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Abstract

Damping of the toroidal velocity owing to parallel
viscosity is cbserved in the plasma with a tangential
neutral beam injection in the CHS Heliotron/Torsatron
device. Toroidal wvelocity profile is dominated by the
perpendicular viscosity when magnetic field modulaticn is
weak near axis. However, the parallel viscosity is found to
be dominant when the modulation is strong encugh and to
increase in proportieon to the square of the modulation of
magnetic field. The absolute values of the viscosity agree

with the neoclassical prediction within a factor of three.
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In toroidal plasma, polcidal and toroidal rotation
velocities are determined through the balance between the
input torque and damping force in steady-state. In tokamak
H-mode plasmal, significant poloidal rotation has been
observedZs3. In a recent theoretical medel, the poloidal
rotation is assumed to be driven by the poloidal torque
associated with the ion-orbit loss? or imposed radial
current®r® and is damped by the neoclassical parallel
viscosity. However, the poloidal viscosity has not been
measured precisely énough for a comparison with the
neoclassical theory718, because of the difficulty in
estimating the poloidal torque. This is because the
fraction of the edge ion-orbit loss is sensitive to the
electric field produced by the ion-orbit loss itself?. On
the other hand, toroidal rotation is mainly driven by the
torque given by the neutral beam, in plasmas with
tangential neutral beam injection. There have been many
observation of toroidal rotation in tokamakslo_13, but the
damping is mainly due to an anomalous perpendicular
viscosity (radial diffusion of momentum). Because the
magnetic field ripple in toroidal direction is so small
that the effect of the neoclassical parallel viscosity in
toroidal rotation is easily masked by the anomalous
perpendicular viscosity. In helical devices, the helical
ripple is large enough to affect toroidal rotation. The
poloidal rotation have been measured on Heliotron-El%4 and
Wenderstein VII-A15, however, toroidal rotation and

discussions on the damping mechanism has not been reported.



Even though the potential importance of parallel wviscosity
in the H-mode physics, the experimental measurement of it
is far from satisfaction®. A preliminary report has been
made on the measurements of the toroidal and poloidal
velocities in the Compact Helical System with tangential
neutral beam injection and on the viscosity16. In this
article, we investigate the toroidal rotation velocity in a
wide range of density and magnetic field ripple, and a
comparison of the measurements with the neoclassical theory
is discussed.

The Compact Helical System (cus) 17 is a
Heliotron/Torsatron device (the poloidal pericd number 1 =
2 and toroidal period number m = 8) with the major radius
(R) of 1 m, an average minor radius (a) of 20 cm and a
rotaticnal transform at the plasma edge +t5 [= RBQ/(aB¢),
where Bep, Bp are the toroidal and peoloidal magnetic
fields, respectively] of ~ 1. The magnetic field has a
helical ripple (shm’l } with a toroidal periodic number of
m= 8 and a pcloidal periodic number of 1= O,i¥,i2,i3, and
a toroidal ripple (&~ ap/R,where p 1is the averaged
normalized minor radius). Modulation of the magnetic field
strength ¥ 1is defined as Y2=<(88/83)2>/Bz, where 5 is
the length along the magnetic field line and <> is a flux
surface average operator. This magnetic field modulaticn is
mainly attributed to a helical ripple and is c¢f the order
of (m€R/27R), and can be much larger than that due to
the toroidal effect (&:/27R). In CHS, the magnetic field
ripple of plasma center can be changed by shifting the

magnetic axis so as to produce significant parallel
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viscosity. The major radius of the vacuum magnetic axis
(Rax), which is calculated in the vacuum magnetic field
configuration, is scanned from 89.9 to 101.6 em in our
experiments. Central helical ripple £, 1(0) is negligible
when the major radius is set at 90 - 95 cm; however, it
increases sharply for Rs, > 95 cm and reaches 8% at Ry =
101.6 cm.

Plasma is produced initially by the electron cyclotron
heating (ECH) and sustained with tangential NBRI (inijection
energy of 32.5 keV and zabsorbed power of 0.5 MW in the
direction parallel to helical current). The line-averaged
density reaches around 2 x 1013 cm™3 after NBI is injected.
Figure 1 shows the change of profiles of toroidal/poloidal
rotation velocity, electron/ion temperature, electron
density, and modulation of magnetic field strength Y, as a
result of the major radius scan, which is controlled by
vertical field strength. Profiles of ion temperature and
the poloidal/torcidal rotation velocity are measured with
charge exchange spectroscopy using a two—-dimensiocnal CCD
detectorl8,1%  profiles of electron density and temperature
are measured with Thomson scattering system. We evaluate Y
by averaging (dB/ds)2 along the field line for one
toroidal turn. Structure of the magnetic field is derived
from the finite 3-D B equilibrium code VMECZ20, based on the
Kinetic data in the experiments. As demonstrated on the ion
temperature profile, the axis of plasma (Ryx) is shifted
outward due to finite B effect and this Shafranov shift is

2 - 5 cm depending on the plasma and beam pressure and




rotational transform + [= RBQ/(apB¢)]. Details of the
measurements of Shafranov shift in CHS will be reported
elsewhere. The toroidal rotation velocities show a
significant damping as the axis of plasma is shifted
outward, although the energy confinement time measured with
diamagnetic loop increases from 1.5 (R3,~89.9 cm) to 2.5

ms (R, =97.4) . The poloidal rotation velocities also show
similar damping behavior in the core region; however, they
show no change near the plasma edge (p ~ 0.7). The global
confinement 1s improved by shifting the plasma outward, but
the the particle confinement in the core region decreases
as observed in electron density profiles. The noticeable
difference of particle transport between for Ry, =24.9 cm
and for R, =97.4 cm seems to be associated with the

change of torcidal rotation profiles, but the effect of
plasma rotation on particle transport21 is out of the scope
of this paper and will be discussed elsewhere. We note that
these toroidal rotation damping and density profile
flattening are also observed when the direction of magnetic
field is reversed. ;

In the core region of p < 0.5, the plasma rotates
almost parallel to the magnetic field line, as shown in
poloidal and toroidal rotation profiles, since rotational
transform in this region is 0.3 - 0.5. Several mechanisms
can contribute to the damping of the parallel wvelocity
(Vyp, such as transit time magnetic pumping (TTMP} of the
rotating ions due to the modulation of B (parallel

viscosity term Hyvy), radial diffusion of momentum due to



the velocity shear (perpendicular viscosity term [TAYAY)
and collision with a neutral particle [charge exchange
momentum loss ng<Oqxv>vy, where ngp is the neutral

density and <Ooxv> is the charge exchange rate
coefficient]. Charge exchange loss becomes dominant only
near the plasma edge, and damping due to yyvy and g, Vvy
terms becomes important in the region of our interest (p <
0.86).

Parallel wvelocity near plasma center is mainiy
determined by the perpendicular viscosity for Rgy = 89.9
cm, since the modulation of B is too small to affect the
plasma rotation near axis. On the other hand, parallel
velocity is damped by the parallel viscosity for Rg, =
97.4 c¢cm , where the modulation of B is 0.4 m~ 1 at the
plasma center as shown in Fig. 2. To compare the measured
parallel velocity with the theoretical estimate, the
neoclassical (NC) parallel viscosity is taken for the
references?22,23, The NC parallel viscosity is proportional
to square of the medulation of B as yPNCe
{(dB/ds)2/B2}F(v;¥), where v;¥is the ion normalized
collisionality. As estimated in Ref.23, the parallel
viscosity is expressed simply as HMVC =
C{{(dB/3s)2>/B2} (R/m) vip in the plateau regime, where
C is the numeral coefficient. We examine the fitting of
measured parallel velocity with (U l;). The
perpendicular viscosity of f; = 3.5 m</s in addition to
the NC parallel viscosity gives the best fit of the
measured parallel velocity for Rz, = 89.9 cm, the latter

mechanism affects plasma rotation only p > 0.6. The central
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rotation wvelocity may be explained alternatively by
increasing the values of U; up to 18 m?/s with Wie0;
however, the radial momentum diffusion alone can not
explain the damping of the parallel velocity at p > 0.6.
The estimation by the large perpendicular viscosity alone
can not explain the significant change in the velocity
between Rg,= 89.9 cm and Rgy= 97.4 cm either. In the case
of Rgx= 97.4 cm, the parallel viscosity becomes dominant
and the additional perpendicular viscosity changes the
estimate of velocity by only 20%. The best fit of the
parallel viscosity profile for Ryx= 97.4 cm gives fy = 3
x 103 571 which is smaller than the calculation by Shaing
by a factor of three. Perpendicular viscosity to fit the
experimental data is comparable to the measured ion thermal
diffusivity (~ 5 mz/s) and larger than that of the
neoclassical prediction (~ 2 mZ/s) by a factor of two.

The parameter dependence of the viscosity is studied
by changing the plasma density and the field ripple.
Toroidal rotation velocity is measured for Ry, = 92.1 cm
(perpendicular viscosity is dominant) and for Ry = 94.9
em (parallel viscosity becomes important) in the wide range
of electron density from 0.7 x 1013/cm3 to 6 x 1013/cm3.
The perpendicular viscosity is found to decrease roughly
proportional to 1/n. as the global confinement is improved
by increasing the electron density. This density dependence
concludes the existence of ancmalcous radial diffusion of
the momentum as observed in tokamak plasma. However, the

parallel viscosity does not change for this density scan,



confirming plateau neoclassical prediction.

The observation confirms that the parallel viscosity is
proportional to the square of the modulation of the
magnetic field strength. To demonstrate the 72 dependence
of parallel viscosity, the effective viscosity fefs, which
is defined as Mesf © = vy ming(0)/fygr(0), where
Inyg7(0)R is a torque by NBI. As shown in Fig.3, this
effective parallel viscosity shows 7’2 dependence as
predicted by the neoclassical theory in the region where
parallel viscesity becomes dominant, Yy > ¢.2. When the
modulation of B decreases below 0.2, the parallel velocity
becomes small and perpendicular viscosity become dominant
in turn. Large parallel viscosity and significant charge
exchange loss near the plasma edge becomes a boundary
condition to determine the central parallel velocity in the
radial transport of momentum. One of the main errors in
evaluating the modulation of B in the measurements are due
to the uncertainty of the description of finite B
eguilibria.

In conclusion, the parallel viscosity is found to
increase in proportion to the square of the modulation of
magnetic field and show no dependence on plasma density,
the characteristics of which agree well with the
necclassical prediction in plateau regime. Their
gquantitative agreement are within a factor of three.
However, when the magnetic field modulation is weak, the
perpendicular viscosity (anomalous radial diffusion of

momentum} becomes dominant as in tokamak plasma.
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Figure Captions

Fig.l. Radial profiles of (a) ion temperature, (b) toroidal
rotation velocity (c) poloidal rotation velocity (d)
modulation of magnetic field strength Yy (where ¥ =
{(dB/9s)2>/B?) (e) electron density and (f) electron
temperature for Ry, of 89.9 cm (closed circles), 94.9 cm
(asterisks) 97.4 cm (open circles), where p is normalized
averaged minor radius. Doted line in (a) stands for a
fraction of the helical ripple at the plasma center as a

function major radius.

Fig.2. Radial profiles of the parallel velocity with
estimates of velocity by the neoclassical parallel
viscosity (dashed line) and by radial diffusion of the
momentum (chain lines) and by the combination of the
parallel viscosity and radial diffusion {solid line) for
the major radius of (a) 89.9 cm and (b) 97.4 cm, where

#NC is a parallel viscosity in the plateau regime.

Fig.3. Inverted central parallel viscosity derived from the
measured central parallel velocity, density and momentum
input as a function of the central modulation of magnetic
field strength Y. Dashed line is an estimate by the
neoclassical parallel viscosity and the solid line shows
the radial diffusion of the momentum effect on the

measurements.
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