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ABSTRACT

Analysis of the relativistic standard map is one of the
important problems to understand nonlinear interaction between
waves and charged particles in the relativistic dynamics. In the
relativistic standard map, in general, chaotic motion is strongly
suppressed and regular motion such as periodic orbit plays dominant
roles in the phase space. Location of periodic points is predicted
by use of symmetry lines of the map. Local stability of periodic
points is investigated by introducing the residue of the orbit which
characterizes the eigenvalue of the area-preserving map. It is
found that the exchange of stable and unstable points takes place
at some value of the relativistic parameter. Special behavior of
the residue of the Poincare-Birkhoff period-4 points are also

examined and related bifurcations are clarified.
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1. INTRODUCTICN

In nonlinear dynamical systems, area-preserving maps have been
investigated extensively as useful method for characterizing the
non-integrable Hamiltonian systems.' ?*’ Especially, nom
relativistic acceleration of charged particles by an infinite
sequence of constant amplitude longitudinal waves with equally
spaced phase velocities is represented by the standard map.*' This
map exhibits regular and chaotic motion and has been studied in
various fields of physics. Critical problem of the study of the
standard map is a tramsport process uader the coexistance of regular
motion and chaos.*™" Recently, Chernikov et al.® introduced the
relativistic generalization of the standard map. They have found
that the chaotic motion is restricted to the vicinity of the fixed
points and the breakup of last KAM torus occurs at higher wave
amplitude than that for the standard map.

In this work, we clarify the relativistic effects on the
ponlinear motion of particles by varying the wave phase velocity in
a wide range.® In the ultra-relativistic case, chaos is very weak
compared to the regular motion such as KAM tori or pericdic orbits.
In order to specify the periodic orbits, we carry out symmetry
analysis'®~'®’ of the relativistic standard map. Stability of the
periocdic orbit is worked out in terms of the characteristic
multiplier or the residue® of the orbit. Finally, the Poincare-
Birkhoff multifurcation of periodic orbits from stable periodic

points (island areund island) is considered.



9. REGULAR MOTION AND CHADS IN THE RELATIVISTIC STANDARD MAP

Relativistic motion of charged particles in an infinite
sequence of electrostatic waves with constant amplitude and equally
spaced phase velocities is described by the relativistic standard

map® ® in the normalized form :

Pn+1 = Pn ']' F( Xn )1 Xn-I-l = Xn + G( Pn+1)s (1)

F(X) = - (K/2%)sin(2x XD, GP) = P/ [1+ B * P?] '/2

where K is the stochastic parameter which corresponds to the wave
amplitude and the relativistic parameter B is defined as the
ratio of phase velocity vo of the slowest wave to the speed of light
c Br = vo/c. In the limiting case of B2 — 0, the map (1) is
reduced to the usual standard map. Fundamental properties of the
relativistic standard map such as the stability of fixed poinis or
the Poincare-Birkhoff period-p/q multifurcation condition have been
derived in Ref. 9).

Particle trajectories in the relativistic standard map are
skown in Fig. 1 for various values of B at K = 1.3. In these
figures, particles are initially distributed uniformly at P = 0 and
advanced according to the map (1) till n = 5000. For weekly
relativistic case. Br €1, diffusion of particles at low momentum

region is qualitatively the same as that in the standard map. The



stochastic region, however, is bounded by an invariant KAM surface
at high momentum and global chaos is suppressed. As the parameter
Br increases, the maximum attainable momentum decreases rapidly and
the particlie diffusion is restricted to a thin layer.

In the ultra-relativistic case, B¢ >»1, particle trajectory
becomes quite regular. Secondary island chains with very high
period are formed inside the separatrix KAM surface and the
stochastic layer in the peripheral region of island chains is
observed. In order to characterize this regular structure of the
phase space, it is useful to analyze symmetry property of the map
introduced by Birkhoff.'?" In the next section, we identify the

periodic orbits by means of symmetry analysis.

3. SYMMETRY OF THE RELATIVISTIC STANDARD MAP

We consider a 2D area-preserving map T of the form given by Eq.
(1). A map T is called reversible!*~ '8 jif there exists an

involutioen I, which satisfies the relation

T'Iu'T=Io, Io'Io:Id. (2)

This relation indicates that the reversible map can be expressed as

the product of two involutions:

T = II'Iu, II°I1:Id.. IIET'IB (3)




and the inverse transformation T~! is given by

T-! = Ie ¢ Is (4)

If we define I; as the jth iteration of the map T on the involution
e, 1; = T3 +«1,, we immediately confirm that I; is also an
involution. Ensembie of I; and T* for arbitrary integers i and k

forms a discrete infinite group with the relationships:

I; « lg = Ti-% TP « Ix = T+, I; « T = 1;-x (5)

It can be shown that the fixed peints of the involution I; form

a line T'; which is called as its symmetry line,

F; : {RI I R=R1}L. (6)

Therefore, the first equation of (5) defines that the intersection
of T'; and T« determines periodic points of T, whose period N
divides | i - k |. From the second and the third equations of (5),
we can deduce that the symmetry lines are transformed by TV into
other symmetry lines : T¥ « T = T gwns+; . This relation enables
us to facilitate the construction of symmetry lines of arbitrary
order.

Since the transformation fumction F is anti-symmetric with
respect to the space inversion, F(-X) = - F(X), the map (1) is

expressed as the composition of the following involutions :



Ie ¢ P =P+ FE), X' = -X

(7>

I, : PP =P, ¥ =-X+ 6P

Symmetry lines of these two involutions are given by
T : =0, ' - 2Y -6(P) =0 (8

A factorization of the map into two involutions is not unique.
Anti-symmetricity of the function G with respect to mementum
inversion, G(-P) = - G(P), gives rise to another involution

decomposition T = J; - Jo,

Jo + P =-P, ¥ =X - G(P)
(9)

I, ¢+ P - P+ FI[X-GMP],

X -G -6 [P- F{X~-a6(M ]

P
!

This type of factorization defines momentum inversion symmetry as

7 1 P=0, yi1: 2P - FLX-GMP)] =0 (1m .

Figure 2 shows superposition of families of symmetry lines on the

phase portrait of the map (1) for K = 1.3 and B» =4 #. It can be



found in Fig. 2(a) that the space inversion symmetry lines become
parallel at high momentum, which indicates that phase increase of
particles is almost constant for ultra-relativistic case. Momentum
inversion symmetry lines ia Fig. 2(b) are asymptotic to the
separatrix KAM surface. In both figures, intersections of symmetry

lines determine stable and unstable periodic orbits.

3. STABILITY OF PERIODIC ORBITS

In the relativistic standard map, stable and unstable periodic
orbits are often exchanged at certain values of B, . Typical
examples of this exchange are demonstrated in Rigs. 3 and 4
respectively for K=3.3 and 6.4717. In Fig. 3(a), period-4 orbit
whose one point lies on the ¥-axis is stable and the orbit located
on the P-axis is umstable. By increasing the relativistic
parameter, stable period-4 points turn into unstable and phase shift
of island chain occurs as seen in Fig. 3(b). In Figs. 4(a) and
(b), phase shift of pairs of period-3 island and period-4 island is
clearly found.

In order to examine this exchange, we study the local stability
of periodic orbits.'™ Since a periodic orbit of period n is
considered as a fixed point of T , its stability is determined by
the eigenvalue of a matrix L obtained by linearizing T about one
of its points. Owing to the area preserving property of the map T,
characteristic equation for the eigenvalues A (called the

characteristic multipliers) is expressed in terms of the trace of L



A - Tra +1=0 (1D

Thus the stability condition is

FTr) 1< 2 (12)

In order to divide the stability of periodic orbit, it is practical

to introduce the residue R of an orbit defined by

R=1[2-Tr)] /4 (13)

Then, the characteristic multipliers are given by

A =1-20 £ 2[RQR- D] 2 (14

The orbit is stable for 0 < R< 1 and called elliptic. If R < 0,
the orbit is directly unstable and called as hvyperbolic without
reflection. For R > I, the orbit is inversely unstable and called
hyperbolic with reflection. The eigenvalues are degenerate for R =
0 and 1, i.e. 2 =1 and -1 respectively. In these cases, the orbit
is parabolic and topological change is possible through these
cases. The latter case is known as period doubling bifurcatiosn.

Now we consider the stability of period-3 and period-4 orbits
bifurcated from the origin by means of the residue. For period-3
orbits, there exist two types of solutions. Locatioms of these

points are predicted by symmetry analysis described in the




preceding section. Firstly, an orbi{ whose one point lies on the X-

axis can be determined by the intersection of momenium inversion

symmeiry lines, yo and 713 :

2F(X) + F (Yo + 6 { FEo)} 1 =0, Po =190 (15)

The residue of this orbit is given by

R @) (Xn, Pu:O)

= -V [2F (Xo) + F (Kot G(F(Xo)d} {1467 (F(Xo)DF (Xg) } 1]

X 26" (F(Xo)) + 67 (0) {146 FXoIF (Xe) } ] (16)

The other type of orbit whose one point lies on the P-axis is

determined by the space inversion symmetry lines, I'p and I's :

26(Pe) + G [Po + P {6(Pe) } 1 =0, Xo =9 an

In this case, the residue is expressed as

R® (Xo=0,Py)

= -1 [26" (Py) + G {Pot FLG(Py))} {14F (G(Pp))G (Po) }

X [2F (G(Po)) + B () {14F (G(Po)IE" (Po) } 1] (18)



It is noted that these two orbits exist when the stochastic
parameter K exceeds 3 which is nothing but the Poincare-Birkhoff
pultifurcation condition.

Similarly, location of period-4 orbit which lies on the X-axis

is specified by the intersection of symmetry lines 7. and 7, :

F(Xn) + F EXB t G {F(Xu) } :l =, Ph =0 (19

Because the function F is sinuscidal, Eq. (19) is reduced to the

following two cases.

a) 2% + G {F(Xo) } = 0 (20)

This period-4 pair exists at €0, Xo), [F(Xs), -Xol , (0, -Y,), and

[-F(Xe¢), XoJ . The orbit is syemetric with respect to the origin

and the existing condition is K>2. Thus, this is identified as

the Poincare-Birkhoff pair. The residue for this branch is given by

R(4) (XU)PDZO)

=-4F o) (246 P T [24+6OF X))

X 26 (F(Ze)) + 67 (0) {246 (PP (Xo) 1 ] (21)

The other type of reduction is possible for Eq. (19):



b) G {F(@s) } =m+ 1/2 (m:integer) (22)
Positions of this pair are (0, Xo), [F{(Xs), Xot¥l ., (0, Xot %)
and [-F(X,), Xo] . This period-4 pair is asymmetric with respect
to the origin. Because the relativistic standard map is symmetric
with respect to the origin, two pairs of period-4 orbits of this

type always appear when the following bifurcation condition is

satisfied

K [(m+ )2 -2 112 > 22z (23)

The residuoe of this orbit is calculated as

R (%o, Po=0)

= -Y G (FXo))F 2 (Xy)

X 6 (PXe)6 2(0) FP2(Xo) - 4 {6+ 6 FEeN} 1 QCH

In addition to the above-mentioned orbits, there exists another type

of period-4 orbit whose one point lies on the P-axis. The location

is predicted by the symmetry lines I'g and T'4 as

G(Pe) + G[Po + F {G(Po) } 1 =0, Py =0 (25>



In contrast to the cases mentioned above, this equation is uniquely

reduced to

2Po + P {G(Py) } =0 (267

and the orbit exists when K > 2 (Poincare-Birkhoff condition). The

residue of this orbit is given by

RM) (ono, Po)

= -G (Pe) [2 4+ F (6P 1 (2 + F (06 (Pe) ]

X [2F (G(Po)) + F (0) {2+F" (G(Pe))G" (Po) } 1] (27)

Figures 5 and 6 show respectively the residue of period-3 and
period-4 orbits at K = 3.3. In Fig. b, it is seen that the
residues of both period-3 orbits become zero atB8r = 2.40 and the
stability exchange takes place at this value. As for the period-4
in Fig. 6, all of the pairs are unstable at B8 = 0, i. e., the
asymmetric branch indicated by (b) is inversely and the Poincare-
Birkhoff pairs are directly unstable. As the value Bp» increases.
the residue of the asymmetric branch decreases and fhose of the
Poincare-Birkhoff Pairs increase. The asymmetric pairs turn into
stable and are absorbed by the Poincare-Birkhoff pair indicated by
(a) at B = 0.612 where the conditien (23) is just equal to zero
and F" (o) = 0 in Egs. (21) and (24). The residue of the Poincare-



Birkhoff pair on the X-axis increases fo | and then decreases. At
B = 2.44, residues of both Poincare-Birkhoff pairs become 0
simultaneously and the siability exchange occurs which agrees with
the observation in Fig. 3.

In Figs. 7 and 8, residues of period-3 and period-4 orbits at K
= 6.4717 are demonstrated, respectively. In contrast io the case
of K = 3.3, the period-3 orbits are fairly unstable and the stable
island exists in a very narrow range of B» . The stability exchange
takes place at A = 2.34 which confirms the island shift in Fig.
4. The residues of period-4 pairs vary in a very complicated
manner. Im Fig. 8 we see that all pairs are directly unstable at
Br =0. As B increases, asymmetric pair becomes stable firstly;
however, it soon becomes inversely unstable and then its residue
decreases and turns stable again. This pair merges with the
Poincare-Birkhoff pair at B = 1.749. The Poincare-Birkhoff pair
located on the X-axis is stable for 1.749 <8 < 2.28 and the
residue comes up to 1 and then falls again. At B = 2.28, both of
Poincare-Birkhoff pairs take the value R = 0 and phase shift of
period-4 island seen in Fig. 4 is explained by this fact. As B
increases further, the pair on the P-axis becomes stable and its
residue comes up to 1 and then goes down again. The special
behavior of the residue of the Poincare-Birkhoff period-4 orbits is
treated in the next section with relation to the multifurcation from

period-4 poinis.



4. POGINCARE-BIRKHOFF MULTIFURCATION FROM PERIGD-4 ORBIT

In the preceding section, we have fouad that the residue of
period-4 orbit increases to unity and then falls again as Ay
increases. We should aware that stable orbits with the same value
of residue but different B » exhibit distinct behaviors. One
example is the cases of R™ = 0; at the small value of Br we see
the merging of asymmetric pairs and at the large B» stability
exchange occurs. In Fig.9, phase portrait near the period-4 points
on the X-axis is shown for K = 3.3 and (a) 8- = 0.933 and (b) B»r =
1.57. 1In both cases period-4 orbits have residues R“ ~ 0.75. In
Fig. 9(a) we can recognize that the period-3 catastrophe arises and
the original islands are squeezed intec the periodic point by the
unstable period-3 orbit. On the other haad in Fig. 9(b), we see the
multifurcation of two pairs of period-3 orbits. For R™ ~ [, at
which period doubling begins usually, two pairs of period-2 orbits
are multifurcated as shown in Fig. 10.

We will analyze these different behaviors following J. M.
Greene et. al.'™ As was studied in Sec. 3, the Poincare-Birkhoff
pairs are symmetric with respect to the origin. Thus (0, ¥;) and
(0, -Xo) are regarded as the same points. In this case, the
Poincare-Birkhoff period-4 sequence has a square root map. An

introduction ef the residue R ®' of T? map



R® (0.X0) = R® (0, -Xo)

= -UR X)) {267 (0) + 260 (F(e)) + 6 (06" (F(Xa)D)F (Xo) 1 (28)

leads to the following expression for R @

R4 = 4R (1 -Rr¥) (29)

which has a maximum of 1 (at R® = %).

Figure 11 shows the values of R and R*' for the Poincare-
Birkhoff pair on the X-axis at K = 3.3. It is found that the
residue R® is monotonically decreasing with B= . In the stable
eiliptic case, the eigeavalues (Bq. (14) ] are expressed in terms

of rotation number p as

A =exp( *i27z p), 2zmp= cos™'(1 - 2R) (30)
When the residue passes through the values

Ro o = sin?( zp/q0 ), 0.q : coprime integers (31)
the Poincare-Birkhoff islands of q times the original period are
born. At B = 0.612, where the asymmetric branch is bifurcated,
residues are R = 0 and R® =1 so that this corresponds to p/q

= 1/2 (period doubling) bifurcation for T? map and 2/2 (asymmetric)
bifurcation for T* map. At Be = 0.933, R =R™ = 3/4 and the



value p/q is 1/3 for T* and 2/3 for T*. Thus the special case of
period-3 catastrophe takes place as observed in Fig. 9(a). On the
other hand at Be = 1.57, the value R™ is 3/4 but R® = 1/4
which corresponds to the 1/6 multifurcation for T and the 2/6
pultifurcation for T*. Therefore two pairs of period-3 islands
turn up in Fig. 9(b) rather than period-3 catastrophe. Finally at
Be =1.26, R“ approaches 1 and R®’ passes through 1/2, which is
typically the 1/4 multifurcation for T? map and 2/4 for T°. These
4-cycles are recognized as two pairs of period-2 in Fig. 10.

We have discussed the Poincare-Birkhoff multifurcation in
connection with the residue of T map. The special case of R® =
3/4 (corresponding to A°® = 1) is knowa as period-3 catastrophe or
squeeze effect. In this case, period-3 pairs should appear at some
valve of Be . In Fig. 12, we see clearly the anomalous onset of
period-3 pairs at B = 0.9676. The onset condition can be obtained
by expanding the T? map around the equilibrium point and retaining
the lowest order nonlinear term.'®' As a result the onset condition

is expressed by using R ®

R > 1/¥V2 (32)

This condition coincides with the value of R® at B = 0.9676.



5. CONCLUDING REMARK

Particle acceleration in the relativistic standard map is
studied and it is found that the relativistic effects suppress the
chaotic motion of particles. For the waves whose phase velocities
extremely exceed the speed of light, particle frajectory becomes
regular. In this case, periodic orbits play dominant role in the
phase space and the stochasticity occurs around the secondary island
chains. In order to obtain critical information on the periodic
orbits, we carry out the symmetry analysis and construct families of
space jnversion and momentum inversion symmetry lines. Space
inversion symmetry lines exhibit the constant phase increase of
particle motion. These two families of symmetry lines predict
stable and unstable periodic orbits of arbitrary period.

In the relativistic standard map, stable and unstable periodic
orbits are often exchanged when the relativistic parameter B
takes a certain value. Corresponding phase shift of island chains
are observed in numerical calculation. In order to clarify this
exchange, we examine local stability of periodic orbits by
introducing the concept of residue which characterizes the
eigenvalue of the area-preserving map. We have found that the
exchange of stabilities for period-3 pairs takes place at R® = (.
In the case of period-4 orbit, however, the residue R’ changes
much more complicatedly than R® for period-3. Firstly, at lower
value of B¢ with R™ = 0. we have shown the bifurcation of

asymmetric period-4 pairs. As B increases, residue of the



Poincare-Birkhoff pair located on the X-axis increases to uaity and
ther falls again. After that, residues of Poincare-Birkheff pairs
of both on the X- and P-axes become 0 at the same time. At this
value of B, stability exchange occurs.

The special behavior of R“" is analyzed by means of the
residue of T® map in connection with the Poincare-Birkhoff
myltifurcation. It is shown that the bifurcation of asymmetric
period-4 pairs are regarded as period-deubling bifurcation when
considered as periodic points of T?. Different types of the
behavior of period-3 isiand around period-4 points are seen in Figs.
9 (a) and (b) when R®“’ = 3/4.  Por the case of Fig. 9(a), the
value R is 3/4 and the exceptional case of period-3 catastrophe
arises. On the other hand, in Fig. 9(b), R® is 1/4 and two pairs
of period-3 islands are multifurcated from period-4 points. If
the value R™’ takes its maximum value of 1, R passes through
1/2 and correspondingly two pairs of period-2 orbits are
rultifurcated. Finally, anomalous onset of period-3 orbits near the
period-3 catastrophe is worked out and the onset condition is found
consistent with the numerical observation.

In the analysis of stability, we have restricted ourselves to
the periodic orbits of low period. The formulation, however, is
applicable to higher periodic orbits. Numerical study of the map
shows that exchange of stability occurs very frequently for higher
periodic orbits. Stabilities of higher periodic orbits are future

problems to be discussed.
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Fig. 3 Phase shift of period-4 islands between (a) Be = 2.20 and
(B) Bs = 2.83 at K = 3.3.

Pig. 4 Phase shift of period-3 and pericd-4 islands between
(a) Br = 2.20 and (b) B = 2.51 at K = 6.4717.
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Fig. 9 Multifurcation of period-3 pairs at K = 3. 3.
(a) period-3 catastrophe at B = 0.933 and (b) two pairs of
period-3 islands at Be = 1.57.

Fig. 10 Multifurcation of two pairs of period-2 orbits at K = 3.3
and B = 1.26.
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12 Onset of period-3 orbit at K = 3.3 and Br =0.9676.



Recent Issues of NIFS Report

NIFS-24 S.1 itoh, N. Ueda, and K. ltoh, Simulation Study of Scalings in
Scrape-Off Layer Plasma by Two Dimensional Transport Code ;
Mar. 1990

NIFS-25 B. Bhatiacharya, T. Watanabe and Kyoji Nishikawa, Single Particle
and Fluid Picture for Ponderomotive Drift in Nonuniform Plasmas;
Apr. 1990

NIFS-26 K. Ida, 8. Hidekuma, Y. Miura, T. Fujita, M. Mori, K. Hoshing, N.
Suzuki, T. Yamaguchi and JFT-2M Group, Edge Electron Field
Profiles of H-mode Plasmas in JFT-2M Tokamak ; Apr. 1990

NIFS-27 N. Nakajima and M. Okamoto, Beam-Driven Currents in the 1/ v
Regime in a Helical System ; Apr. 1990

NIFS-28 K. lfoh, K. Nagasaki and S.1. lioh, Heat Deposition on the Partial
Limiter ; Apr. 1980

NIFS-28 S.-l. toh A. Fukuyama adn K. ltch, Fokker-Plank Equation in the
Presence of Anomallous Diffusion ; May. 1980

NiFS-30 K. Yamazaki, O. Motojima, M. Asac, M. Fujiwara and A. liyoshi,
Design Scalings and Optimizations for Super-Conducting Large
Helical Devices ; May 1990

NIFS-31 H. Sanuki, T. Kamimura, K. Hanatani, K. ltoh and J. Toderoki,
Effects of Electric Field on Particle Drift Orbits ina 1 =2 Torsatron ;
May 1980

NIFS-32 Yoshi H. Ichikawa, Experiments and Applications of Soliton
Physics; June 1930

NIFS-33 S.-. toh, Aromalous Viscosity due to Drift Wave Turbulence ;
June 1980

NIFS-34 K. Hamamatsu, A. Fukuyama, S.-I. Itoh, K. ltoh and M. Azumi,
RF Helicity Injection and Current Drive ; July 1990

NIFS-35 M. Sasao, H. Yamaoka, M. Wada and J. Fujita, Direct Extraction of
a Na- Beam from a Sodium Plasma ; July 1990

NIFS-36 N. Ueda, S.-1. ltoh, M. Tanaka and K. itoh, A Design Method of
Divertor in Tokamak Reactors Aug. 1990

NIFS-37 J. Todoroki, Theory of Longitudinal Adiabatic Invariant in the
Helical Torus; Aug. 1990

NIFS-38 S.-l. lioh and K. ltoh, Modelling of Improved Confinements —
Peaked Profile Modes and H-Mode—; Sep. 1980



NIFS-3¢

NIFS-40

NIFS-41

NIFS-42

NIFS-43

NIFS-44

NIFS-45

C. Kaneko, S. Kube, K. Nishimura, T. Syoji, M. Hosokawa, K. Ida,
H. idei, H. Iguchi, K. Matsuoka, S. Morita, N. Noda, S. Okamura,

. Ozaki, A. Sagara, H. Sanuki, C. Takahashi, Y. Takeiri, Y. Takita,
K. Tsuzuki, H. Yamada, T. Amano, A. Ando, M. Fujiwara,

K. Hanatani, A. Karita, T. Kohmoto, A. Komori, K. Masai,

T. Morisaki, O. Motojima, N. Nakajima, Y. Oka, M. Okamoto,

S. Sobhanian and J. Todoroki, Confinement Characterisiics of High
Power Heated Plasma in CHS; Sep. 1930

_.l

K. Toi, Y. Hamada, K. Kawahaia, T. Watari, A. Ando, K. ida,

S. Morita, R. Kumazawa, Y. Oka, K. Masal, M. Sakamoto, K. Adati,
R. Akiyama, S. Hidekuma, S. Hirokura, O. Kaneko, A. Karita,

T. Kawamoto, Y. Kawasumi, M. Kgjima, T. Kuroda, K. Narihara,
Y. Ogawa, K. Ohkubo, 8. Okajima, T. Ozaki, M. Sasao, K. Sato,
K.N. Sato, T. Seki, F. Shimpo, H. Takahashi, S. Tanahashi,

Y. Taniguchi and T. Tsuzuki, Study of Limiter H- and I0C- Modes
by Conirol of Edge Magnetic Shear and Gas Puffing in the

JIPP T-1IU Tokamak; Sep. 1990

K. ida, K. ltoh, S.-I. Itoh, S. Hidekuma and JIPP T-IIU & CHS Group,
Comparison of ToroidallPoloidal Rotation in CHS

Heliotron/Torsatron and JIPP T-1IU Tokamak; Sep .1990

T.Watari, R.Kumazawa,T.Seki, A.Ando,Y.Oka, O.Kaneko, K.Adati,
R.Ando, T.Aoki, R.Akiyama, Y.Hamada, S.Hidekuma, S.Hirokura,
E.Kako, A.Karita, K.Kawahata, T.Kawamoto, Y.Kawasumi,
SKitagawa, Y.Kitoh, M.Kojima, T. Kuroda, K.Masai, S.Morita,
K.Narihara, Y.Ogawa, K.Ohkubo, S.Okajima, T.Ozaki, M.Sakamoto,
M.Sasao, K.Sato, K.N.Sato, F.Shinbo, H.Takahashi, 8.Tanghashi,
Y.Taniguchi, K.Toi, T.Tsuzuki, Y.Takase, K.Yoshicka, S.Kinoshita,
M.Abe, H.Fukumoto, K.Takeuchi, T.Okazaki and M.Ohtuka,
Application of Intermediate Frequency Range Fast Wave to JIPP
T-ITIU and HT-2 Plasma;

Sep. 1990

K.Yamazaki, N.Ohyabu, M.Okamoto, T.Amanc, J.Todoroki, Y.Ogawa,
N.Nakajima, H.Akao, M.Asao, J.Fujita, Y.Hamada, T.Hayashi,
T.Kamimura, H.Kaneko, T.Kuroda, S.Morimoto, N.Noda, T.Obiki,
H.Sanuki, T.Sato, T.Satow, M.Wakatani, T.Watanabe, J.Yamamoto,
O.Motojima, M.Fujiwara, A.liyoshi and LHD Design Group, Physics
Studies on Helical Confinement Configurations with [=2
Continuous Coil Systems; Sep. 1990

T.Hayashi, A.Takei, N.Ohyabu, T.Sato, M.Wakatani, H.Sugama,
M.Yagi, K.Watanabe, B.G.Hong and W.Horton, Equilibrium Beta
Limit and Anomalous Transport Studies of Helical Systems;
Sep. 1990

R.Horiuchi, T.Sato, and M.Tanaka, Three-Dimensional Particle
Simulation Study on Stabilization of the FRC Tilting Instability;



NIFS-48

NIFS-47

NIFS-48

NIFS-49

NIFS-50

NIFS-51

NIFS-52

NIFS-53

NIFS-54

NIFS-55

NIFS-56

NIFS-57

NIFS-58

Sep. 1990

K.Kusano, T.Tamano and T. Sato, Simulation Study of Nonlinear
Dynamics in Reversed-Field Pinch Configuration; Sep. 1990

Yoshi H.Ichikawa, Solitons and Chaos in Plasma; Sep. 1990

T.Seki, R.Kumazawa, Y.Takase, A.Fukuyama, T.Watari, A.Ando,
Y.Oka, O.Kangko, K.Adati, R.Akiyama, R.Ando, T.Aoki, Y.Hamada,
S.Hidekuma, S.Hirokura, K.lda, K.ltoh, S.-Lltoh, E.Kako, A. Karita,
K_Kawahata, T.Kawamoto, Y.Kawasumi, S.Kilagawa, Y.Kitoh,
M.Koiima, T.Kuroda, K.Masai, S.Morita, K.Narihara, Y.Ogawa,
K.Ohkubo, S.Okajima, T.Qzaki, M.Sakamoto, M.Sasao, K.Sato,
K.N.Sato, F.Shinbo, H.Takahashi, S.Tanahashi, Y.Taniguchi, K.Toi
and T.Tsuzuki, Application of Intermediate Frequency Range Fast
Wave to JIPP T-IIU Plasma; Sep.1990

A Kageyama, K.Watanabe and T.Sato, Global Simulation of the
Magnetosphere with a Long Tail: The Formation and Ejection of
Plasmoids; Sep.1990

S.Koide, 3-Dimensional Simulation of Dynamo Effect of Reversed
Field Pinch; Sep. 1980

O.Motojima, K. Akaishi, M.Asao, K.Fujii, J.Fujita, T.Hino,
Y.Hamada, H.Kaneko, S.Kitagawa, Y.Kubota, T.Kuroda, T.Mito,
S.Morimoto, N.Noda, Y.Cgawa, {.Ohtake, N.Ohyabu, A.Sagara,

T. Satow, K.Takahata, M.Takeo, S.Tanahashi, T.Tsuzuki, S.Yamada,
J.Yamamoto, K.Yamazaki, N.Yanagi, H.Yonezu, M.Fujiwara,

A liyoshi and LHD Design Group, Engineering Design Study of
Superconducting Large Helical Device; Sep. 1990

T.Sato, R.Horiuchi, K. Watanabe, T. Hayashi and K.Kusano, Self-
Organizing Magnetohydrodynamic Plasma; Sep. 1990

M.Okamoto and N.Nakajima, Bootstrap Currents in Stellarators and
Tokamaks; Sep. 1990

K.ltoh and S.-Llioh, Peaked-Density Profile Mode and Improved
Confinement in Helical Systems; Oct. 1890

Y.Ueda, T.Enomoto and H.B.Stewarnt, Chaotic Transients and Fractal
Structures Governing Coupled Swing Dynamics; Oct. 1990

H.B.Stewart and Y.Ueda, Catastrophes with Indeterminate
QOutcome; Oct. 1980

S.-L.ltoh, H.Maeda and Y.Miura, Improved Modes and the
Evaluation of Confinement Improvement; Oct. 1880

H.Maeda and S.-L.Itoh, The Significance of Medium- or Small-size
Devices in Fusion Research; Oct. 1980



NIFS-59

NIFS-60

NIFS-61

NIFS-62

NIFS-83

NIFS-64

NIFS -65

NIFS-66

NIFS-67

NIFS-68

NIFS-69

NIFS-70

NIFS-71

NIFS-72

A.Fukuyama, S.-l.lioh, K.ltoh, K.Hamamatsu, V.S.Chan, S.C.Chiu,
R.L.Miller and T.Ohkawa, Nonresonant Current Drive by RF
Helicity Injection; Oct. 1990

K.lda, H.Yamada, H.Iguchi, S.Hidekuma, H.Sanuki, K.Yamazaki and
CHS Group, Electric Field Profile of CHS Heliotron/Torsatron
Plasma with Tangential Newtral Beam Injection; Oct. 1990

T.Yabe and H.Hoshino, Two- and Three-Dimensional Behavior of
Rayleigh-Taylor and Kelvin-Helmholz Instabilities; Oct. 1380

H.B. Stewart, Application of Fixed Point Theory to Chaotic
Attractors of Forced Oscillators; Nov. 1990

K.Konn., M.Mituhashi, Yoshi H.lchikawa,Soliton on Thin Vortex
Filament; Dec. 1990

K.ltoh, S.-Litoh and A.Fukuyama,/mpact of Improved Confinement
on Fusion Research, Dec. 1990

A.Fukuyama, S.-Litoh and K. ltoh,A Consistency Analysis on the
Tokamak Reactor Plasmas; Dec. 1990

K.ltoh, H. Sanuki, S--I. itoh and K. Tani,Effect of Radial Electric
Field on o-Particle Loss in Tokamaks; Dec. 1990

K.Sato,and F.Miyawaki,Effects of a Nonuniform Open Magnetic
Field on the Plasma Presheath; Jan.1991

K.itoh and S.-I.toh,On Relation between Local Transport
Coefficient and Global Confinement Scaling Law, Jan. 1991

T.Kato, K.Masai, T.Fujimoto,F.Koike, E.Kallne, E.S.Marmar and
J.E.Rice,He-like Spectra Through Charge Exchange Processes in
Tokamak Plasmas; Jan.1991

K. Ida, H. Yamada, H. Iguchi, K. Itoh and CHS Group, Observation of
Parallel Viscosity in the CHS Heliotron/Torsairon ; Jan.1991

H. Kaneko, Spectral Analysis of the Heliotron Field with the
Toroidal Harmonic Function in a Study of the Structure of Built-in
Divertor : Jan. 1881

S. -I. ltoh, H. Sanuki and K. Itoh, Effect of Electric Field
Inhomogeneities on Drift Wave Instabilities and Anomalous
Transport ; Jan. 1991



