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Numerical simulations are used to study coupled swing equations mod-
eling the dynamics of two electric generators connected to an infinite bus
by a simple transmission network. In particular, the effect of varying pa-
rameters corresponding to the input power supplied to each generator is
studied. In addition to stable steady operating conditions, which should
correspond to synchronized, normal operation, the coupled swing model
has other stable states of large amplitude oscillations which, if realized,
would represent non-synchronized motions: the phase space boundary
separating their basins of attraction is fractal, corresponding to chaotic
transient motions. These fractal structures in phase space and the asso-
ciated fractal structures in parameter space will be of primary concern
to engineers in predicting system behavior.
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1. INTRODUCTION

The stability of electric power systems has a long history of research.
The question of transient stability has been studied primarily by ex-
amining solutions of systems of differential equations based on the
swing equation, or driven pendulum. Almost all research has relied
on application of an energy-integral or Lyapunov function to deter-
mine stability in a neighborhood of a desired solution; see for example
references [1], [2], [3]. Although these methods may give sufficient
conditions for practical operation, this approach by its nature does
not address the question of the global structure in phase space of the
basin of attraction of the desired stable operating condition, and it
seems possible that an additional margin of safety may exist which
cannot be identified by existing approaches. In any case, it is the
basin of attraction which represents the proper focus of concern for
the engineer, and this is the problem we shall study here. We note
that our focus on basin boundary structure rather than stability near
a desired solution closely parallels the new approach to ship stability
criteria proposed by Thompson et al [4].

One difficulty with the study of basin structures is their complexity,
involving fractal basin boundaries [5]. The geometric theory of dy-
namic systems, including invariant manifolds, offers conceptual tools
which may be helpful in elucidating these fractal structures. Here we
make no final judgment on the practical utility of invariant manifold
analysis, but simply present it with the aim of clarifying what we feel
15 the true and proper concern of engineering stability analysis, namely
the structure of basins of attractions and their boundaries. The model
treated here uses the simplest expression for the generator, although
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in applications a more accurate model of the generator should be used.
The geometric theory of dynamical systems is very general, and could
in principle easily accommodate more realistic models.

We consider a simple model of the dynamics of two electric gener-
ators connected to an infinite bus by a simple network consisting of
two transmission lines. The configuration of this network is shown
in Figure 1. Generator 1 is driven by mechanical input power F,1
and delivers its electrical output to transmission line 1 with transfer
admittance y;, while generator 2 with input power P9 delivers its
output to transmission line 2 with transfer admittance ys, which is
connected through line 1 to the same load, i.e., infinite bus.

The equations used here to describe the dynamics of this system are

b _
dt !
duwn = i{—dlwl + p1 —sin(é; — b2) — ksinéy }
dt my (1)
it _
a2
1
%?-‘- = m—z{—dng + po —sin{és — 61)}

Here 6; and &2 are angular positions of the generator rotors, wj and
wo the angular velocities; these four state variables of the system are
measured relative to the rotating reference of the infinite bus voltage.
Both terminal voltages of the generators are regulated to maintain
the same voltage as the infinite bus. The quantities p; and po are the
input powers normalized by the quantity yoE?. The d; are damping
coefficients and the m; are inertia constants, both likewise normalized
by yoE?; and k = y1/ys is equal to the ratio of the admittances of
the two transmission lines. These equations are derived under the

3



assumption of small deviations in the angular frequencies from true
60Hz oscillation; but the angular positions make large excursions.

Following the geometric method of Poincaré, we take the four state
variables to be the coordinates of a four-dimensional phase space; an
initial value is a point in this space, and solutions of the differen-
tial equations over time will trace out trajectories or orbits in this
phase space. Since we cannot visualize this phase space directly, we
shall consider two-dimensional subspaces such as (&1, §2) for example,
and either look at the intersection of trajectories with the subspace,
or the projection of trajectories onto the subspace. Note that topo-
logically the phase space is equivalent to the Cartesian product of a
torus (81,69) € St x S' = T? with a plane (wi,ws) € R2: for the
torus we take the usual projection of 72 unwrapped to the square
[0,27) x [0,24).

The remaining quantities in the system (1) are parameters, held con-
stant while a given trajectory is solved by integration. In a real power
network, the d;, m;, and k are fixed characteristics of the network,
while the input powers p; are under the control of the engineer. It is
therefore natural that p; and py should enjoy a special role; we call

them control parameters, or controls. In this study we fix
m1 =mg = 0.1
dy = dy = 0.005
k=1
throughout, and consider the effect on solutions of choosing different
values of p; and ps. Following the comprehensive geometric view-
pomt of Thom[6] and Abraham[7], we consider a control-phase space

which is the Cartesian product of the control plane (p1,ps) € R? with
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the phase space. Of particular interest in this study is the occur-
rence of fractal structure in the control plane, which according to the
comprehensive view is a consequence of coherent structure in control-
phase space linking the fractal structure in control space with fractal
structure in phase space. Here we shall be content with visualizing
the phenomenon in the {p1,ps) plane and separately, in subspaces of
phase space, with hope that the reader will keep in mind the existence
of a more comprehensive view; see for example Abraham and Shaw|8]

for a visual introduction to the comprehensive view.,

2. ReEcULAR Basic MOTIONS

The first step in constructing a geometric phase portrait of the sys-
tem (1) is to find the solutions corresponding to regular motions, that
is, the equilibrium points corresponding to steady motions, and the
closed trajectories corresponding to periodic motions. In either case
the regular motion may be stable or unstable. The stable motions
are attractors, motions which can be sustained in a real system. The
unstable motions are not typically observed in real systems, but they
are nevertheless important in understanding the geometric structure
of phase space and the overall dynamical behavior. Of particular in-
terest are the unstable motions which lie in the boundaries separating

basins of attraction of the various stable motions.

The equilibrium points of {1) are found by setting all time derivatives

5



to zero, leading to the conditions

w1 =0
wo =10 @)
ksin 61 + sin(é; — &2) = py

sin{6p — 61) = po
which are to be solved for the state variable coordinates of the equi-

librium points. We consider the region of control space

lp1+po| <E=1
Ip2] <1

where there are four fixed point solutions of (2). Clearly w; = w9 =0

(3)

in all cases; the é; coordinates are

(1) -13.01;:102 () — Sin~lpy + Sin 1&%@

6(2) _1P1-Ilc-p2 (2)_7T Sin~Lpy + Sm—@%?g
63 = r_ 5 _1101;;192 69 = 5 4 Sinlpy - Sm_lﬂ%__p_z (4)
o = r -5 I 8 gty g 1R

Figure 2 shows the locations of these fixed points in the (61, 67) plane
for the example p; = 0.1, ps = 0.1. Clearly fixed point 1 is close to
the condition é; = 89 = 0 with no power generated.

The stability of the fixed points is determined by linearizing the
system (1) near a fixed point, so that small deviations from the fixed
point are governed by the matrix

0 1 0 0
— - cos(6 — 652) — & cosé) %;11 - cos(8) — &) (1}
}n% cos( 62 — 61) 0 —-ﬂ—% cos(by — 64) —;‘%

(5)



Table 1 gives numerical values of the coordinates é; and 6 of the
four fixed points for example p; = 0.1, ps = 0.1 illustrated in Figure
2. Also given in Table 1 are the eigenvalues of the matrix (5) for
each fixed point. The fixed point 1 has negative real part for all four
eigenvalues, and is therefore stable. The remaining three fixed points

have at least one positive real eigenvalue and are therefore unstable.

The single positive eigenvalue of fixed points 2 and 3 indicates that
near each of these points there is a 3-dimensional subspace within
which trajectories approach the fixed point, and a one-dimensional
subspace in which trajectories diverge from the fixed point. Well-
known theorems establish the fact that these subspaces can be ex-
tended to globally defined manifolds in phase space, a 3-dimensional
stable manifold or inset, and a one-dimensional unstable manifold or
outset. The inset consists of trajectories which are asymptotic to the
fixed point as ¢ — oco. The inset can be located by starting from initial
conditions near the fixed point in the 3-dimensional subspace spanned
by the three incoming eigenvalues, and integrating such mitial con-
ditions backwards in time. The outset consists of two trajectories
asymptotic to the fixed point as t — —oo. That is, each of the fixed
points 2 and 3 has an outset consisting of two branches. The local in-
set of each fixed point separates trajectories, and might be part of the

boundary of the basin of attraction of the stable operating condition.

In general the basin of attraction of the stable operating condition
is expected to contain some singularity, either an unstable fixed point
or an unstable periodic orbit. In the region of (p1,pa) control space
satisfying inequalities (3), there are typically both stable and unstable
periodic motions. For example, at p; = 0.1, po = 0.1, we found three
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stable periodic motions, corresponding to undesirable system opera-
tion (oscillation). It should be noted that a real generating system
would not sustain these oscillations as our model does, since centrifu-
gal forces would destroy the rotor.

By searching for fixed points in the surface of section & = 0, we
also found three unstable periodic motions. We have not yet tested
whether the insets of these unstable periodic motions form part of any

basin boundaries.
3. BASIN PORTRAITS

Figure 2 shows partial attractor-basin phase portraits of the coupled
swing equations (1). In the upper left, Figure 2a is a section of the
phase space in the (6, 82) plane with w; = ws = 0. All initial condi-
tions in the torus were integrated forward to determine whether the
long-term behavior turned out to be the fixed point 1, or an oscillatory
periodic attractor. An initial point leading to a periodic attractor is
marked with a black dot, while an initial point in the basin of fixed
point 1 is left unmarked. Another section of the same portrait in Fig-
ure 2b shows the (w1, ws) plane through the coordinates of fixed point
1, and the (61,w;) and (89, ws) sections in Figures 2¢ and 2d. We note
that both fixed points 2 and 3 appear to lie in the basin boundary
of the stable operating condition. We also checked that fixed point 4
lies in the basin boundary as well, although this is not so clear from
Figure 2.

The global structure of this basin boundary appears to be compli-
cated. To check whether fractal structure exists, a zoom sequence of
successively magnified basin portraits was obtained inside the small
square in Figure 2a. The results are shown in Figure 3, which con-
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firms that the structure of the basin boundary is roughly the product
of a one-dimensional Cantor-like set with a smooth three-dimensional
surface. The structure would be typical of a transverse homoclinic in-
tersection of a three-dimensional inset. Note however that even though
the insets of fixed points 2 and 3 are three-dimensional, and they do
intersect the two-dimensional outset of fixed point 4, they cannot have
a transverse homoclinic intersection. It appears that unstable periodic
motions generate tangles and the insets of fixed points 2 and 3 become
involved with those tangles, perhaps following -a structurally unstable
homoclinic connection of Shilnikov type [9], or like that of the Lorenz
system [10].

4. CONTROL SPACE PORTRAITS

Although the relationship between fixed points 2 and 3 and basin
boundary of the stable operating condition is not simple, Figure 2
shows that the locations of these fixed points could be useful in devis-
ing approximate stability criteria. Indeed such approximations could
be more accurate than stability criteria based on energy-integral or
Lyapunov function approaches. Thus it might be of interest to know
whether fixed point 2, for example, lies on this basin boundary for
typical values of p; and ps.

This question was studied numerically by following the outset
branches of fixed point 2 for a large number of (p1,po) values. The re-
sult is illustrated in Figure 4. A point in control space is marked with
a black dot if exactly one branch of the outset of fixed point 2 leads to
the stable operating condition; a gray dot means both branches lead
to the stable fixed point; no dot indicates that both branches lead

away.



"The control space is thus divided into three regions. It appears that
the structure of these regions is complicated. In the small square
near the center of the triangular region in Figure 4, a zoom sequence
showed an infinitely layered but not fractal structure. In the other
small square in Figure 4, the zoom sequence shown in Figure 5 re-
veals an apparently fractal structure. Like the structure of the basin
boundary near fixed point 2, this control region boundary seems to
be roughly the product of a Cantor-like set with a three-dimensional

smooth manifold.
5. CONCLUSIONS

In the study of transient stability dynamical systems, the attractor-
basin phase portrait provides the most direct information about sys-
tem stability. For example, if the system is subjected to an impulsive
disturbance which effectively displaces the phase space coordinates
from a stable condition to some other point, the system will regain
the stable operating condition if and only if the perturbed point is in
the basin of attraction of the stable operating condition.

Thus a direct numerical attack on the question of stability requires
a systematic trial of many initial conditions and parameter values.
Although such studies may require substantial computer time, they
can 1 principle be carried out with any existing numerical model of
system dynamics.

In interpreting the results of systematic trials, geometric phase por-
traits are essential tools. The presence of fractal structure should be
expected, and the theory of invariant manifolds helps to understand
and explain such structure. This requires numerical methods for lo-
cating unstable fixed points and unstable periodic motions of system
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dynamics, such as straddle orbit algorithms {11] and push-pull algo-
rithms [7].

The authors are grateful to the National Institute of Fusion Science
at Nagoya for the use of the facilities of their Computer Center.
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FicUrRE CAPTIONS

. Two machines operating onto an infinite bus system.

. Partial basin portraits of coupled swing equations (1) with p; = 0.1,
p2 = 0.1 in sections of the four-dimensional phase space taken at
w; =0, wy = 0, é; and for &9 at the coordinates of fixed point 1;
white regions are in the basin of attraction of the stable operating
condition.

. Magnification sequence of basin portrait section with p; = 0.1, ps =
0.1 showing fractal structure.

. Control space portrait of position of fixed point 2 relative to the
boundary of the basin of the stable operating condition, with black
dots indicating regions where fixed point 2 is in the boundary.

. Magnification sequence of the control space portrait in the small box

near the corner of Figure 4, showing fractal structure.

Table 1. Coordinates and eigenvalues of fixed points for p; = ps = 0.1.

fixed point 1 fixed point 2 fixed point 3 fixed point 4

51 0.20136 0.20136 2.94023 2.94023
& 0.30153 —3.04040 3.04040 —0.30153

-0.0250 + 35.0930 —4.0427 —2.4827 —5.1181
eigen- ~0.0250 — 15.0830 —0.0250 + j2.4574 —0.0250 4 j4.0176 —1.9638
values

~0.0250 +31.9385 —0.0250 — j2.4574 —0.0250 — j4.0176 1.9138

—0.0250 - 71.9385 3.9927 24327 5.0681
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