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Abstract

A review of the structure of chaotic attractors of periodically forced second-
order nonlinear oscillators suggests that the theory of fixed points of trans-
formations gives information about the fundamental topological structure of
attractors. First a simple extension of the Levinson index formula is proved.
Then numerical evidence is used to formulate plausible conjectures about ab-
sorbing regions containing chaotic attractors in forced oscillators. Applying
the Levinson formula suggests a fundamental relation between the number of
fixed points or periodic points in a section of the chaotic attractor on the one
hand, and a topological invariant of an absorbing region on the other hand.

1. Introduction

The topological theory of fixed points of transformations has a long and fruitful
history of application to the study of nonlinear oscillations.

Consider a dynamical system defined by the following differential equation in a
Banach space E with solution x(xg,1) € E:

x=f(x,t) fort>0 (1)
with initial condition
X(O) =Xg € E
and suppose that f(x,%) is periodic in ¢ with period L. Then the transformation T
defined by
T(x(xo,t)} =%(x0,t + L)

is the Poincaré map of the differential equation (1); this transformation completely
characterizes the behavior of solutions of (1).

Levinson [18] introduced a broadly useful category of systems, those which are
dissipative at large displacements. A system defined by (1) is said to be of class D if
there exists an R such that for all xg

Hmsup ||x(xe, t)| < R.
t—oo
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Levinson showed in the case E = R’ that for a suitable integer & > 0 the set
J =N, T"* B,

that is, the infimum of images of the ball Bp of radius R, is the maximal bounded
invariant set of the differential equation (1); see Krasnoselskii and Zabrieko [16,839] for
a proof in the case of a completely continuous evolution operator in a Banach space.
The goal of applied dynamical systems theory is to obtain, for a given equation(1), a
decomposition of J into a finite number of disjoint transitive invariant subsets, called
basic sets, among which are the attractors. Roughly speaking, attractors are the basic
sets which absorb initial sets of positive measure; see Milnor [20] for a discussion of the
definition of attractor.

The fixed points of the transformation T are periodic points of T', and correspond
to periodic solutions of period nL of the system (1). Levinson also proved a useful
theorem concerning the total number of fixed points of T" for E = R?, based on the
theory of index of fixed points. Fixed points of a transformation T of R* may be divided
into four types, according the characteristic roots of the linear part of T near the fixed
point. Since T is orientation-preserving, the characteristic roots A, A; near any fixed
point are constrained by A;A; > 0. It is usual to assume that |);| # 1 so that multiple
fixed points are excluded; typically in applications if one or both roots have magnitude
1, then a small change in the parameters of equation (1) will separate the fixed points.
Hence the four possible types of fixed peints are:

completely stable, Ml < 1A <1,
completely unstable, A1l > 1, |A2) > 1,
directly unstable, A>1>XA>0,
inversely unstable, A< 1< <O

Now suppose that T™ has only a finite number of isolated simple fixed points, and let
the number of fixed points in each of the four categories be denoted by C(n), U(n),
D(n) and I(n) respectively. Levinson proves that

C(n)+U(n)+ I(n) =14 D(n).

This is sometimes called the Levinson index formula. The proof rests on the notion
of rotation of the field of vectors connecting x € E to T"x. Birkhoff, who used this
notion to prove a famous geometric theorem of Poincaré 3], called these point-image
vectors. As the point x makes one circuit around a closed curve in the plane, the point-
image vector makes a net rotation 27k which is an integer multiple of 2r. The sign of
k indicates whether the point-image vector has rotated in the same (4) sense or the
opposite {—) sense as the traversal of the closed curve by x. The integer k is called the
index of T on the closed curve. Because the point-image vector is directed inward on
the circle of the radius R, the index there is 1. On a small circle surrounding a fixed
point C, U, I, or D the rotation does not depend on the circle, so the point has index

mdC=mdU=mndI=1
ind D=-1
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Note that an inversely unstable point of 7™ is a directly unstable point of 727,

The Levinson index formula is useful in applications, for example in verifying
whether all fixed points of a given transformation have been identified. In particu-
lar, the existence of at least one periodic point of each period is guaranteed, although
it may not be stable.

Levinson’s proof relies on the ball By to construct a bounded open set 2 such that
T(09) C 2. Recall that a trapping region or absorbing set {2 is a bounded open set such
that T(Q U 8Q) C Q. By analogy, if T(0Q) C 2 we may refer to 0 as an absorbing
boundary. For flows, 0} is an absorbing boundary if and ozly if §} is an absorbing set;
but this equivalence does not hold for a general discrete time transformation T. To
prove the index formula, only an absorbing boundary is required, but in applications
the set (2 is usually absorbing as well.

In the applications discussed below, we require a simple generalization of Levinson’s
theorem involving bounded open domains 2 C R? with a finite number of holes. We
suppose that each component of 3 is a simple closed curve. Following Levinson we
assume that f(x,f) is analytic in x, which is true for the applications considered here.

THEOREM 1. Suppose T™ has a finite number of fixed points, none of which lies in
0%, and suppose T{0Q) C Q. Then the rotation of T on Of2 (that is, the rotation
on the outer boundary plus the rotations around all hole boundaries) equals the Fuler
characteristic yYq of the domain (2, and

Ca(n) + Ua(n) + Ia(n) = Da(n) + xa
where in each case only the points in ) are counted.

Proor: We follow Levinson, who uses an idea from Birkhoff {3]: the net rotation of any
continuous field of point-image vectors along a smooth curve I' varies continuously as the
curve is displaced to a different curve I'' with the same endpoints, provided that neither
I" nor I'' nor the region between them contains a fixed point of the transfarmation T
which defines the point-image vector field. Let us agree to measure the rotation in units
of 27, so the rotation on a closed curve equals the index. I T' is a closed curve, the
rotation of the vector field in one trip around T' is always an integer; so as I' is deformed
to another closed curve [V the rotation varies continuously yet is always an integer, and
hence must remain constant.

Now consider the domain €} containing & holes, and consider T from inside one such
hole {2; with boundary 3§; which is a subset of d€2. For any compact simply connected
Q, it is possible to extend the definition of T from 8} continuously to §2; in such a
way that there is at most one fixed point in £4; since T maps each point in 82, to
a point outside £, it is clear that exactly one fixed point, a completely unstable one,
is needed. Thus we alter the problem by removing h holes and adding k completely
unstable fixed points. After this modification, the new domain has a simple closed curve
I’ as its boundary.

To this modified problem we apply Levinson’s argument directly. Enclose each
fixed point within I' by a small circle, and connect the circles by cuts which form a tree,
that is, without forming any closed circuit of cuts. The union of these circles and cuts
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can be regarded.as a simple closed curve I, to which I can be deformed continuously
without crossing any fixed points. Since T maps I to the interior of £,

ind (T,T) = 1 = ind (T,T").

Now the cuts in I make no net contribution to the rotation of T on I, since each cut
is traversed once in each direction, and the contributions of the two traversals cancel
each other. Therefore the rotation of T on I is determined by the rotation on each
small circle, that is, the index of each fixed point:

ind (T,T') = Co(1) + Ua(1) + h + In(1) — Da(1)

where the fixed points in the original domain 2 are counted, and the additional points
for the h holes are indicated explicitly. Recalling that the Euler characteristic yo = 1—A
proves the theorem for n = 1. The same arguments apply to T™ in place of T, proving
the general case. ‘

The Levinson index formula has been generalized to the case of finite-dimensional
Euclidean space E = R by Shiraiwa [26]; thus it may even be applicable to infinite-
dimensional systems for which the notion of rotation can be defined, such as completely
continuous evolution operators. Examples would include parabolic initial-boundary
problems, and delay-differential equations.

In what follows we consider examples of nonlinear oscillators in R? for which chaotic
attractors are at least well-documented numerically. There are as yet no rigorous proofs
that chaotic attractors exist for such systems, since the theoretical possibility of confus-
ing them with stable periodic solutions of period nL with n very large is quite difficult to
exclude. Nevertheless, the numerical evidence for chaotic atiractors is very convincing,
and by concentrating on periodic solutions for small n, the structure of these apparently
chaotic attractors can be to some extent understood.

2. Uniformly dissipative forced oscillators

Among the most extensively simulated of nonlinear oscillators has been the forced
oscillator of Duffing type

4+ ki+az+a’=A,+ Asinwt. (2)

In the case Ay = 0 and a = 0 (corresponding for example to a critically loaded Euler
support column), an essentially complete survey of the two parameters k and A has been
reported by Ueda[31]. For o < 0 (Euler column loaded past the buckling point, twin-
well potential), three independent parameters need to be surveyed; important results
have been obtained by Ueda et al. [33], Holmes [13], Moon and Holmes [21], Holmes
and Whitley [14], Ueda et al. [34,35]and Stewart [27], although a complete survey
is still lacking. In this twin-well potential problem, a fundamental question is what
conditions are required for a solution to escape from confinement in one well; this issue
has been addressed by Thompson[29] for the asymmetric single-well potential oscillator

i+ fi+z—2° = Fsinwt; (3)

See also refs. [35] and [28].



5

Numerical studies of equations (2) and (3) show robustlong-term behavior governed
by persistent homoclinic intersections of invariant manifolds of unstable periodic points
of the Poincaré map, defined by sampling stroboscopically at ¢ = 27n/w,n = 1,2,...
The unstable manifold or outset consist of solutions asymptotic as t — —co to a periodic
point, while the stable manifold or inset consists of solutions asymptotic as ¢ — 400
to a periodic point. Chaotic attractors in oscillators of Duffing type always appear to
coincide with the closure of the outset of some unstable periodic motion of either the
directly or indirectly unstable type.

Sometimes the existence of a homoclinic intersection can be proved. For example,
in the twin-well Duffing oscillator it can be proved by a Melnikov analysis that there are
persistent homoclinic intersections [10;pp.191ff.]; but while these guarantee horseshoe-
like dynamics, it may still happen that the attractors are regular and periodic, with
horseshoes governing only the transient behavior. This can happen for example when
a basin boundary becomes tangled; see [11,6] for examples. It may also happen in the
Duffing equation that chaotic attractors are observed numerically in parameter regimes
where the invariant manifolds accessible to Melnikov analysis have no intersection; in
such cases, other homoclinic intersections occur, belonging to invariant manifolds for
which Melnikov analysis is not practical.

Thus at present, in ascribing long-term aperiodic behavior to the existence of a
chaotic attractor in Duffing’s equation, one relies on careful interpretation of the evi-
dence of numerical simulations. In practice this requires exploratory numerical study of
bifurcations of chaotic attractors, particularly the bifurcations which create or destroy
a chaotic attractor — the boundary crises [7] or blue sky catastrophes [30;Ch.13]. By
determining the numerical requirements for confirming such bifurcations, one learns by
implication the requirements for identifying a chaotic attractor (as distinct from chaotic
transient behavior).

In what follows, we propose to consider the insets and outsets of the unstable
periodic motions with the lowest subharmonic number, with the goal of understanding
under what conditions a tangled outset is contained in a chaotic attractor.

In the simplest case, it can happen that a chaotic attractor contains exactly one
unstable orbit of lowest subharmonic number. In the Poincaré map, this orbit is always
an unstable periodic point of indirectly unstable type, corresponding to a half-twist over
the period of the orbit. An example is shown in Figure 1, taken from ref.{33], showing
a Poincaré section in the x = {z,y = ) plane of equation (2) with & = 0, 49 = 0.08,
A =03, k=02, and w = 1. There are two attractors, a fixed point 51 and a chaotic
attractor containing the fixed point I' (standing for inversely unstable). There is also
an unstable saddle fixed point D! (directly unstable) with two positive multipliers; its
inset, or stable manifold (the thick curve through D'), separates the basin of 5 from
the basin of the chaotic attractor containing I'. Note that neither branch of the outset
of D! (thinner curve) is homoclinic (i.e. intersects the inset of D'); a positive distance
separates D! from each attractor.

Also shown in Fig. 1is an enlarged view of the invariant manifolds of I". These are
clearly homoclinic; since I has negative multipliers, each branch of the outset (denoted
by @ in the Figure) of I' is the image under the Poincaré map of the other braneh; so if
one branch is homoclinic, the other must be also. (‘This is of course not true for D-type,
i.e. positive multiplier periodic points.) The outset of I' is folded during each forcing
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Figure 1. Simply folded band chaotic attractor in the Poincaré
map of the forced Duffing equation, with part of the invariant
manifolds
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cycle by a simple folding action like that described by Réssler [22] in his synthesis of
the folded band attractor; Rossler also identified the dollar sign formed by the S-shaped
outset and the nearly straight portion of the intersecting inset as characteristic of the
simplest chaotic attractor. The Hénon map attractor {12] in the orientation-preserving
case also has this structure.; see also {23], [30}], [27], and [8].

Variants of this band attractor, in which the unstable periodic orbit of lowest
subharmonic number is a unique point I™ of period n, also occur commonly with n
greater that one; the corresponding chaotic attractor locus contains n disconnected
pieces. Each piece is similar in structure to Fig. 1, with the inset and outset of I™
forming a dollar sign, and one folding of the band is completed after n forcing cycles.
An example with n = 2 can be found in ref. [29].

A slightly more complicated attractor structure, occurring commonly in systems
with symimetry, contains three unstable orbits of lowest period; two have negative mul-
tipliers while the third has positive multipliers. This chaotic attractor structure is
predominant in the survey [31], whose results are summarized in the parameter space
chart of Figure 2; here eq. (2) is considered with @ = 0, Ag =0, w = 1, and the forcing
amplitude A is denoted B in Fig. 2. (Note that the case o =0, Ag =0, w # 1 can be
transformed to w = 1 by appropriate change of variables.)

A typical chaotic attractor is illustrated in Fig. 3, together with the locations
of the three fixed points 1D, 1I' and 2I', and the invariant manifolds of *D*. The
parameters here are k = 0.1, A = 12. Also depicted in Fig. 3 are small portions of the
insets and outsets of all three fixed points. The structure shows a dollar sign based at
111 and at 2I', both within a dollar sign based at !D!. There are heteroclinic Smale
cycles, with the outset of 1 D! intersecting the inset of each I, and the outset of each I
in turn intersecting the inset of ! D'. We note that in attractor structures such as Fig.
1 above, it is always possible to find a period two (or 2n) point I? whose two images
have dollar signs which are subordinated to the primary dollar sign in exactly the same
configuration as 1I! and 27! are subordinated to *D? in Fig. 3.

This attractor was presented as the “Japanese attractor” by Ruelle in*[24]. The
symmetric double-band structure of Fig. 3 is also predominant in eq. (2) for « < 0
(twin-well potential) whenever the forcing amplitude is large enough that a chaotic
attractor visits both potential wells. The same structure can also occur in single-well
motions provided the potential well is symmetric, as in the damped forced pendulum;
see for example ref. [23], where invariant manifold structures are described.

We note that the structure shown in Figure 3 will usually survive a small pertur-
bation of the symmetry, so that it is not a degenerate structure.

As with the simple band, the double band attractor structure can also occur as a
subharmonic, with one point D™ and two points 1I™ and 2I™, generating an n-piece
attractor.

In addition to the fixed points shown in Figure 3, there are only two additional fixed
points: a completely stable sink lying outside the left edge of the rectangular region in
Figure 3; and a directly unstable fixed point D' whose inset forms the boundary
between the basin of attraction of the chaotic attractor and the basin of the sink.
Since this inset is not tangled, the basin boundary has a regular global structure and
remains remote from the chaotic attractor. Thus it is not difficult to draw a closed curve
enclosing the chaotic attractor, and excluding the sink and all of the basin boundary, in
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such a way that the closed curve may be taken as 9 in Theorem 1. This implies that
in Q
Io(1) =2 = Da(1) + xo

as required. Note that the rotation of T on 99 equals xg = 1 for any simply connected
domain satisfying T(9€2) C £ containing the chaotic attractor and lying within its basin:
if ! can be chosen to contain no basic set other than the chaotic attractor, this suggests
that yo may be an invariant of the chaotic attractor.

More generally, numerical evidence suggests the following conjecture for chaotic
attractors of uniformly dissipative systems in R?, that is, systems for which div f(-,t)
is bounded above by a constant less than zero uniformly in x and t.

CONJECTURE 1. Suppose a uniformly dissipative system (1) has a chaotic attractor
which is generic in the sense that it does not touch its basin boundary nor is it on the
threshold of explosion in size, and let n be the least period of any periodic point in
the attractor. Then the chaotic attractor can be enclosed by a domain Q@ homotopic
to n disjoint separated balls containing no points of period n other than those in the
attractor, satisfying T(0Q) C Q, and the numbers of unstable periodic points in the
attractor (counting each of the n images) satisfy

Io(n) = Do(n) +n.

This would imply the following as a consequence.

COROLLARY. Every chaotic attractor in a uniformly dissipative system (1) in R? con-
tains among the periodic points of least period at least one indirectly unstable point.

3. Forced selfoscillators

A third attractor structure occurs in forced second-order oscillators, which are self-
oscillatory. To observe this structure we consider an oscillator of mixed Duffing-van der
Pol type

i—p(l—2%)% +2° = Acoswt (4)

as studied by Ueda and Akamatsu [33,32]. Figure 4 shows a Poincaré section of the
attractor at parameter values p = 0.2, A = 17, and w = 4, and parts of the invariant
manifold structure. Here the only period one fixed point is the completely unstable
point U' in the central region, at a distance from the attractor locus. The multipliers
of this fixed point are a complex conjugate pair in magnitude; the area expansion near
U! makes self-oscillation with 4 = 0 possible.

The lowest period of any unstable periodic point lying within the attractor in this
case is two, and there are four with positive multipliers IDg and 2D§, 7 =1,2, and four
with negative multipliers 1[; and 21?, 7 = 1,2. Here the subscript j identifies the two
images of a period two orbit; the eight points correspond to two pairs of orbits. D-type
points alternate with I-type points; each I point has a dollar sign homoclinic structure,
and there are Smale cycles of heteroclinic connections between the D and I points. This
is seen more clearly in Figure 5, where the cycles are considered in two groups; those
involving IDf and those involving 2D?. Each group shows an essential structure similar
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Figure 4. A Birkhoff attractor discovered by Ueda and Aka-
matsu in a forced oscillator of mixed Duffing-van der Pol type,
with invariant manifolds.

20
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Figure 5. Smale cycles in the structure of the Birkhoff attractor.
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to the double band of the Japanese attractor. The overall structure is a circular chain
of dollar signs connected by D points.

In fact the same structure underlies a chaotic attractor discovered by Shaw [25] in
a variant of the van der Pol equation of the form

I =y— Asinwi

y=-z+(1-2"). )

With A = 0 this is equivalent to the van der Pol equation without forcing. The usual
forced van der Pol would have the periodic forcing in the second equation, acting on
the acceleration, but here Shaw has moved the forcing to act on the velocity. (Although
chaotic transients are common in the conventionally forced van der Pol equation, chaotic
attractors are rare, and either velocity forcing or a cubic restoring force is necessary
to make chaotic attractors appear robustly in simulations.) In the Shaw-van der Pol
system, a decrease in forcing amplitude will cause the outsets of the I points to shrink
until, at some critical value, they become just tangent to the insets of the D points;
at lower forcing, the circular chain of cycles is broken, and the single attractor comes
apart, leaving a pair of period two band attractors, i.e. a subharmonic of the structure
of Fig. 1. This is illustrated in Fig. 13.9 of [30]; a similar bifurcation was reported in
[9].

The circular chain of dollar signs occurs in variants with different subharmonic
numbers. For example, it occurs in the forced pendulum whenever a chaotic attractor
exists whose motions go through top dead center, i.e. are not confined to a single
potential well. The dynamics in both the pendulum and the forced van der Pol systems
correspond to a situation anticipated by Birkhoff [4] in 1932; even though Birkhoff
discussed invariant sets without reference to attractors, the attractor of Figure 4 is
referred to as a Birkhoff attractor. In the full three-dimensional flow, with time
replaced by 8 = t/w(mod?2x), this attractor is a folded (fractal) torus.

For the Birkhoff attractor in Figure 4, it is believed that all periodic points of period
one or two are shown. Note that U! is also a period two point, and U(2) = U(1) = 1.
Consider a domain § bounded by a circle of large radius R, and excluding a small circle
of radius r containing U'. Along the outer and the inner circle, points are mapped to
the interior of §, so Theorem 1 applies; the rotation of T on 0} is zero, and

Do(2) = 4 = Ig(2)

as required.

Thus chaotic attractors in simple self-oscillatory systems may have either the struc-
ture of a pleated full torus, whose Poincaré section is contained in an annular domain
0, or that of a folded band, whose section is contained in a domain ) equivalent to n
balls. This motivates a conjecture corresponding to Conjecture 1 for systems which are
dissipative except near a single completely unstable fixed point of T'. Again we assume a
chaotic attractor which is generic in the sense that it does not touch its basin boundary,
nor is it on the threshold of an explosion in size.
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CONJECTURE 2. Let n be the least period of any periodic point in a generic chaotic
attractor of a system (1) which is uniformly dissipative except in a cylinder enclosing
the trajectory of a completely unstable fixed point U?. Then the Poincaré section of the
attractor can be enclosed in a domain 0 with T(0Q) C Q which is either homotopic to
n balls as in Conjecture 1, or is homotopic to an annulus surrounding U and contains
no other points of period n; in the second case,

Ig(n) = Dq(n).

As a corollary, we could again conclude that Ig(n) is at least one. The same is also
conjectured for systems such as the forced pendulum

6+ k6 +sinf = Ay + Asinwt (6)

which are uniformly dissipative on[0, 27) x (— R, R) with 0 and 2 identified and suitably
large R.

In other words, in systems of the types considered, every chaotic attractor is com-
posed of folded band dollar sign structures of homoclinic inversely unstable points of
lowest period.

4. Relation to one-dimensional non-invertible maps

In & different but related context, the above-mentioned corollaries concerning the
presence of an inversely unstable point can be proved for dynamical systems defined by
non-invertible iterated maps f(X) of an interval or of a circle

Xn+1 = f(Xn) (7)

Such maps approximate the dynamics of the chaotic attractors observed in the sys-
tems defined by differential equations (2) through (6) in regimes where areas contract
rapidly, for example at large values of the damping coefficient % in the Duffing and pen-
dulum equations. Unfortunately, a rigorous connection between one-dimensional non-
invertible map dynamics and two-dimensional diffeomorphism dynamics can at present
only be made under the assumption that the Jacobian determinant (area ratio) of the
two-dimensional map may be chosen arbitrarily small, as in [2]. For linearly damped

oscillators, the area ratio is
J= e—k2:'r/w

To make this small, either w must be small or k large. Small w means very slow forcing,
a regime of minimal interest. On the other hand, large £ means overdamping which
makes chaos impossible, as proved by Levi [17]. Thus there is at present no guarantee
that the following theorem about chaotic attractors of (7} can be applied to forced
oscillators, even though there are large regimes of equations (2}, (3), (5), and (6) where
chaotic attractor dynamics are well approximated by one-dimensional maps.
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THEOREM 2. Let f be a continuously differentiable non-invertible map of an interval
{or of a circle) having only generic fixed points. Suppose further that f is such that
the attractors of {7) are a finite collection of periodic points and closed subintervals (cf.
Theorem 2.4 of [15]). If the iterated map (7) has a chaotic attractor containing in its
interior an unstable fixed point D with f'(D) > 1, then the attractor also has in its
interior an unstable fixed point I with f'(I) < —1.

PRrooF: I D is in the interior of an attractor, then D must have at least one pre-image;
in case there are several, choose the first one to the right of D, and call it A.

Since f'(D) > 1, f rises above the bisectrix immediately to the right of D. There-
fore it must cross the bisectrix between D and A; if it crosses more than once, let B be
the crossing closest to D. Then f'(B) < 1.

There must be a preimage of B between D and B; indeed successive preimages of
B must be asymptotic to D from the right. If f'(B) were greater than -1, B would be
attracting, and the basin of attraction for B would accumulate at D. This contradicts
the hypothesis that the attractor containing D is a finite collection of intervals with D
in its interior. Therefore f'(B) < —1, that is, B = I.

A second theorem about one-dimensional maps shows that the behavior of one-
dimensional maps does not completely explain the presence of inversely unstable points
in forced oscillators. The following simple lemma is preparation for the statement of
the theorem.

LEMMA. Let f be as in Theorem 1, and suppose that an unstable fixed point D with
#(D) > 1 exists and is homoclinic, in the sense that there éxists an orbit Poy1 = f(Pn),
n=0-1,-2-3 . withPy =D, and imP, = D asn — —oo. (cf. [5]). Suppose
further that f has only a single relative extremum (critical point) in the interval from
D to P_,. Then there is a fixed point I with f'(I) < 0 lying between the critical point
and P._l.

THEOREM 3. Let f be as in the previous lemma. Then if I lies in the interior of a
chaotic attractor, I also lies in the same attractor, as does the interval from D to I.

PROOF: Suppose without loss of generality that P_; is to the right of D. Consider
P_, the pre-image of P_;, that is, the second pre-image of D in the homoclinic orbit.
Since there is no relative extremum of f between I and P_;, the slope there is always
negative, so P_, must lie not between I and P_;, but between D and 1.

Now the critical point C also lies between D and I, so in addition to P_; there
is a second point Q_, with f(Q_s) = P_;. Either P_; or Q_; lies between € and I.
But since f' < 0 between C and I, any chaotic attractor including I must include the
whole interval from C to I, and hence includes a neighborhood of either P_3 or Q.
By invariance the attractor includes a neighborhood of D, which proves the theorem.

The significance of Theorem 3 can be appreciated by referring to an example il-
lustrated in Fig. 6, computed from the forced Duffing oscillator eq. (2) with Ae =0,
a=-1,w=1, k=025 For arange of A values near 0.19, there are within each
potential well two attractors, due to nonlinear resonance. Each of these attractors is
confined to a single potential well. We consider only the right hand well, with z > 0.
Within this well there are two basins of attraction separated by a basin boundary
which is the inset of the fixed point 2D of the Poincaré map. (There is also a fixed point
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Figure 6. Homoclinic tangle in the twin-well potential Duff-
ing oscillator creates a fractal basin boundary: tangency at 4 =
0.1864 (above); A = 0.1923 (below).
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1D, near the origin, marking the dynamic barrier between the two potential wells.) At
A ~ (.1864, the branch Out; of the outset of 2D becomes tangent to the branch In; of
the inset of 2D. Due to substantial damping, the outset is folded nearly onto itself, so
for clarity a schematic drawing of the tangency is also shown. Increasing the forcing A
further, persistent homoclinic intersections appear. The lower numerical portrait in Fig.
6 shows the situation for A = 0.1923, just before the chaotic attractor B experiences a
loss of stability.

Thus in the range 0.1864 < A < 0.1923 we find that one branch of the outset of 2D
is homoclinic, and the homoclinic points so formed surround one of the two attractors.
The attractor within the tangle is periodic for A = 0.1864 and becomes chaotic (by
period doubling) by the time A reaches 0.1923; the chaotic attractor contains exactly
one fixed point I with negative multipliers and the dollar sign structure of Fig. 1. The
effect of the tangle is a fractal structure of the basin boundary; but ?D remains at a
distance from both attractors. The horseshoe-like basic set containing 2D has been
called a chaotic saddle [27].

Furthermore, it turns out that the dynamic potential barrier ! D is also homoclinic
for a range of A values near A = 0.1923, and by the symmetry z — —z, z — -z,
t — ¢+ m/w, both branches of ! D are homoclinic if one is homoclinic. But ' D is remote
from the attractors; chaotic attractors containing ! D only appear when the outset of I
intersects the inset of ! D, for example at higher forcing; see [34,35,28]. In the regime
of Fig. 6, the horseshoe-like basic set containing 'D forms a double chaotic saddle in
the shape of a figure eight.

The chaotic attractor labelled B in Figure 6 has highly compressed fractal layers
(unlike the obviously fractal attractors of Figures 3 and 4), and it might appear that
a one-dimensional approximation would adequately describe the dymamics. In fact
it would be natural to obtain a one-dimensional parametrization of the dynamics in
Figure 6 by projecting onto a line parallel to the outward eigenvector at 2.D; the chaotic
attractor, containing I, projects onto an interval which contains neither 2D nor 'D.
Such natural counterexamples to Theorem 3 are abundant in forced oscillators with
low to moderate damping, but still Conjectures 1 and 2 are consistent with numerical
evidence.

In order to construct an example in which a chaotic attractor might contain no
inversely unstable point of lowest period, we consider a blue sky catastrophe documented
in ref.[1]. There a Birkhoff attractor was surrounded by a basin boundary containing a
period one fixed point in the Poincaré map. The chaotic attractor lies below this saddle
D*; the distance from attractor to D! goes to zero as a generic control is varied. After
the bifurcation, there is a non-attracting tangle including the unstable periodic points
of period two in the formerly attracting Birkhoff tangle, plus D'. This could be made
into an attractor by modifying the phase space to put another Birkhoff tangle above
D!, and also tangled with D. This can be achieved by making the system symmetric
about D'. The resulting attractor would contain a period one D point D! but no period
one I point, only I points of period two or higher.

We note that this counter example (not yet verified numerically) would require a
phase space in which any uniformly dissipative neighborhood of the attractor is topologi-
cally a disk with two holes, corresponding to the need for two completely unstable points
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in the center of the two Birkhoff tangles. Thus this example would not be inconsistent
with Conjectures 1 and 2.
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