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A catastrophe in a dissipative dynamical system which causes an at-
tractor to completely lose stability will result in a transient trajectory
making a rapid jump in phase space to some other attractor. In systems
where more than one other attractor is available, the attractor chosen
may depend very sensitively on how the catastrophe is realized. Two
examples in forced oscillators of Duffing type illustrate how the prob-
abilities of different outcomes can be estimated using the phase space
geometry of invariant manifolds.
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In attempting to understand the bifurcation behavior of a dissipative
dynamical system, the applied dynamicist will naturally focus atten-
tion first on those bifurcations which are catastrophic in the sense that
an attractor, a basin boundary, or some other invariant set in phase
space undergoes a discontinuous change (Zeeman 1982). Catastrophic
bifurcations manifest themselves clearly in common experimental sce-
narios. For example, a dynamical system may be allowed to evolve
over a long time, so that its behavior settles to an attractor; a small
step change Ay is made to a control parameter y, and the system is
again allowed to settle, often to the same attractor with only small
quantitative changes. After several further small increments from p;
t0 li+1 = p; + Ay, a threshold value gy may be reached across which
the attractor changes its quantitative description by an unexpectedly
large amount which appears, by comparison with previous incremental
steps, to be out of all proportion to the small size of Ay. This result
1s evidence that a catastrophic bifurcation has occurred at some value
of p between py and pyp 1. Another common scenario for observing
attractor bifurcations is to ramp the control g very slowly, so in the
interval of time AT needed to identify and characterize an attractor,
the corresponding change Ay has usually (except crossing catastrophic

thresholds) only a small quantitative effect on the attractor.

The most severe catastrophic bifurcation is the total loss of stability
of an attractor, so that when y is stepped from pj to p I+1, the system
experiences a transient jump followed by settling to another attractor,
whose location in phase space is remote from the attractor sustained
at p = py. This sudden disappearance of an attractor from the phase
portrait is a blue sky catastrophe (Abraham 1985), or boundary crisis
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(Grebogi et al. 1983).

Suppose the dynamical system can be reset to control g = pr and
to state values such that the old attractor is re-established. Then
it may happen that a second experimental trial stepping from py to
141 causes the system to jump to some new attractor different from
the outcome of the previous trial. In fact, the system is extremely
sensitive to details of how the bifurcation is realized experimentally,

such as the exact size of Ap, or the precise rate at which p is ramped.

Recently Abraham (1985) suggested a geometric control-phase space
model for this behavior using a codimension two bifurcation scenario
of Andronov and Takens (1974). Abraham'’s model involves a dy-
namical system represented by a flow in planar phase space with one
periodic attractor surrounding two static point attractors, and having
two generic control parameters which follow a circular path In con-
trol space around a codimension two point. At one point along this
path, a dynamic saddle-node fold bifurcation removes the periodic at-
tractor. The basin structure of the remaining two point attractors is
intertwined so that the outcome of evolving a system slowly through
the bifurcation would depend very sensitively on the speed with which
the controls are ramped. Equivalently, the outcome of a small step in-
crement of the controls across the bifurcation threshold would depend
very sensitively on the precise size of the increment. The global geom-
etry of this bifurcation scenario is illustrated in Figure 8 of Abraham
(1985) and in Figure 69 of Abraham and Shaw (1987).

Our purpose here is to note that a simple generalization of this ge-
ometric model to a planar diffeomorphism can be observed in the
Duffing oscillator. This example involves transverse hetero clinic inter-
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sections of invariant manifolds, but no homoclinic intersections. We
also give a second example in the twin-well Duffing oscillator involving
additional homoclinic structures: the vanishing attractor is chaotic, in
fact a simply folded band (Réssler 1975); and the remaining two basins
have a common boundary which is fractal. In each example, we show
how the probabilities of the two outcomes can be roughly estimated
from the coordinates of a few heteroclinic points. However, in the sec-
ond example, the fractal basin structure implies outcome uncertainty
of a qualitatively different and more severe type, and greater obsta-
cles to obtaining better than a crude estimate of outcome probabilities.
Our examples are closely related to the observation by Thompson and
Soliman (1990) of a fold bifurcation leading to indeterminate jumps
to competing attractors with fractal basin boundaries.

Our first example occurs in Duffing’s equation
i+ ki + 2° = Beost (1)

with k = 0.05 and B = 0.0574. Figure 1 shows the basins of three
competing periodic attractors in Poincaré section at angle t = () of the
cosinusoidal forcing. This and subsequent portraits were computed
with a fourth-order Runge-Kutta integration formula using fixed time
steps of 27/60. Two of the attractors are fixed points, marked by
small circles: 1S near the top of Figure la, and 25 near the center
of Figure la. Also present is a subharmonic attractor of order 3, Le.
of period 67, whose three image points are marked by the small filled
triangles in the interiors of the three white regions. The shading of
Figure 1 was determined by exhaustively integrating initial conditions
on a 201 x 201 point grid until final behavior was reached; an initial
point was then colored grey if it settled to 15, black if it settled to 28 .
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or left white if it settled to the period 3 attractor, which we denote by
$3. This phase portrait is similar to Figure 10.6 of Hayashi (1964),
with k = 0.1 and B = 0.15, and is close to the {a) regime in the (k, B)
survey of Ueda (1980); but here we have adjusted k and B to bring the
attracting fixed point 1S close to a fold bifurcation involving saddle
D, whose inset or stable manifold defines the boundary of the basin
of 1.

We use the notation iS{{ for periodic points, where the index j is
the period (if greater than one), i distinguishes different orbits of the
same period (if more than one are present), and k = 1,2,...] identifies
successive images of a periodic orbit under iteration of the Poincaré
map. Thus 16 and 28 are two distinct fixed points; because each has
period one, the indices j and k are suppressed. On the other hand, 53
is the only stable periodic orbit with period 3, and so the index i is
suppressed; if the three points of this orbit were to be distinguished,
we should label them S§3, 5:23 , and Sg’.

The common boundary of the basins of 28 and S is defined by
the inset or stable manifold of a period 3 saddle D3 marked by small
hollow triangles, as illustrated in Figure 2. The tails of these two
basins wind around 28 and S° repeatedly, becoming infinitely thin as
they accumulate along the basin boundary of 16, This accumulation
is seen in the detailed portrait Figure 1b, and can be inferred from
the existence of heteroclinic points lying in both the outset or stable
manifold of D (indicated by the dashed curve in Figure 2) and the inset
or stable manifold of D3 (solid curves). For example, the heteroclinic
point numbered 1 has as its image the point 5. Since both manifolds
are invariant, all the pre-images of point 1 are also heteroclinic points,
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and these pre-images accumulate at D.

As noted previously, the system at k = 0.05 and B = 0.0574 is very
close to a saddle-node bifurcation. Consider the effect of disturbing
this incipiently unstable system from an orbit settled on the marginally
stable attractor 1.S. A disturbance might be a small step increment of
the parameter B to a value beyond the saddle-node disappearance of
15 at B ~ 0.05738; for simplicity, we consider instead a disturbance
of the phase space coordinates which displaces the orbit at ¢ = 0 from
1S to a point below the inset of D and into the intermingled basins
of 25 and S3, while keeping the system parameters fixed at k = 0.05
and B = 0.0574. Following such a disturbance, a transient takes the
system eventually to either 28 or 53: and if the disturbance be just
barely enough to move the system below the inset of D, to the region of
most finely intermingled basins, then the attractor eventually chosen

will depend very sensitively on the size of the disturbance.

Under repeated trials, with disturbances uniformly distributed trans-
verse to and below the inset of D, well-defined probabilities may be
assigned to the two outcomes 25 and 3. If these disturbances always
put the system near D, so that a local linear approximation of the dy-
namics is admissible, then the probabilities can be determined from
the spacing of heteroclinic points in any fundamental neighborhood of
the outset of D defined by two heteroclinic points, H and its image
H* under one iteration of the Poincaré map. From Figure 2 we in-
fer that there will be three additional heteroclinic points between any
such H and H*; the proportions of the two basins between H and H*
will be the same for segment HH* as for all its forward and backward
images near D, since each iteration forward expands segment HH*
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by ), the expanding eigenvalue of the saddle D. Therefore any range
of disturbance sizes which includes several images of this fundamental

neighborhood will be divided in approximately the same proportions
as HH™ itself.

To illustrate, we take the heteroclinic points 1 through 8 in Figure 2.
Table 1 gives the coordinates of the eight heteroclinic points and the
distances between them. Using points 1 through 5 gives an estimate
of 91% 25 outcomes and 9% S° outcomes; using points 4 through 8
gives 92% and 8%. A numerical experiment starting 200 orbits evenly
spaced along a small interval of the outset of D very near to and
below D gave 22 orbits settling to 53 and the remaining 178 to 2S.
Thus the probabilities estimated from heteroclinic points are roughly
correct, with the points closer to D giving a slightly better estimate.
For reference, the grid points in each basin were counted in Figure 1b,
giving 12397 points in the basin of 15, 3328 points in the basin of the
period 3 attractor 53 and 24676 points in the basin of 28. Thus the
probability of SSoutcome is 3328/(3328 + 24676) ~ 12%.

The heteroclinic points in this example were chosen in a region of
phase space where the basin structure is relatively coarse and clearly
distinguishable. It is easy to imagine applications in which the finer
basin structure near D would be very difficult to determine experi-
méntally. On the other hand, in more general systems heteroclinic
points far from the incipient saddle-node might give poor estimates of
the outcome probabilities and heteroclinic points nearer to the saddle-

node would be preferred if available.

Our second example occurs in the symmetric twin-well Duffing os-
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cillator

i+ki—z+2°=Asinwt (2)

derived from a quartic potential V(z) = 22/2 — z*/4 having two wells
with minima at £ = £1 separated by a smooth potential barrier with
maximum at z = 0. Under weak forcing there are two stable solutions,
a periodic orbit encircling each potential minimum. Under increased
forcing amplitude A, with w less than the natural frequency wp = V2
for small undamped, unforced oscillations, the softening effect of the
smooth potential barrier causes a familiar nonlinear resonance, re-
sulting in a second coexisting attractor in each well. The response
amplitude of this second periodic motion measured from the poten-
tial minimum is larger than that of the original attractor; the larger
amplitude motion will be called the resonant motion.

The region in (w, ) control space where this occurs for equation (2)
with damping k = 0.25 is shown in Figure 3. The resonant periodic
attractor is created upon crossing the fold bifurcation arc f while
increasing the forcing amplitude 4. Further increasing A will cause a
jump to resonance if, for example, the fold arc F is crossed between
the cusp point P and point S in Figure 3; the motion does not escape
from its potential well, but is recaptured by the resonant attractor in
the same well.

The remaining pattern of bifurcation arcs has been elucidated by
Thompson (1989) in his study of conditions leading to escape from
confinement within a potential well in an oscillator of Duffing type
with a single, asymmetric potential well. For example, the resonant
periodic attractor doubles it period as the flip bifurcation arc (broken
curve) is crossed, and further period doublings lead to a chaotic at-
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tractor as the bifurcation arc G is approached. Upon crossing G to the
left of R (i.e. for w < 1.02) the chaotic attractor undergoes a chaotic
blue sky catastrophe, and the ensuing transient is always recaptured in
the same well by the coexisting nonresonant periodic attractor. This
is the chaotic saddle catastrophe described by Stewart (1988). On
the other hand, crossing G by increasing the forcing amplitude A to
the right of @, there is no coexisting attractor in the same well, and
so the one-well chaotic attractor explodes to a large chaotic attractor
whose orbits visit both potential wells. In other words, orbits escape

confinement to a single well.

Here we are particularly interested in the bifurcation behavior cross-
ing G in the broken segment between R and @, seen more clearly in
Figure 3b. Corresponding phase portraits are shown as Poincaré sec-
tions at angle £ = 0 in Figure 4. For Figure 4a and 4b, the parameter
values w = 1.069, A = 0.2110 were chosen near the maximum A value
for which two attractors coexist in each well. To the right of the hilltop
saddle 1D (empty circle near the origin z = y = 0) are the nonres-
onant attracting fixed point 1S very near the saddle 2D in its basin
boundary, and a chaotic attractor containing the inversely unstable
fixed point 2I left behind when the resonant fixed point 25 doubled
its period at A ~ 0.194. To the left of 1D are the corresponding
attractors and fixed points of the left potential well. The basins of
the four attractors are indicated by exhaustively solving equation (2)
numerically for all initial conditions on a 201 x 201 grid and marking
each point according to the results: no dot for a point in the basin of
15 light grey dot for the basin of 16" in the left well; medium grey dot
for the basin of the right well chaotic attractor; and dark grey dot for
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the basin of the left well chaotic attractor. In Figure 4b, the chaotic
attractor is seen to be very close to its basin boundary, which includes
a period three saddle D3 indicated by three small triangles. The blue
sky catastrophe is a boundary crisis (Grebogi et al. 1983) at which
the chaotic attractor touches the unstable periodic orbit D3; indeed a
very similar event has been described for the Henon map by Grebogi
et al (1987). We refer to D3 as the destroyer in this bifurcation.

Figures 4c and 4d show the corresponding phase portraits just after
the chaotic blue sky catastrophe which was incipient in Figure 4b.
After this bifurcation, the region formerly occupied by the basin of the
chaotic attractor is now an apparently tangled mixture of the basins of
1S and 18’ In particular, if the system at w = 1.069 and A = 0.2110
with an orbit on the chaotic attractor is suddenly disturbed so that
A is instantaneously stepped to 0.2116, it is clear that the outcome
may be either 1S (recapture in the same well) or 1S’ (escape to the
opposite well), depending very sensitively on the initial position in the
former chaotic attractor. Equivalently, if the initial position is fixed
and the system experiences a disturbance AA which moves A across
the bifurcation arc G between R and @), the outcome will depend very
sensitively on the exact size of the increment AA. As with our first
example, we can assign well-defined probabilities to the two outcomes:

clearly the probability of escape is much lower in Figure 4c¢ than in
Figure 4d.

Figure 5 shows the structure of invariant manifolds governing the
bifurcation at w = 1.02, very near the lowest frequency at which there
is a nonzero probability of escape. It should be noted that unlike
Figure 2, Figure 5 shows only parts of the invariant manifolds: even
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within the region depicted in Figure 5, many parts of the invariant
manifolds are not shown, so as to highlight the essential features. For
example, only four disconnected pieces of the inset in (1D) of the
hilltop saddle 1D are shown: one piece (two branches) approaching
1D itself, plus three pieces of parabolic shape passing through points
1 and 2, 3 and 4, 5 and 6 respectively. Since the inset and outset
of 1D intersect, they form a homoclinic tangle, so infinitely many
additional pieces of the inset in (1D) must exist, including pieces
which accumulate on the four pieces shown. Futhermore, only one
branch of the outset of D? is shown, and although some homoclinic
intersection points are clearly visible, the outset is folded so closely
onto itself that it would not be possible to separate its layers without
magnification. A more complete view of the global structure can be
aleaned from Stewart (1988), Ueda et al. (1988), or Guckenheimer
and Holmes (1983). The apparently fractal basin structure in Figure
dc attests to the existence of portions of in (1D) not shown in Figure
5. Although in (1D) is not a smooth basin boundary in the sense of
Grebogi et al. (1987), any small neighborhood of any part of in (D)
will surely contain points in the basins of both 15 and 1§': this fact
leads us to a sufficient condition for the outcome of a chaotic blue sky

catastrophe to be indeterminate.

The possibility of two outcomes exists because there is a transverse
heteroclinic intersection between the outset of the destroyer D3 and
the inset of the hilltop saddle *D, indicated in Figure 5 by the het-
eroclinic points numbered 1 through 6. Since the inset of 1D is the
basin boundary shared by 15 and 187, this heteroclinic intersection
implies that a transient leaving the former chaotic attractor following
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the outset of D® may lie on cither side of the knife edge, the inset of
1D. The short segment of solid arc in Figure 3 passing through point
R indicates the (w, 4) locus of a heteroclinic tangency in (1D) N out
(D3), where points 1 and 2 would coincide. For parameter values
(w, A) above this short segment of solid arc through R, there is per-
sistent heteroclinic intersection, and thus surely the outset out (D%
includes points in the basins of both 1S and 1S’. On the other hand,
for parameter values (w, A) below this segment of arc, the heteroclinic
intersection shown in Figure 5 will be absent; but there may be a
heteroclinic intersection of out (D%) with a portion of in (1D) not
shown in Figure 5. Thus for the outcome to be indeterminate, it is
sufficient but not necessary to cross the bifurcation arc G to the Tight
of point R. In fact, the outcome does become determinate Just a small
distance to the left of point R.

As noted above, transverse homoclinic intersection of the inset and
outset of the hilltop saddle guarantees that the basin boundary be-
tween 1S and 197 is tangled. Indeed, the inset of 1D cannot hetero-
clinically intersect the outset of D3 without homoclinically intersecting
the outset of 1D, so in this regime an indeterminate blue sky catas-
trophe is always governed by a fractal basin boundary. This implies
a qualitatively greater degree of uncertainty than in our first exam-
ple, which was governed by a heteroclinic structure but no homoclinic
structure. For instance, there is here a thick Cantor-like set of dis-
turbance sizes for which the outcome will be infinitely sensitive to the
disturbance size. In our first example, the sensitivity was infinite only
for a denumerable set of disturbance sizes, related to the denumerable
sequence of heteroclinic points.
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The fractal basin structure in the present example means that in
principle the probabilities of the two outcomes will be much harder to
estimate from knowledge of a few heteroclinic points. By comparing
Figure 4d and Figure 5, it is clear that not all points on the outset of
D3 between heteroclinic points 1 and 2, say, will settle to 15/ nor will
all points between 2 and 3 end up on 15, In addition to the spacing of
heteroclinic points such as 1 through 6, one would also need to know
the proportions to which the basins are mixed in the fractal structure
created by the homoclinic tangling of 1D. Near 1D the local linear
theory would be applied to determine the basin proportions locally,
but we cannot in general expect those local proportions near 1D to
be correct near D3. So the spacing of heteroclinic points 1 through 6
gives only a crude estimate of outcome probabilities, and it would be

quite difficult to refine this crude estimate.

This difficulty in estimating the outcome probabilities is due to the
tangling of the outcome basins, and is unrelated to the fact that the
disappearing attractor is chaotic. Thus the same considerations would
apply to the indeterminate saddle-node bifurcation with fractal out-
come basins discovered by Thompson and Soliman (1990). We note
that a similar bifurcation occurs in equation (2) crossing the fold arc
F between Q and S, where S is defined by a heteroclinic tangency of
the inset of 1D with the outset of 2D. In Figure 3, the locus of this
tangency in (w, A) is indicated by a short segment of arc just below
and nearly parallel to the arc defining point R. Indeed Figure 5 shows
2D lying very close to the outset of D3, and their outsets are almost
parallel in the region near points 1 through 6.

A rough estimate of the probability of escape can be derived as
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follows. As in the previous example, we have chosen the heteroclinic
points 1 through 6 for convenience: they correspond to the coarsest,
most readily apparent structure in Figure 4c. However, for accurate
estimation of probabilities, pre-images much closer to D® would be
preferred. The coordinates and distances are given in Table 2. For
instance, under the lowest order assumption that all points between 1
and 2 lead to escape while all points between 2 and 3 lead to recapture
(i.e. ignoring the fractal basin structure), roughly 9% escape outcomes
are estimated. (Since the destroyer has period 3, we should consider a
fundamental neighborhood of its outset between a heteroclinic point
H and its image H™ under three iterations of the Poincaré map; the

point numbered 3 is the image of point 1 under one iteration.)

A numerical experiment was performed starting from 200 orbits set-
tled on the chaotic attractor at w = 1.02, 4 = 0.1971 for more that
100 iterations; then increasing A to 0.1972 and iterating until each of
the 200 orbits settled to either 1S or 18’. The results were 25 escapes
to 18’ and 175 recaptures by 1S.

To summarize, we have presented two examples of bifurcations in
which an attractor undergoes a complete loss of stability and the sys-
tem jumps to one of two other coexisting attractors. In both cases
the attractor ultimately chosen depends very sensitively on the pre-
cise details of how the bifurcation is realized, for example the precise
size of a step increment in the bifurcation parameter. Although both
examples are strictly speaking deterministic, in practice we may say
that the outcome of the bifurcation is indeterminate. The outcomes
are governed by the structure of invariant manifolds and well-defined
probabilities can be assigned. In one case, where only a relatively sim-
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ple heteroclinic structure occurs, the probabilities can be estimated
from knowledge of just a few heteroclinic points. In the other case,
both heteroclinic and homoclinic structures occur, the outcome basins
have a more complicated, fractal boundary, and estimating probabil-
ities is substantially more difficult.

We are grateful to Ralph Abraham, Michael Thompson, and Yan-
nis Kevrekidis for stimulating discussions. A numerical survey of the
twin-well Duffing equation by Caryn Sarfati gave us the basis for Fig-
ure 3; her work was supported by the Science and Engineering Re-
search Semester Program of the U.S. Department of Energy. H.B.S.
acknowledges with gratitude the support of the Applied Mathemati-
cal Sciences program of the U.S. Department of Energy. Y.U. would
like to acknowledge use of the facilities of the Computer Center of the

National Institute for Fusion Science at Nagoya.
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Table 1. Distances between heteroclinic points in Figure 2.

Point T y distance {n,n + 1)

1 -.945 509 032
2 -.957 479 284
3 -1.010 200 048
4 -1.011 152 385
J -.936 -.226 054
6 -911 -.274 405
7 ~.976 -.501 067
8 -.009 -.o07
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Table 2. Distances between heteroclinic points in Figure 5.

Point T Yy distance (n,n + 1)
1 .230 -.017 016
2 241 -.006 .160
3 365 .095 014
4 376 103 062
5 426 139 .006
6 431 142
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List of Figures

. Attractor-basin phase portrait of Duffing’s equation with k& = 0.05
and B = 0.0574 on a grid of 201 x 201 points. White grid locations
are in the basin of the period three subharmonic §2 (filled triangles);
black grid points are in the basin of the fixed point 25 (circle near
the origin); grey grid points are in the basin of the marginally stable
fixed point 1S (hollow circle in magnified box).

. Invariant manifolds and heteroclinic points governing the outcome

of jumps from the incipient saddle-node at k = 0.05 and B = 0.0574.

. Bifurcations of the twin-well Duffing oscillator with damping & =
0.25 near primary resonance for motions confined to one potential

well.

. Attractor-basin phase portraits of the twin-well Duffing oscillator
(a), (b) at w = 1.069, A = 0.2110, showing a periodic and a coex-
isting chaotic attractor in each well; (¢) just after chaotic blue sky
catastrophe, at w = 1.02, A = 0.1972; (d) just after chaotic blue sky
catastrophe at w = 1.069, A = 0.2116.

. Invariant manifolds and heteroclinic points governing the outcome

of indeterminate blue sky catastrophe at w = 1.02, A = 0.1972.
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