields by poloidal
coils and the axdsymmetric qudrupole fields produced by helical coils are just cancelled
(the plasma shape is nearly circular in this case), the bootstrap current amounts to

I, = —26 kA for the plateau plasma with parabolic profiles. It is shown that the



bootstrap current increases as M increases {or ¢, increases), while the bootstrap current
does not depend on By, or By appreciablly, which are different tendency from the case

of the 1/v regime.

§4 Ripple diffusion and bootstrap current in the 1/v regime

In stellarators, the magnetic field strength varies along a line of magnetic field due
to helical ripples as well as toroidal ripples. Particles with a large pitch angle are
trapped in the helical ripples and bounce in the trough back and forth. On the other
hand such particles drift across the magnetic field lines. If wy, > ves¢ > w,, where
uy 15 the bounce frequency of helically trapped particles, v,y is the effective collision
frequency, and w, is the characternistic frequency of poloidal drift motion, particles suffer
from a large movement across the magnetic fields. The resultant diffusion coefficient is
inversely proportional to v.s;. Such collisional regime is called the 1/v regime. In the
1/v regime the ripple diffusions are formulated by solving the drift kinetic equation

[29]. The results are given by

dn Mg dTa. Nade d(ﬁ

—+ GD a
<T, Vip >=~ g {Llla o L12aT % + Lisa—r— T, dv,b (26)
Gp T? dna dT,
< Qa Vg >= —V_;D “{ LT, (w + Logana—— i + LesanaQadZ} (27)

where a designate the particle species. T, and Q, are particle and heat fluxes, ¢ is
the flux function, g, is the charge number, L,, are numerical coefficients, and ¢ is
the electric potential. In Eqs. (26) and (27), Gp is the geometrical factor which is
determined only by the magnetic field structures and is separated from other terms
obtained by the plasma transports in the same way as in Eq. (24) for the bootstrap
current.

In this section we investigate the dependence of the geometric factor Gp(di/dp)—2

on the magnetic field structures using the vacuum magnetic field configurations for

10



LHD as in §2. Figures 2-(a) and {b) show the behaviours of Gp(dy/dp)~? versus the
average radius p. The average radius p is defined by ¥ = By/2p%. The equilibrium
guantities are expressed as a function of p, resulting in the appearance of (dv/dp)~>
in the geometric factor. Figure 2-(a) shows the effect of the magnetic axis D, (effect

of the vertical fields). D, < 0 is the inward shift and D, > 0 the ontward shift.
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Fig. 2 Geometric factor Gp(dy/dp)~?(= gamma) vs. averaged radius p.
(a) Effect of the magretic axis shift D,, {b) Effect of the pitch modulation F;.

The geometric factor decreases as the plasma is shifted inward. It is reduced by one
order from D, = +0.1 m to D, = —0.1 m. Figure 2-(b) indicates the influence of the
pitch modulation parameter P,. The negative pitch modulations (P, < 0} contribute

to a reduction of ripple diffusion. The effect of the quadrupole field iz also investigated
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{not shown). The case of By = 100% (net quadrupole fields vanishes and the plasma
shape is nearly circular) seems most preferable, but By effect is less important when
compared to the effects of D, or P,.. Asis well known [30], the geometrical factor is
small for the case when helical ripples are localized on the inside of the torus (strong
field side), while for the case of ripples localized on the outside the geometric factor
becomes large hence the neoclassical ripple diffusion is greatly enhanced.

Finally we compare the dependences of the geometric factors for the bootstrap
current and ripple diffusion on the magnetic field configurations. Table 1 shows the
summary of both field dependences of geometric {actors. The characteristics of a single
particle confinement are also shown. For the improvement of particle orbits or the ripple
diffusion, the inward shift of the plasma position is most effective. Nearly circular
plasma cross sections are most favourable to reduce the ripple diffusion, but in this
case the bootstrap current can not be minimized. It is then important to evaluate the

tolerable amounts of bootstrap current.

Table 1 Magnetic field dependence of geometric factors

Gbs Gp orbit
invard large small good
shift effective
D,
outwvard small large bad
¢ <0 large small good
pitch effective
Q" = Pt
o >0 small large bad
horizontally large large bad
elongation near circular effective small good
B, small or
vertically small large bad




§5 Conclusion and discussion

Characteristics of the bootstrap current in the stellarator of heliotron/torsatron
type with I = 2 have been clarified. In the banana regime the bootstrap current
can be changeable by the conirol of externally applied poloidal fields. Recenily the
bootstrap currents have been observed in ECH plasmas of ATF [16]. Dependences
of the observed currents on the control of poloidal coil system have been confirmed.
Other dependences of I, o« W, (plasma stored energy), and I, & B~ have also been
confirmed. In CHS, the bootatrap currents have been measured in both ECH and NBI
plasmas [17]. The NBI plasmas are in the plateau regime and the observed toroidal
current reverses it’s direction in the high density or low field operations. Thus the
existence of the bootstrap current is being verified in stellarators. In stellarators direct
measurements of the bootstrap currents are easier than in tokamaks and the bootstrap
currents are controllable by external poloidal fields. The research on the bootstrap

current in stallarators can be a complementary subject to tokamaks.
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Appendix Remarks on the mumerical calculation associated with B-spectrum

For the calculation to grasp the characteristics of the neoclassical theory, single

particle orbit and other phenomena in stellarators, we often use a model magnetic field

B(r, 9, ¢) = Bo{1 — ,(r) cos§ — ep{r)cos(Lf + M)} (28)
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However, actual magnetic field structures are so complicated compared to Eq. (28) that
the equations expressed in a magnetic coordinate system are solved numerically using
B-spectrum. The Hamada coodinate system [26] is one of the magnetic coordinate
systems and adequate for analytical treatment. In the Hamada coordinate system, the
Jacobian is a magnetic surface quantity and the lines of magnetic field, current density,
and the first order plasma flow are all straight. As one of other magnetic coordinate
systems Boozer coordinate system is well known and is often used for numerical calcu-
lations associated with B-spectrum in stellarators. In the Boozer coordinate system,
the Jacobian is inversely proportional to B* and the magnetic field lines are straight
on the magnetic surface.

Mathematically any magnetic coordinate system gives an identical result, but a
careful treatment should be paied to numerical calculations related to the B-spectrum.
Figure 3 shows the distribution of B-spectrum in the Hamada and Boozer coordinate
systems. The magnetic data used are a vacuum field produced by helical coils with
L =2M=10,By =4T, and Ry = 5 m. Figure 3-(2) and (b) are B-spectrum
distributions near the magnetic axis in Hamada and Boozer coordinates, respectively.
Figure 3-(c) and (d) are B-spectrnm distributions near the outermost magnetic surface.
As seen from the Figures there is no significant differences between the B-spectra in
both Hamada and Boozer coordinates near the axis. However, on the magnetic surface
going away from the axis the B-spectrum in the Hamada coordinaies becomes broad
more and nore compared to that of Boozer coordinates. Figure 3-(d) for the Boozer
coordinates shows a similar spectrum to the model field, Eq.(28), while Fig.3-(c) for
the Hamada coordinates indicates that a large spectrum space is required when the
Hamadsa coordinates are used for calculations associated with B-spectrum. Much
attension should be paid to the numerical analysis of magnetic field structures expressed

in the Hamada coordinate systern.

14



*sd
C a > < b D
B
B__ —
L .
K3 ® < Iy [ 3 el L ) s [ K
. - o
P & ' s S o we 20 > K - © » ® @ na 50
. P -
. N na 10 T
.u ‘ a Q - @
C e Ca >
B__ u.
k¢ -~ o s + b ® . ° . [ K3
. » + . I3
o> Lw W - -+ “= « « L ’\“ L < « w30
I' 1 (I n=e e " 20
1 P t v we 10
. l ‘ [ n=- 0 la/ l l ne 0

Fig. 3 TFourier spectta By : B = 3 Buun cos(myx + ne)
(2} Hamada cooxdinates, near the axis,
{b) Boozer coordinates, near the axis,
{c) Hamada coordinates, near the outermost surface,

{d) Boozer coordinates, neaz the outermost surface

References

(1) R. J. Bickerton, J. W. Conner, and J. B. Taylor : Nature Phys. Sci. 229 (1971)
110.

(2) A. A. Galeev and R. Z. Sagdeev : in Plasma Physics and Conirolled Nuclear
Fusion Research (Proc. 4th Int. Conf. Madison, 1971}, Vol. 1, IAEA Vienna
(1972) p.481.

(3) B. B. Kadomtsev and V. D. Shafranov : ib:d p.479.
(4) M. C. Zarnstorff and S. C. Prager : Phys. Rev. Letters 53 (1984) 454.

(5) 1. D. Treffert, J. L. Shohet, and H. L. Berk : Phys. Rev. Letters 53 (1984)
2409.



(6) M. C. Zarnstorff, M. G. Bell, and M. Bitter et al. : Phys. Rev. Letters 60
(1988) 1306.

(7) C. D. Challis J. D. Cordey, H. Hamnen et al. : Nucl. Fusion 29 (1989) 563.

(8) M. Kikuchi, M. Azumi, S. Tsuji, K. Tani, and H. Kubo : Nucl. Fusion 30
(1990) 343.

(9) F. L. Hinton and R. D. Hazeltine : Rev. Mod. Physics 48 (1976) 239.
(10) S. P. Hirshman and D. I. Sigmar : Nucl. Fusion 21 {1981) 1079.

(11) J. W. Conner and J. B. Taylor : Comments Plasma Phys. Controlled Fusion 11
(1987) 37.

(12) S. -I. Itoh and K. Itoh : Phys. Letters A127 {1988) 267.
(13) K. C. Shaing : Phys. Fluids 31(1988)8, and ibid 31 {1988) 2249.

(14) S. Besshou, O. Motojima, M. Sano, et al. : Plasma Phys. Contr. Fusion 26
(1984) 565.

(15) U. Gasparino, H. Massberg, M. Tutter, and WVIL-A team : Plasma Phys.
Contr. Fusion 30 (1988} 283,

(16) M. Murakami : "Status of The ATF Ezperimental Program - Querview of
Recent Resulls”, 1st Int. TOKI Conf. Plasma Phys. Contr. Fusion, Toki,
Japan, 4-7 Dec. 1989.

(17) O. Kaneko, Y. Takeiri, H. Yamada, et al. "Driven Currents in Neutral Beam
Heqted CHS Plasmna”, 1st Int. TOKI Conf. Plasma Phys. Contr. Fusion, Toki,
Japan, 4-7 Dec. 1989.

{18) K. C. Shaing and J. D. Callen : Phys. Fluids 26 {1983) 3315.

19) K. C. Shaing, B. A. Carrerass, N. Dominguez, et al. : Phys. Fluids B1 (8
g Y
(1989} 1663.

(20) K. C. Shaing, S. P. Hirshman, and J. D. Callen : Phys. Fluids 29 (1986) 521.
(21) M. Coronado and H. Wobig : Phys. Fluids 29 (1986) 527.

(22) H. Wobig : ” On Bootstrap Currents in Toroidal Systems”, Res. Rep.
Max-Planck-Institute for Plasma Physics, IPP 2/297, October 1988.

(23) S. Tokuda, T. Takeda, and M. Okamoto : J. Phys. Soc. Jpn. 58 (1989) 871.

{24) T. Ohkawa and M. S. Chu : in International Stellarator/Heliotron Workshop
(IAEA Tech. Comm. Meeting, Kyoto, 1986), Vol.1, Plasma Physics Laboratory,
Kyoto University (1987) 305.

(25) A. Tiyoshi, M. Fujiwara, O. Motojima, J. Todoroki, N. Ohyabu,
and K. Yamazaki : Fusion Technol., 17 (1990) 169.

(26) N. Nakajima, M. Okamoto, J. Todoroki, Y. Nakamura, and M. Wakatani :
Nucl. Fusion 29 {1989) 605.

(27) S. Hamada : Nucl. Fusion 2 (1962) 23.

16




(28) A. H. Boozer : Phys. Fluids 23 (1980} 904.
(29) N. Nakajima, M. Okamoto, and T. Amano : in preparation for publication.
(30) H. E. Mynick, T. K. Chu, and A. H. Boozer : Phys. Rev., Letters 48 (1982} 322,

17



