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Abstract:

Showing that one of the equations found by Wadati, Konno and Ichikawa is equiv-
alent to the equation of motion of 2 thin vortex filanient, we investigate solitons on the
vortex filament. N vortex solilon solution is given in terms of the inverse scattering
method. We examine two soliton collision processes on the filament. Our analysis pro-

vides the theoretical foundation of two soliton collision processes observed numerically

by Aref and Flinchem.
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§1 Intreduction

The inverse scattering method reveals itself as a powerful and useful tool to solve
nonlinear integrable equations.!) A generalization of the inverse scattering method was
achieved by Wadati, Konno and Ichikawa.?)®) So we can solve many interesting nonlin-
ear equations and explore exotic solitons such as the spiky soliton, the cusp soliton and

the loop soliton.®

In Ref. 3 we found two types of new integrable equations (WKI equations in short).
The first of the equations for the real variable is shown to describe loop soliton.®)®) We
illustrated a small loop soliton traveling along a large loop soliton. We will discuss
here soliton solutions of the second of the equations. Basing on the inverse scattering
method, Shimizu and Wadati” discussed the cusp soliton solution of the second type
of the WKI equations. In this paper, we will modify the equation to allow a complex
multivalued solution by introducing a sign function in the same way as we modified the

first type of the WKI equations to obtain the loop soliton.

The modified equation will be proofed to be equivalent to the equation of mo-
tion of a thin vortex filament® so that the solution represents the vortex soliton on
the filament. The vortex soliton have been conventionally described by the nonlinear
Schrédinger equation based on the curvature and torsion of the vortex.®) On the other
hand, Levi, Sym and Wojciechowski have discussed the solution by their geometric
method.’® However these approaches were rather complicated to get explicit form of
solution. In this connection Aref and Flinchem have carried out numerical solution of
the equation of the vortex filament motion.'") Having proofed that the equation of mo-
tion of the vortex filament is nothing but the second type of the WKI equations, here
we can carry out rigorous analysis of collision process of vortex solution. We will find
three kinds of vortex soliton solutions such as lump soliton, cusp soliton and multivalued
loop soliton depending on the eigenvalue of the inverse scattering method. With such a

variety of solitons, we can analyze details of complex behavior of collision processes.

»

In § 2 we will discuss medification of the second type of the WKI equations and
show equivalence of it to the equation of motion of a thin vortex filament. We will
discuss the Inverse scattering method in § 3 and will derive an N voriex soliton solution
in § 4. Collision processes of two solitons in the three dimensional space are studied in

§ 5. The final section is devoted to discussions.
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§ 2 Equation of Motion of Thin Vortex Filament

Let us first derive the equation of motion of a thin vortex filament from the

following modified WKI equation:

2 2 9
. J%q de & gz | _
i 5da TSI (z.r) szl a |70 (2.1)
where
®=q/1+ g_q : (2.2)

Here we introduced the sign function sgn{dz/ds) where ds is the element of the arc

length along of solution curve:

ds = /(dz)? + |dg|* . (2.3)

It is crucial to attach the sign function to discuss multivalued solution. For the loop
type of deformation, dz takes negative value at the upper part of a loop, while ds 1s
positive definite. Furthermore in order to follow such a deformation we find that it is

effective to transform independent variables from (z,1) to (s,t) with the definition of s:

s:z+/j(1—sgn(%)@)dm. (2.4)

Taking the variation ds from Eq.(2.4), we get Eq.(2.3) and thus confirm the consistency

of the definition of the independent variable s.

Introduce the the tangent vector t defined by dr/ds as

_Or (0= . Oq dq
t——a—(as, Im—s,Re-—s> y (25)

where 1 is a position vector in the three dimensional space given as
r={(x,—Ilmg,Req) . {2.6)

The equation of motion of a thin vortex filament® is given by

at 5%t
gt— =t x @ . (2.7)



Taking a ratio of two components of the tangent vector such as ¢,/t, = 8¢/0z and
calculating time evolution of the ratio in accordance with Eq.(2.7), we obtain a trans-
formed equation of Eq.(2.1) expressed by the independent variables (s,) and thus we
can verify that Eq.(2.1) is equivalent to Eq.(2.7).72) We also notice that the size of the

tangent vector 1s unity as

2:2 2
t2:(d—)(d:_)2ﬂ:1. (2.8)

Integrating Eq.(2.7) with respect to s, we get

r Ir Hr
305 X 8s7 (2.9)

for which Aref and Flinchem carried out their numerical computation. Now we are able

to construct solution of Eq.(2.9) as soliton solution of Eq.(2.1). In the next section we

will derive N soliton solution of Eq.(2.1) by using the inverse scattering method.

§3 Inverse Scattering Problem

With the inverse scattering method, we solve Eq.(2.1) under the boundary condi-

tions
q—0,
dq as |z] — 0. (3.1)
= 0,
dx

The eigenvalue problem is given by

Jv . d

5—;+z/\v1 =,\5:;:q—v2 ,
Guy . dq*
B T A,

(3.2)

v,
where the time dependence of the eigenfunctions has the forms

. % = Av; + Bu,
R (33)

(91)2
3t = CU1 — A'Ug y

4




In which

J dq
B =sgn (j—z) 2%)&’ + i(% E’g Al (3.4)
aq* dq*
C = sgn (%) ~2%‘i)«2 + ig; {?I:f A

The Gel'fand-Levitan equation can be obtained on the same way as Ref. 7. We

sketch the process. Define the Jost functions:

3.5
[ (33)
1/
and ) 0
d’ - (1) )
} as x — 0o (3.6)
b
(6):
and the scattering coefficients:
= a v +by ,
pravT. (37)
¢p=—av+by,
where
aa+bb=1. (3.8)

In order to examine the analytic properties of the Jost functions for large |A| we
introduce!®

@1 = exp{—iiz + /_’3 a(A2')dz'} . (3.9)

Substitution of Eq.(3.9) into Eq.(3.2) together with Eq.(3.3) then yields

do e, o
= At A—@B - (3.10)
oz



If we expand o as an inverse power series 1n A of the form

o= (:\ﬁ (3.11)

we obtain an infinite number of conserved quantities by substituting Eq.(3.11) into
Eq.(3.10). The following first two conserved quantities play a crucial role to express

asymptatic behavior of the Jost functions:

g1 =1—sgn (j—j) D,
(3.12)

8%q

_ 022 dzy1 1 19
70 = ", {39”(43)@ 1} 355 8%

9z

which vanish for [z{ — co. Then the asymptotic form of ¢ and a for large |A] are written

as
I 1 . - l
¢ = (io__d%) exp{—ide +ide_ +pu_}+0 (X) , (3-13)
; 1
a = exp(ide + u) + O (X) , (3.14)
where
sze_+£+:f o_1dzx s_:/ o_idz £y = o_1dzx ,
oo - v (3.15)
p:p_+p+=/ godz | ,u_:/ ggdz ,u+=/ oodx .

On the same way we can obtain the asymptotic behavior of ¢, v and 4.

Use the fact that ¢exp{iA(z — c_)}, dexp{—iXM=z —e_)}, Yexp{—iA(z + e}
Y exp{iA(z + £4)} and a exp(—iAe) are entire functions of A and introduce the kernels
K and Ko:

(%) - (é) exp{iX(e + e4(z) — p.(z))}

P2
o) ,\Kl(:c,z) exp{-—# (:E)} )
o[RS o ) aptix + ey ey s

(3-16)
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where we shall assume

lim Ki(z,z) =0, lim Ky(z,2z)=0. (3.17)
We have
Ki(z,2) = e‘(p(u -1y, (3.18)
3:::

and the Gel'fand-Levitan equations for z > y:

Ki(z,y) — F*(z—{-y)—/ F*y+z)Ki(2,2)dz =0,
T

. (3.19)
K;(z,y)—/ F (y+7z)Ki{z,z)dz=0,
where . B |
F(z)= %[ VIRY exp{iA(z + 2e4(2)i} dX |
¢ (3.20)

8°F 1 [Ab(N)

Fi()=53 = Tar J. ey

exp{iA(z +2e4(z))} dA .

Here the contour c is defined to be the contour in the complex A plane, starting from
—oco + 10, passing over all zeros of @ and ending at +oo + {07, Time dependence of
the scattering data is given by

a(A, 1) = a(A, 0},

(3.21)
(A, t) = b(A, 0) exp(4iX*t) .

When all the zeros of a()) in the upper half plane are simple, F(z} can be expressed

N o ‘ N
= kz:; ;ii) exp{iAp(z 4 2e4(2))} + % /:00 ,0(); 1) exp{iA(z + 2e4(z))} dA,
(3.22)
where
Ci(t) = Cr(0) exp(4irit)
(3.23)

p(A 1) = p(X,0) exp(4ir?i) .

Giving the scattering data {p(X,0},A; Ci(0), Ae, &k = 1,2,..., N}, we can deter-
mine F(z) and solve Ky(z,z) with the Gel'fand-Levitan equations. We then obtain the
solution by using the relation (3.18).



§$ 4 N Scliton Solution

The N soliton solution is obtained under the corditions:

(1) p(A8)=0,

(2) X, k=12..N. (1)
Then F(z,1) in Eq.{3.22) reduces to
N
F(z) = Z C;S) exp{idp(z + 2e4(z))} - (4.2)
k=1

In order to solve the Gel'fand-Levitan equations, we introduce the representations

N
K, = Z Ap(z)exp{—ir (e +y + 224 (2))} ,

(4.3)
N
Ky =) Bi(e)exp{—iAt(z +y + 2, (2))} .
k=1
Substituting Egs.(4.2) and (4.3) into Eq.(3.19), we obtain
e C; il Bf exp{2ih(z +e4(z))} cr
T A=A T
=1
o~ Aexp{~2idi(z + 4 (a)} -
. rexp{—2iAj(z +e4(2))}
Bi+iCike Y Mo X =0.
i=1
Then Ag is given by
£
Ay = _ 45
o o
Here the determinant ||D|j of the 2Nx2N matrix is defined as
I G
1Dl = ] H I { , (4.6)
with the NxN matrices I, G and H of the elements
T = by
G} exp{2id(z + £4(2))}
le = —t * * y
A (A =A%) (4.1)
CrApexp{—2i7(z + 21 (2))}
Hy =1

M- X ’

3




while the determinant || Dg|| is given by replacing the k-th column of || D}| by the element
(C3 /e Co /A0, -, 0). Thus

N
Dy, ~21A%
Ki(z,z) = Z 1Dkl exp{~2iX3 (= +e4(2))} ) (4.8)
1D

One should observe the dependence of Ki{z,z) on s = = + £4 defined in Eq.(2.4).
Thus both ¢{s) and £,(s) become single-valued functions even if ¢(z) and e4(z) are
multivalued functions. We have

2K, (* )d
= — X —
g 1 ]Klizep‘ui Hy)ds

> 9Ky|?
Y B FiS' .
S+ f L+ 5 (4.9)

. /w Kl (4, K
- = — — > | —lo .
e 7 TP \ds B Ky

u% — p4 can be integrated in such a form as

: 1D

py — py =log (4.10)

§ 5 Collision of Solitons in Three Dimensional Space

(a) One Soliton Solution

For one soliton solution with an eigenvalue A = £ + 77, ¢ and £ are give by

O exp(—27A*s)
= —1
e A [CP exp{2i(A — X)s}
(A — A*)2
(5.1)
L CP exp{2i() — A*)s}
o AP (A= &)
* 1 |C|? exp{2i(A — A*)s} ’
(A= An)2
where
C = C{0) exp(4irt) . (5.2)
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The maximum amplitude of the soliton is given by /(£2+9?) = ~¢/2. The velocity
v, of the soliton in s coordinate is given by constant a —4¢. However the velocity in z
coordinate is not constant. It takes different values at different positions of the soliton
and tends to be equal to v, as |z — oo where £; becomes constant. The solution

changes its form with the period 7 = 7 /{2(£% + %)}.

Corresponding to |{] > 75, || = n and [£] < 5, we find three kinds of solutions
such as lump, cusp and loop solitons, respectively. We note that the multiplicity of
the solution originates from the fact that ¢ depends on the S-shaped ¢, function.!®
Depending upon the sign of the imaginary part of the eigenvalue the soliton travels
upwards or downwards along the z axis. Since the phase factor at the maximum ampli-
tude of a soliton is proportional to exp{~—4i(£% +5?)t}, then the direction of rotation to
the z axis is clockwise with r. We illustrate one loop soliton traveling to the negative
direction together with ¢4 in Figure 1. Through this section we show stereographically

the motion of the solitons with the coordinate r of Eq.(2.6).

Figure 1
(b) Two Soliton Solution
Two soliton solution is given by
g = —i§
_— (5.3)
€+ = R
where
Re1_ |C11? exp{2i(M — A])s}  |Cs|® exp{2i(As — X})s}
(Ar —A7)? (Az —A3)?
_ GiCE exp{2i(A — A3)s}  CYCaexp{2i{A; — A])s} (5.4)
(A1 —A3)? (A2 — A7)? '

[C1I2ICQI2]/\1 - A2I4 exp{?z()\l —_ /\1k + Ag — A;)S}
{AL = AT = A5) (A2 — A7)(Ae — A3) )2 ’
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_ O exp(=21)]s) 4 C3# exp{—2iX3s)

° A2 A
GPENO; — 39 exp 20— X = 3)s} 55)
{500 = AN - A9 '
_ CHGPA(: - A5) exp{2i(Ay — X — Aj)s}
{AAs(A2 —AD (2 — AP ’
and
T _ilCllzexp{%(/\l —A)s} ; |Cal? exp{2i(Ag — A3)s}
A? (A = AD) [A2[2(A2 — A3) (5.6)
B ich; exp{2i{}; ~ A})s} z_C’{‘Cz exp{21(Ay — A})s}
WHPNYy a0 — X0

+a.|Cl|2|(3'2\2{|/‘\1[2(/\2 — A3+ P[P0 = ADHAL = Xef* exp{2i{A — AT + X — Af)s}
222 {0 = A (AL — A5) (A2 — AD)(Az — A3)}? ’

with
Cy = C’l({))exp(éii/\ft) ,

(5.7)
Cy = Cy(0) exp(4irit) .

We can consider a great variety of collision processes of a combination of lump, cusp
and loop solitons with similar or dissimilar amplitudes traveling in the same direction
or in the opposite direction. Profiles of these processes show very complex behavior
as a consequence of the factor €4 and the period 7. Especially, complexity appears in
collision of loop solitons. We show typical three cases:

(I) Collision of a large lump soliton and a small loop soliton,
(II) Head-on collision of two similar loop solitons,

(TIT) Bound state of two loop solitons.

Numerical results for the case {I) are illustrated in Figure 2 in which we can observe
a small loop soliton with a positive velocity travels along a lump soliton with a negative

velocity during the collision.

Figure 2

The profiles of collision process for the case (II) of the same loop solitons with the

opposite velocities are illustrated in Figure 3 in which we can observe more complex

11



movements of solitons just at the collision. After the collision two solitons separate in

each other.

Figure 3

The case (III) is appeared if two solitons has the same velocities. We find the
internal motion of the bound state as shown in Figure 4 where we take two similar loop
solitons. We observe that one of the loop soliton periodically moves around another loop
soliton. Here the real part of the two eigenvalues has the same value in the present case
and its behaviour differs from the breather soliton known to the modified Korteweg-de

Vries equation and the sine-Gordon equation.

Figure 4

§ 6 Discussions

In order to study the motion of soliton on the thin vortex filament, we have
considered the modified WKI equation and obtained N soliton solution by means of
the inverse scattering method. We introduced the sign function, which enabled us to
get multivalued loop soliton solution, and transformed the independent variable from
T to 5 = z + ¢4, which played a crucial role to obtain N soliton solution. We found,
depending on the the ratio of the real and the imaginary parts of the eigenvalue, three

kinds of vortex solutions such as lump, cusp and loop solitons.

We studied properties of one and two soliton solutions and analyzed intensively

the typical collision processes. It would be worth to mention that our one vortex soliten

12



is indeed observed in nature such as tornados*) and experiment of a rotating tank.!®)
By comparing Figures 2, 3 and 4 with Figures 3, 4 and 6 of Reference 11, the readers
will be convinced that our analysis on collision process of the vortex soliton 1n terms of
Eq.(2.1) provides the theoretical foundation for the numerical observation of Aref and
Flinchem for £q.(2.9). Though Aref and Flinchem identified their numerical solutions
as just transcriptions of solitons to the cubic nonlinear Schrédinger equation, one should
notice, however, that the cubic nonlinear Schrodinger equation does not valid to describe
large distortion of waves such as spiky solitons or multivalued loop solitons. Our soliton
theory on the vortex motion will provide firm theoretical bases to investigate dynamic
of the vortex filament under the action of external perturbations such as shear flow or

viscosity.

*) The two photographs, one of which is very similar to Figure 1, are found in Ref-

erence 11.
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Figure Captions

Fig.1

Fig.2

Stereo view of one loop soliton solution and the shape of ¢4 for A = 0.5+ and
C(0) = 0.4038, where the vertical line represents the z axis with the range
of —2 < z < 2, the honizontal line the real ¢ with the range of —1 < Reg <1
and —1.5 < g4 < 0. The imaginary axis i1s lined from the back of the paper
to the front with the same range as the real ¢ as —1 < —Img¢g < 1. {A)
t=-0.3, (B) 0 and (C) 0.3.

Stereo view of collision of one large lump and one small loop solitons for
At = 14+08:, C1(0) =1, As = —1 4+ 5¢ and C3(0) = 1 where -2 <z < 2,
—0.5 < Reg<05and —05 < —-Im¢g < 05. (A)t = —0.1, (B) 0 and (C)

0.1.
Stereo view of collision of two loop solitons for Ay = 0.5 + ¢, C{(0) = 1,

Xy = —0.5+ 1 and C(0) = i where —2 < z < 2, —1 < Reg € 1 and
—1<—-Imqg<1 (A)t=-0.3, (B)0and {C) 0.3

Stereo view of bound state of two loop solitons for Ay = —0.5+27, C1(0) =1,
Ao = —0.5 + 37 and C2(0) = 1 where -2 < 2z < 2, —0.5 < Reg < 0.5 and
—0.5<Img<0.5. (A}t =—0.5,(B) 0.15 and {C) 0.8.
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E.Kako, A.Karita, K.Kawahata, T.Kawamoto, Y.Kawasumi,
S.Kitagawa, Y.Kitoh, M.Kojima, T. Kuroda, K.Masai, S.Morita,
K.Narihara, Y.Ogawa, K.Ohkubo, S.0Okajima, T.Ozaki, M.Sakamoto,
M.Sasao, K.Sato, K.N.Sato, F.Shinbo, H.Takahashi, S.Tanahashi,
Y.Taniguchi, K.Toi, T.Tsuzuki, Y.Takase, K.Yoshioka, S.Kinoshita,
M.Abe, H.Fukumoto, K.Takeuchi, T.Okazaki and M.Ohtuka,
Application of Intermediate Frequency Range Fast Wave to JIPP
T-ITU and HT-2 Plasma;

Sep. 1990

K.Yamazaki, N.Ohyabu, M.Okamoto, T.Amano, J.Todoroki, Y.Ogawa,
N.Nakajima, H.Akao, M.Asao, J.Fujita, Y.Hamada, T.Hayashi,
T.Kamimura, H.Kaneko, T.Kuroda, S.Morimoto, N.Noda, T.Obiki,
H.Sanuki, T.Salo, T.Satow, M.Wakatani, T.Watanabe, J.Yamamolo,
O.Motojima, M.Fujiwara, A.liyoshi and LHD Design Group, Physics
Studies on Helical Confinement Configurations with =2
Continuous Coil Systems; Sep. 1990

T.Hayashi, A.Takei, N.Ohyabu, T.Sato, M.Wakatani, H.Sugama,
M.Yagi, K.Watanabe, B.G.Hong and W.Horton, Equilibrium Beta
Limir and Anomalous Transport Studies of Helical Systems;
Sep. 1990

R.Horiuchi, T.Sato, and M.Tanaka, Three-Dimensional Particle
Simulation Study on Stabilization of the FRC Tilting Instability;
Sep. 1990

K_Kusano, T.Tamano and T. Sato, Simulation Study of Nonlinear
Dynamics in Reversed-Field Pinch Configuration; Sep. 1990

Yoshi H.lchikawa, Solitons and Chaos in Plasma; Sep. 1990

T.Seki, R.Kumazawa, Y.Takase, A.Fukuyama, T.Watari, A.Ando,
Y.Oka, O.Kaneko, K.Adati, R.Akiyama, R.Ando, T.Acki, Y.Hamada,
S.Hidekuma, S.Hirokura, K.lda, K.ltoh, S.-l.ltoh, E.Kako, A. Karita,
K_Kawahata, T.Kawamoto, Y.Kawasumi, S.Kitagawa, Y.Kitoh,
M.Kojima, T.Kuroda, K.Masai, S.Morita, K.Narihara, Y.Ogawa,
K.Ohkubo, S.0Okajima, T.Ozaki, M.Sakamoto, M.Sasao, K.Satlo,
K.N.Sato, F.Shinbo, H.Takahashi, S.Tanahashi, Y.Taniguchi, K.Toi
and T.Tsuzuki, Application of Intermediate Frequency Range Fast
Wave to JIPP T-1IU Plasma; Sep.1980

A.Kageyama, K.Watanabe and T.Sato, Global Simulation of the
Magnetosphere with a Long Tail: The Formation and Ejection of
Plasmoids; Sep.1990
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S.Koide, 3-Dimensional Simulation of Dynamo Effect of Reversed
Field Pinch; Sep. 1990

O.Motojima, K. Akaishi, M.Asao, K.Fujii, J.Fujita, T.Hino,
Y.Hamada, H.Kaneko, S.Kitagawa, Y.Kubota, T.Kuroda, T.Mito,
S.Morimoto, N.Noda, Y.Ogawa, 1.Ohtake, N.Ohyabu, A.Sagara,

T. Satow, K.Takahata, M.Takeo, S.Tanahashi, T.Tsuzuki, S.Yamada,
J.Yamamoto, K.Yamazaki, N.Yanagi, H.Yonezu, M.Fujiwara,
A.liyoshi and LHD Design Group, Engineering Design Study of
Superconducting Large Helical Device; Sep. 1990

T.Sato, R.Horiuchi, K. Watanabe, T. Hayashi and K.Kusano, Self-
Organizing Magnetohydrodynamic Plasma; Sep. 1990

M.Ckamoto and N.Nakajima, Bootstrap Currents in Stellarators and
Tokamaks; Sep. 1990

K.ltoh and S.-l.itoh, Peaked-Density Profile Mode and Improved
Confinement in Helical Systems; Oct. 1990

Y.Ueda, T.Enomoto and H.B.Stewan, Chaoric Transients and Fractal
Structures Governing Coupled Swing Dynamics; Oct. 1990

H.B.Stewart and Y.Ueda, Catastrophes with Indeterminate
Quicome; Oct. 1990

S.-l.hoh, H.Maeda and Y.Miura, Improved Modes and the
Evaluation of Confinement Improvement; Oct. 1990

H.Maeda and S.-Lltoh, The Significance of Medium- or Small-size
Devices in Fusion Research: Oct. 1980

A.Fukuyama, S.-L.ltoh, K.ltoh, K.Hamamatsu, V.S.Chan, S.C.Chiu,
R.L.Miller and T.Ohkawa, Nonresonant Current Drive by RF
Helicity Injection; Oct. 1990

K.lda, H.Yamada, H.lguchi, S.Hidekuma, H.Sanuki, K.Yamazaki and
CHS Group, Electric Field Profile of CHS Heliotron/Torsairon
Plasma with Tangential Neutral Beam Injection; Oct. 1990

T.Yabe and H.Hoshino, Two- and Three-Dimensional Behavior of
Rayleigh-Taylor and Kelvin-Helmholz Instabilities; Oct. 1990

H.B. Stewart, Application of Fixed Point Theory to Chaotic
Antractors of Forced Oscillators; Nov. 1990
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Y. Yamamura, T. Takiguchi and H. Tawara, Data Compilation of
Angular Distributions of Sputtered Aroms ; Jan. 1880

T. Kato, J. Lang and K. E. Berrington, /ntensity Ratios of Emission
Lines from OV lons for Temperature and Density Diagnostics ;
Mar. 1990

T. Kaneko, Partial Electronic Straggling Cross Sections of Atoms for
Protons ; Mar. 1990

T. Fujimoto, K. Sawada and K. Takahata, Cross Section for
Production of Excited Hydrogen Atoms Following Dissociative
Exciration of Molecular Hydrogen by Electron Impact ; Mar. 1990

H. Tawara, Some Electron Detachment Data for H- Ions in
Collisions with Electrons, lons, Atoms and Molecules

— an Alternative Approach to High Energy Neutral Beam
Production for Plasma Heating— ; Apr. 1990

H. Tawara, Y. ltikawa, H. Nishimura, H. Tanaka and Y. Nakamura,
Collision Data Involving Hydro-Carbon Molecules ; July 1990

H.Tawara, Bibliography on Electron Transfer Processes in Ion-
TonlAtomiMolecule Collisions —Updated 1990—; Oct. 1880

H. Boit and A. Miyahara, Runaway-Electron —Materials Interaction
Studies ; Mar. 1990

U.S.-Japan Workshop on Comparison of Theoretical and
Experimental Transport in Toroidal Systems Oct. 23-27, 1989 ;
Mar. 1990

Structures in Confined Plasmas —Proceedings of Workshop of US-
Japan Joint Institute for Fusion Theory Program— ; Mar. 1890

Proceedings of the First International Toki Conference on Plasma
Physics and Controlled Nuclear Fusion —Next Generation
Experiments in Helical Systems— Dec. 4-7, 1989 ; Mar. 1990

Plasma Spectroscopy and Atomic Processes —Proceedings of the
Workshop at Data & Planning Center in NIFS—; Sep. 1990

Symposium on Development of Intensed Pulsed Particie Beams and
Its Applications; Oct. 1990



