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Abstract

The kinetic effect of emergetic trapped particles on the
stability of magnetohydrodynamic (MHD) ballooning meode is
studied in & tokamek with the circular cross section. The
bounce rescnance contribution of trapped emnergetic
particles is found to play an important role in the outer

inertial region of the ballooning mcde perturbation, and

destabilizes the ballooning mode when the shear effect is

not streong. The inhomogeniety of a model slowing down
energetic particle distribution in wvelocity space, OF/0E,

is effective to stabilize the bounce resonant mode.

Reywords: Energetic trapped particles, bounce rescnance

excitation, averaged ballooning mode equation, tokamak,

circular crosssection, inertial range, stabilization by

slowing down distribution .



§l.Introduction

Influence of energetic trapped particles on magnetchydro-
dynamic (MHD)} modes have been studies by many authors to find a route
to get second stability regime of the ballooning mode, and to
interpret experimintal phenomena. Trapped energetic particles on the
average over the cental ideal region of ballooning mode perturbation
have a zero frequency stationary contribution and stabilizes the ideal
ballooning model). Energetic particles, on the other hand, may make
resonant excitation at various characteristic freguencies.
Precessional drift rescnance excitations of trapped energetic
particles combined with the internal kink mode and the ideal
ballooning mode may cause the fishbone oscillationz), and the high
frequency MED oscillation3), respectively. Untrapped circulating
energetic particles may also make a resonance excitation at transit
frequency?’ .

It is quite natural to think about the possibility of bounce
resonance excitation of trapped particles. The bounce resonance
contribution, however, is averaged out in the central ideal region of
the ballooning mode perturbation , and was completely neglected. When
the shear effect is not so strong, the ballooning mode perturbation is
not damped out for many torcidal periods along the magnetic field
lines, and therefore the trapped particles may feel many times the
same perturbation during bounce motion. The bounce resonance
contribution may, therefore, survive in the ocuter inertial region of
the ballooning mode perturbation and play an important role as in the

case of passing particle resonance?! .




In this paper, we study the bounce resonance problem of trapped
energetic particles combined with the MHD balloonig mede in an
axisymmetric tokamak with circular cross secticn. We will use the
method of averaged ballooning mode equation®! 8} which is cambined with
the kinetic effect of energetic particles derived in a previous
paper4) . Carefully evaluating the average of the kinetic effect of
energetic trapped particles, we actually find that the bounce
resonance contribution remains unvanished in the cuter inertial region
of the ballooning meode perturbation, and play an important role for
the bounce resonance excitaticn. This mode is, however, stabilized
when the profile effect of the slowing down distribution function F in
the velocity space is not zero, i.e., 9F/0E#0 with E being particle
energy.

This paper is organized as follows:In §2, carring out the average of
the kinetic contribution of emergetic trapped particles the averaged
balloonig mode equation which inmvolves the kinetic energetic trapped
particles effect will be derived. In §3, the dispersion relation will
be derived making use of the bouded conditiom of the ballocning mode
eigenfunction. This dispersion relation will be numerically
calculated in §4, and the Dbounce resonance excitation of the

ballcooning mode will be presented.

§2. Averaged Ballooning Mode Equation
We start with the high n-ballooning mode equation in the

axisymmetric toroidal system with the circular cross section:

B89 0% + ag)p + ki) = 0, (1)
ay dy



where x is the extended poloidal-angle-like coordinate f=1+(8yx )2,
g=ceosyx +8% siny -asinzx -8, a=§'Rq2, 6=dl—q’2), er/R{r and R being
the minor and major radius), 92=m(m—m*U/mA2, wep=va/ (Rq}), vp is the
Alfven velocity, s=rq'/q is the shear parameter of the magnetic field
lines,q=rB,/(RBx )is the safety factor, and other notations are

standard. The kinetic term due to the energetic particles has been

given by4)
K(®) = ng_00f v 4 @H), (2)

where n=txwe(rR)?/(in%c?), wy(B)=vg.VS, vg=bx(vi?/21nB+v )0, is
the precessicnal drift velocity of energetic particles and Qn is the
Larmor frequency. The eikonal function S must satisfies B*VS=0.
Since b=B/B is the unit tangential vector, and x =(b.V)b is its
/b3

derivative along the magnetic field lines, the curvature x={bxXk|

of the field line in differential geomertry becomes s=lbxk| which

congists of the normal and geodesic curuvaturs which represents the
gecmetrical characteristics of the confinement system, and a key
quantity for ballooning stability. The function H( x) is the solution
of the gyro-kinetic equation. For trapped particles at the resonance
condition in the fluid limit, it has been given by eq.(56) in
Ref. (4).

Egquation (1) involves two different scales when s <<l. The short
scale x =1 is related to the toroidal periodicity of the magnetic
field lines. The longer scale z=sy >1 1is related tc the
characteristic decay length of the eigenfunction along the magnetic
field lines.

Averaging the eigenfunction ¢ in eqg.{l) over the sghort scale

taking into account up to the fourth order of the small parameter «,




we have the distilled differential equation 2)6)7};

U —
L2 5- ~(g_+—2 +Acu+z2)>¢+i2m¢)=o ] (3)

az  az Leg2 .

The coefficient Ué’ U; and Achave been given, for example, as follows

& >3
U, =50 =), (4)
o, = s -=a?, {5)
__ Q-2
A=- P, (6)

The kinetic contribution from energetie particle, the fourth term

in eg. (3), can be separated into the trapped and passing particle

contributions:

1 -
—-K(:p)——(ut+up)¢. {7)

The trapped particle contributions has been given by eqg. (57 in

Ref.{4):
5
Z 22w -8
U =—32’Em 2 l deE{ L.y a
t 2.2 f w- = -2 2
s°B (1+e) L a p-l(w—wd) *(pwb}

2
Q{go(x)cosl( XX_NT, (8)

where I(x x)= [GRqe-Ealv| , and Q=eoF/eE +(kxQc)oF/or

is the source of free snergy due to the inhomogenieties of F both in

the space and velocity space. The passing particle contribution Up

5



has been given by eqg.(58), and analyzed in scme detail in Ref. (4).
At the torecidal resonance condition @ = (¢ being the transit
frequency of energetic particles), Up becomes proportional to (l+zz) .
The passing particle contribution Up, therefore, modifies the
inertial coefficient A, in eq. (3). For the sake of simplicity,
however, here we neglect this passing particle contribution Up, and
cencentrate cour attention to the trapped particle contribution U at
the bounce resonance condition.

First we evaluate the average of 9o cosI{x,x.} in eqg.(8). From the
definition of the integral I{xx.), we have T{x+, x)=nlw~wg) /fog =1p
(p=0,1,2, ) at the resonance condition and &I (xx_)/0x= Rg(e-wg) / }v[
,where x. is the turning points of trapped particles at which v, =0,
and «p =(Rg fdﬂ{v-] ) "L is the bounce frequency. For p=0 {u=eg)

resonance, I{x x_.}=0 because 0I{x x_)/ox =0 in the whole region [x_ x+].

In this case, we have ¢g,cosly x.)=cosy =2E(k)/K{k)-1, where K and E
are the first and second kind complete elliptic functions,
respaectively and k2=(1—x+a)z((za) with As(v, /v)2 as defined in Ref. {4} .

Introducing this average for p=0 into eq. (8), making use of a model
distribution functicn F=c(r)E_3/26(A—AO) with c(r)=ph/(23/2Emmh::Kb)
and Kp= fdx/(’_’rr(l-l}m) =(2/en) 1/ 2R (k) /2, we obtain the p=0 trapped
particle contribution from the first term in the curly braces in

eqg. (8):

3w (&
(1- dm}log(i--—f;’l)}, (9)

g O*w {1+
t Q 3 :

dm *m
where Wo=1(q/s) 25ht (w*m/o:dm) {(2E(kg) /RK{kg}-1) and ﬁht=8ﬂph/32,
Cameq (Bp) » Qagr@sp (By) and Epn is the maximum energy. In the zero

frequency limit w—0. eg.{9) reduces to Ut°=wo, i.e., the p=0 trapped

particle contribution has a stationmary zero frequency contribution




which corresponds to the trapped particle effect studied in Ref. (1).
The second term which has the logarithmic function plays an inportant
rocle near the resonance condition «s= (:;. The factor -3/2 in the
second term in eq.{9%) which came from OFAE, plays an significant role
for stabilization of the drift resonant branch®). Since U.° has no z,
it modifies the Mercier ccfficient U, in eq. (3).

For p=0(u:=pub) resconance, the derivative 8I(xx_)/@y tends to plus
infinity, because v, —0 as ¥y — ¥. .i,e., I(xx.) sharply increases
near the turning points x. . As y varies from x. to x,, the function
I(xx.) varies from 0 and increases monotonically and finally tends to
the rescnance cendition I{x, x.) =pm1 For p=1i, I(xx.) varies from 0
to mas y varies from x. to x, therefore, cosI{xx.) becomes an odd
function with respect to x. If we calculate the average of g,
cosI (xx.)=cosy cosI(xx.)+zsinycosI (xx.) over [x x,. the first odd
function wvanishes. This is why the bounce resonance (p=1)
contribution in the central ideal region z<<1 is ignored in usual
studies. The second even function, however, remains unvanished. This
second term may be important in the outer inertial region z>>1.

Since sinxcosI {(xx )}/ |vt| sharply tends to -« as x—x..the average of
this function may be evaluated by the singular edge approximation.
For &y from the definiticon, the integral I{yx.) may be
approximztely by

1 1

I(X,X_) # 20 - ) = x_)* (-2Esinx_) 2,

where siny_is determined from the turning point condition:l1-i(l-ecosy)
=0, Making use of this approximation, we have the average from the

second term:
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For deeply trapped state x, <<= this approximation shoud be accurate.

When the argument of sin-function in eg.{10) is smaller than 7/2,
which may be satisfied for E>2e’/K?, for wsey(bounce frequency),
eq.{10¢) may be approximated by (2x+sinxghqz/k. The frequency ¢
obtained from the dispersion relation is much lower than up as we
shall see, this assumption may easily be satisfied. Since this

average is proporticnal to z, it becomes important in the inertial
regiom.

Introducing eg. (10)

into eq.{8), and carrying out the energy
integral for the same distribution function F(E,)

ags in the
derivation of eq. (9), we obtain for p=1(w=uy) resonance contribution
ir the form

U, = -(1+2")T,

(11}
where
Tmw S8 s (173 1090 By, (12)
w Gy, Za,, @
W= 59

. i
Y. SiNXPuO o), {13)
SBko) X X.PrO( 1+€)

&(xj=1 for x>0, otherwise 0(x)=0, and upp=tp(Ey). The term with the

factor -3/2 in eq.(12) ccmes from OF/0E as in eqg. (9)
w

. From eg. (12},
e find that the bounce rescnance ceontribution Uy modifies the

inertial coefficient A, in eq.(3)

. Substituting egs. (9) and (11}
into eq. (3), we have & distilled ballooning mode equation.

-if-cﬁ’-m; U‘_+A(1+z’))¢>=o, {14)

dz dz 1+2




where the Mercier coefficient U, and inertial coefficient A are
modified by the trapped energetic partile effect in the form

U, =U_+U,, (15)

A=A=+5E, (16)
The coefficient Uy remains unchanged. If we include the passing

partlcle resonance contribution Upl, it modifies the inertial

coefficent (16) in the same manner as Upl does.

§3. Disperslion Relation

We proceed to the derivation of the eigenvalue condition for the
distilled ballooning mode eg.{14) from the boundedness of the
eigenfunction ¢. Whithout the inertial coefficient, A-0.egfi4) reduces
to the Legendre differential eguation whose solution is completely

given by the Legendre function PH(iz) and QM(iz), where y and v are

related to the coefficient Uo and Up in the fornxg)
1
p=(-u,)?2, {17)
V= l+(1+U)% (18)
2 4 °7

From the bounded condition of the asymptotic soluticn: P MHiz)

=T(v+ 17221 ZWAT(v-p+1)712) for v>0 and z>>0, the eigen value condition

for the ideal ballooning mode has been given in the form pu=1+v or

11 2 1
5+(Z+Uo)2 =(—U1)z° (19)

In eqg.{19),the Mercier stability condition 1/4+Uo>0 has been assumed.
From eg. {15), the trapped energetic particle eiffect Uto stabilizes
the Mercier mode when Ut°>0, while for U.°9<0, it destabilizes.

When we have the inertial effect, A=0, the general solution of



eq.(14) is expressed in terms of the spheroidal functionsl?® . The
eigenvalue condition has also be given from the bounded condition of
the solution in a general form. Instead of using the complicated
general form, however, here we erploy the methed in Ref.{7): 1In the
inertial region, z>>1, eq.{l4) reduces to the Bessel differntial
equation whose solution can be expressed by 7) (mﬂz)l/sz{iz) where
K, is the modified Bessel function. In the region Z<<A™V2 the
solution of eq.(14) is given by the hypergecmetric function: p=(1+z2)"
Wlp ( (v-py2-(v+p)2.12-22) for the even mode. Matching the asymptiric
forms of these solutions, the eigenvalue condition for the even mode

has been given in the form

1 3 Ive
(A" =HW,v), (20)

where H(pv)is defined in termg of the gamma functicn:

r(g)r(-_‘f_;i)rz(v +§)
H{y,v)= ) {21)
- Thvep 1vyop oo 1
I{ > I 5 W (-v 2)

Substituting egs. {6) and (16) into the left hand side of eg. (20)

the dispersion relation becomes

1

0 —*
B ) T =2 fa v, (22)
5]

In eq.({22),the trapped particle effect in the central ideal region
Uto is implicitly involved in the parameter v through egs. (15) and
(18). §Since the right hand side of eg.(22) comes from the fluid
contribution, the pure bounce rescnance excitation may be studied

from the left hand side: (Vs)2-U.=0.

10




Behavior of the function H{uv) on {(wv) parameter space c¢an be seen
by a three demensional graphics in Fig.l. Due to the property of the
gamma function, near the marginal stability condition {19), p i+v,
H{pv) is approximated in the form

H{p,v) = Cu(vku-v-1), (23)

where the coefficient is given by

(v )
Vi= —— . 24
C, (V) A cosSTTV {24)

Variation of the quantity (:B(v):’/l‘”'l as a function v. as seen in Pig.2,

is not so mild. wWhen vis small, it is approximated by

-

¢t = €12 01-2v2+ 30) - w8 - Log H) }= ) 57w,
where ypis the pori-gamma function: tp(z)=dlogF(2)/dz.

When v is small, eq.{(23) can be expressed by the fluid portion of
energy Bwf=J:dz{(l+zz)(d¢t/dz)2+(uc+U1(l+22)'3)¢ﬁ} with the trial
function of the form :pt=(l+22)'l/2. In thisg case, dWgyvti-y, and if we
write Utl=6Wkt,the digpersion relation (22) reduces to the same one

treated in Ref. (5)
]

1O - D) =B, (23)

The second term in the left hand side of eg.(25) is trapped particle
bounce resonance contrbution instead of the transit resonance
contribution in Ref. (4). From above argument, the dispersion relation
of the form (25) may be valid for small v and p= v+l. This means
that U, must be small which may correspond to the low-p plasmas) .

From egs.(15) and (18), the relation between the Marcier

coefficient and v can be written by

vitv=TU, + UL (26)



If we separate the energetic particle effect Ay in the form VEV Lt Ay
where vy is defined by v02+vO=Uc, the energetic effect is given by
Ape UL O/ (1+2v,) . When Vo 1s small again, we have Ay« U =W, C.
Therefore, including both 5Wkto and 6wkt1, the dispersion relation may

be written in the form
1

QP - BWL)E = DS + BW,. (27)

When Bwktland w,iin n?are neglected, eq.(27) reduces to the one
studied in Ref. (2).

We concentrate to the prablem which remained to be studied,i.e.,the
bourice rescnance excitation of the ballooning mode. For the sake of
simplicity, we neglect Bwkto assuming ep>>ug. Introducing eq. (12)
into eq.(22), we write the dispersicn relation {22) in the form

-2 2 - e w3 1
D 4+ - o ] 0 =-— l" '=O,
2T+ wlu{w*m+w (u*mu 2}109( = 11 (28)

b

where the bar over freguencies mean the normalization by the bounce
frequency at the maximum energy wyn, Wl=szuA2Wl, nf=2s2wA2H(umﬂV”.
When vis small, ; reduces to the ideal MHD growth rate ©; = wpdWe .
Contour graphics of yy,=constant in the (os) parameter space is
presgented in Fig.3 near the marginal stability state ¥o= 0 which

corresponds Lo psv+l.

§4., Result
We calculate the complex discrete root of eg. (28) in the camplex «-
plane by the contour method making use of graphics of Mathematicall) .

An example of the “egui potential® contours of D =constant in the -




plane is presented in Fig.4. Some results are also examined by the
two dimenticnal shooting method in a previcus paper4).

First we consider the ideal ballooning mode marginal stability
state, i.e., the dispersion equation (28) without the fluid energy,
¥o=0. In this case, we can study the existence of pure bounce
resonant mode.

So far the 9F/8E in Q in eg.(8), which is the source of energetic
particle free energy in velocity space, has been neglected in the

1)2)3)12). Here we consider the effect of this

rescnance theories
term in the resonance problem. For the simple sicowing down
distribution F being proportional to E'3/2, this term which reduced
to the term with the factor -3/2 in eqg.(28) may stabilize the
resonant mode &s in the drift regonance problems). Precisely
speaking, the energetic particle distribution should be determined
self consistentlylz) from a generalized Fokker-Plank eguation which
includes both source and dissipations due to classical and anomalous
transport prosesses induced by the resonant mode instability. Eere
we employ the simple slowing down model to see how the term OF/¢E
stabilize or destabilizes the rescnant mode.

The normalized growth rates with and without OF/6E term are compared
in Fig.5 where the solid and broken curves represent the case without
and with 9F/0FE term, respectively. There is a threshold W*l above
which the regonant mode becomes unstable. The normalized frequencies

for both cases are also plotted as functions of the energetic
particle contribution W in Fig.5. Notice that the mode still exists

even below the threshold W(W*l as a stationary oscillating mode.
The threshold W*l as a function of w« is plotted in Fig.e. The
resonant mode is unstable above these curves. As seen in Figs.5 and

6, the stabilization by @8F/8E is significant, although our simple



model distribution function may over stabilize the mode because
OF/PE<0 in the whole energy region.

Here we briefly consider one of the simplest case of we=0. In this
case, the source of free energy comes only from the fluid energy
which is stabilized by OF/0E of the slowing down distributicn, and

eq. (28) reduces Lo

- 3_.— 1
Gy, + @R 1090 - =) =0, (29)
[Ty

When yy=0,i.e.,at the marginal stability state of the ideal mode,

eq. (29) is solved analyticaly:

2

=0, w,={-e )

'
tal—

which is a stationary oscillating mode with «,>1. When Vo 15 smalil,
i.e., clese to the ideal ballooning marginal state, eq.(29) is
approximately solved in the form
wiey, G+%;:rlogvo),
which increases as W;»0, and tends to the ideal growth rate Yo-
Finally we caiculate the dispersion egquation (28} including both Yo

and uwm. FOr Cup=-wpm, variations of discrete rcot of eg.(28) in the

camplex «-plane are presented in Fig.7 for variocus values of y, and

W. When Wy—0 in Fig.7, the real part «r tends to zerc and the
imaginary part i tends to the ideal MHD growth rate ygas in the case
of drift rescnance problemi3!14) . without 6F/¢E term (solid curves),

the transgition from the MHED mode to the resonant mode occurs

continuously as % increases as in the case of y,=0. With the
slowing down stabilization 8F/8E=0, variations of ;1 and ;r changed
as shown by the dotted curves in Fig.7.

when o.p=@ny, i1.e., the spatial gradient of F changes its direction,

which may occur in the central region for the deeply trapped

14




particles, all results change approximately symmetrically with
respect to the imaginary axis w;=0.

variations of ©; as function of ;iare plotted for different values
of v5 in Fig.8, where the comparision is made with the case of
gF/0E* 0 whose result is shown by dotted curves. When &F/0E+=0, the
growth rate ©; is always smaller than the “ideal" one y, as shown by
the broken curves. One will see how OF/0E is important in the
stabilization of the resconant mode. This effect, however, has been

neglected in the p=0 resonance studies3)5)

asSUMiIng Gep?>Ca@m-

AS ﬁ increases, pure oscillating branch on the real axis ©:=0
suddenly appears, i.e., a bifurcation of the discrete root happens.
This branching of &, is shown for the case of y,=0.05 in Fig.9. At
certain value of ;“ the real fregquency ., eprits into two branches.
The upper branch is the stationary oscillating mode, whose frequency

ig much lower than lower branch's, while the lower branch is the

resonant mode.

§5. Summary
A dispersion eguation is derived from the bounded condition of
analytical eigenfunctions of the averaged ballocning mode equaticn
which includes the kinetic effect of trapped energetic particles in a
toroidal plasma with the circular magnetic surface cross section. The
kinetic energy integral is evaluated for the p=0 precessional drift
resonance and p=1 bounce resonance in the case of the simple model
slowing down distribution function.
The drift rescnance integral modifies the Mercier coefficient, and
is involved in the dispersion eguation in a complicated manner
through the gamma function as indicated in eq.(21). Near the ideal

ballooning mode marginal stability state, the dispersion egquation is

15



reduced to the simple one derived from the energy principle.

Although the trapped particle bounce resonance integral vanishes on
the average in the central ideal region, it remains unvanished in the
outer inertial region and play an important role for the bounce
resonance excitation of the ballooning mode. Detailed behavior of the
bounce resonant mode is studied by numerically calculating the
dispersion eguation. The term 0F/0E in the kinetic bounce resonance
integral for the slowing down distribution is found to stabilize the
resonant mode as in the p=0 Arift resonant case8). The model of the
distribution function F used here, however, may be too simple to be
realistic. If we take into account the dissipation due to
instabilities, F may suffer change. The distribution P should be
determined in a self consistent manner, which remines to be
investigated.

From numerical results, as the energetic particle effect %1 is
increased, a bifurcation of the MHD mode into the resonant mode and

stationary oscilliationg mode is also found.
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Flgures Captions

Three dimensional surface graphics of dispersion function
H{wv). The line p=v+1 on which H{u,v)=0 indicates the

balloonibg mode marginal stability state.

Variation of coefficient of dispersion function ng/(2”+1) as
a function of v.

Contour graphics of fluid contribution v4 in {s,«) -plane.
Egquipotential contour graphics of complex dispersion function
D for v4=0.1 and ¥=0.22. Each center of cantours give root of
D=0.

Variation of normalized growth rate y/wy, of bounce resconant

mdoe as a function of ﬁ for ideal ballooning mode marginal
stability state vy = 0. Broken curve represents the case with
OF/OE.

Theshold W¥; as a function of w«y for vp = 0. Broken curve
represents the case with 0F/0E.

Variations of discrete roots @, anéd ©, for various values of

v, and w Broken curves represent the case with 8F/¢E.
© W . &

Behavior of normalized growth rate wj/up, as function of W

for iy =" Broken curve represent the case with 0F/GE.
m b,

Fig.%:

Behavior of normalized frequency Ey/ Wy 85 function of

W for Cam =" Uy,
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