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Abstract

Two- and three-dimensional behavior of the R-T and K-H in-
stabilities is examined with a newly developed hydrodynamic code
CIP. The mushroom structure owing to the K-H instability is quite
different in two and three dimensions. The simulation without grav-
ity show a similar behavior and hence this difference between two
and three dimensions does not originate from the R-T instability.
This difference cannot be explained by a linear analysis on the K-H
instability also.



The Rayleigh-Taylor(R-T) instability has been a subject of pri-
mary interest for many years in many fields of physics. For example,
it may be an origin of fuel-pusher mixing during implosion process
in inertial confinement fusion (ICF).1*? Recently, the interest in this
instability has grown in astrophysics because it may cause a mixing
of materials in Super Nova 1987A as suggested from the observation
data.>* Although the R-T instability is well known and has been
studied for many years, direct comparison between two- and three-

dimensional simulations did not appear yet in open literatures.

We have developed a new general hyperbolic solver CIP (Cu-
bic Interpolated Pseudoparticle) method and applied it to a number
of test problems.”~® It has been proved that the CIP can give a
less-diffusive and quite accurate result’ without any flux limiting
procedure frequently used in most of modern schemes.

In this paper, we apply the CIP method to the classical R-T
instability in two and three dimensions. We will show here that a
mushroom structure owing to the Kelvin-Helmholtz (K-H) instability
1s quite different in two and three dimensions. This difference cannot
be explained by a linear analysis.

Let us first describe a configuration used in the simulation. Ini-
tially two fluids are placed at rest contacting with each other. The
density of those fluids are p = 1.0 for 0 < z < 0.3 and p = 0.3
for 0.3 < z. The gravity ¢ is imposed in the x-direction and its
magnitude is 1.0. Pressure is obtained from a static force balance
Op/dx = pg starting from p = 0.1 at = 0. The mesh is rectangular
in every directions, number of meshes is 60(z) x 15(y) x 15(z) and
its spacing is Az = 0.01. The spacing in other directions is changed
case by case because of the reason discussed below. Boundary is free
in the x-direction and mirror in the y- and z-directions. In order to
select the instability mode, velocity perturbation of imcompressible
mode (V7 - ¥) is imposed around the interface. Its wavelength in the
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y- and z-directions is chosen so that the system size in the y- and
z-directions is equal to a half wavelength.

Figures 1{a) and 1(b) show the time sequence of density con-
tours in two- and three-dimensional simulations, respectively. In
both cases, initial perturbation velocity is set to 0.8. It is clear
that the mushroom structure in the three-dimensional case is much
smaller than that in the two-dimensional case. If the wavenumber in
y and z directions is denoted by k£ and [, respectively, the growth rate
of the R-T instability is proportional to (gk)!/? and [g(k? +(%)}/*]}/2
in two and three dimensions. Thus, in three dimensions we must use
21/2 times smaller wavenumbers that make the growth rate equal to
that in two dimensions. In reality, wavenumbers in Fig.1(b) are 21/*
times smaller than that in Fig.1(a). This has been done by using
Ay = 0.01 in two dimensions and Ay = Az = 0.01 x 21/2 in three
dimensions. If we compare the case having the same wavelength, the
difference is even larger because the growth rate of the R-T instabil-
ity is 21/2 larger than that in two dimensions and the K-H instability

does not have enough time to grow.

It is widely recognized that the mushroom structure originates
from the K-H instability. In order to seperate this effect from the
R-T instability, we set ¢ = 0 to eliminate the R-T instability. In this
case, the interface moves with the speed intially given. The relative
motion of two fluids at the interface induces the K-H instability. The
numerical results are shown in Fig.2, where 2(a) and 2(b) are again
the two- and three-dimensional results. This result is quite similar
to that in Fig.l. As is easily understood, however, it takes much
longer time to reach the final state at ¢t = 0.71 in Fig.1 because the
motion is not accelerated by the R-T instability.

In order to explain this difference, we derive a linear disper-
sion relation for the K-H instability. In the configuration shown in
Fig.2(a), the K-H instability occurs on the surface of a plane whose
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thickness 1s 2a, whereas in Fig.2(b} the K-H instability occurs on
the surface of a cylinder whose radius is a. Therefore the dispersion

relation is written as?1?

w 1

Pt (L)

where w 1s the complex frequency ,V the relative velocity of two
fluids at the interface and & is the wavenumber. Here, F is given by

_ 1t ea:p(cha)]]/Q’ @)

F p2 1 — exp(2ka)

in two dimensions and

_ 1~ Ka(sa)lolka) g g '
F= p2 Ko(ka)li(ka) )

in three dimensions. In Eq.(2"), Ky, Ky, Iy, I; are the zeroth- and
first-order modified Bessel functions of the first and the second kind,
respectively. In Eqgs.(2) and (2’), F' is imaginary, and hence this wave
propagates on the surface and grows. The growth rate is depicted in
Fig.3, for p3/p1 = 0.3.

In the configuration shown in Fig.2, the seed of the K-H in-
stability is given at the leading edge of the heavier fluid and hence
xa ~ 1. At this wavenumber, the growth rate in three dimensions
is about 72% of that in two dimensions. It seems that this differ-
ence in the growth rate may explain the difference between Fig.2(a)
and (b). We can confirm this reducing the initial velocity of the
perturbation by 72% in two dimensions which corresponds to the
reduction of V' in the dispersion relation Eq.(1). Since w is propor-
tional to V', this reduction will make the growth rate equal both in
two and three dimensions. In Fig.2(a) this reduction has already
been done. If we use the velocity V = 0.8 without reduction in two
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dimensions, the mushroom structure develops even wider in the y-
direction. We should note that we have used Ay = Az = 0.01 in
Fig.2(b) in contrast to Fig.1(b). By this choice, we can compare the
two- and three-dimensional result with the same a in Egs.(2) and
(27).

From this comparison, we may conlclude that the difference in
the mushroom structure between two and three dimensions cannot
be explained by the linear analysis. Probably, it is attributed to the
nonlinear process. It is natural to imagine that the rolling up of the
fluid stays within a plane of two dimensions in two-dimensional case,
whereas the rolling up in three-dimensional case can escape in other
direction and may not grow so large. In this paper, we will not treat
the process in detail but will be discussed in future.

All the simulations have been done on a UNIX workstation Data
General AV300.
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Fig.1 :
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Figure Captions

Time sequence of density contours in the R-T instability when
¢ = 1.0. Initial velocity perturbation V is 0.8. (a) Two-dimen-
sional result with Ay = 0.01. (b) Three-dimensional result with
Ay = Az = 0.01 x 21/

Time sequence of density contours without gravity. (a) Two-
dimensional result with Ay = 0.01 and V = 0.8 x 0.72. (b)
Three-dimensional result with Ay = Az = 0.01 and V = 0.8.
The growth rate of the K-H instability. (a) For a surface wave
on a moving plane. {b) For a surface wave on a moving cylinder.



[€°0=1

IT°'0=1%

(q)

.

o

14°0=1

[N |



AN |




(b)

10.0

Ra

Fig.3




