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Abstract

The toroidal phase locking process of kink modes in the reversed-field pinch
(RFP) plasma is investigated in detail by means of the magnetohydrodynamic
{MHD) simulation. The physical mechanism of phase locking is clarified. The
most dominant two linearly unstable kink modes rule over the evolution of other
Xink modes whereby phase locking takes place. It is confirmed that the phase
locking process is not a special phenomenon subject to the resistive boundary
condition, but a common feaiure of the MHD r1elaxation process in the RFP.
The relation between the phase locking and MHD relaxation processes is briefly

discussed.
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1 Introduction

It is widely recognized that the reversed-field pinch {RFP) plasma involves many types
of nonlinear interaction. The OHTE experiment has recently found [1] & very curious,
new type phenomenon. It is a toroidally localized kink instability, which is called
“slinky mode”. It is experimentally shown that the slinky mode is a vesult of phase
locking of several internal kink modes.

Recently Schnack and Ortolani succeeded in demonstrating the phase locking phe-
nomenon of RFP by using a new code providing the resistive shell boundary [2]. In this
respect they mentioned that not only in the case of the resistive shell boundary but
also in the case of the perfecily conducting boundary the similar phase locking would
take place. This suggests that the phase locking of kink modes may not be a spe-
cial characteristic subject to the resistive boundary but a general feature in nonlinear
evolution of RFP.

In spite of their efforts, however, the physical mechanism of the phase locking
process is not explained satisfactorily. The purpose of this paper is to give a theoretical
interpretation for the phase locking mechanism. In this paper we first show, using a
magnetohydrodynamic (MHD) simulation, that phase locking occurs even for the case
of perfectly conducting boundary {Section 3). Then we go on to study the question
about the toroidal location where phase locking takes place (Section 4). This question
will lead us to the physical interpretation of the phase locking mechanism (Section 4).
The numerical model is explained in Section 2. In Section 5, we will summarize our

principal conclusions.

2 Simulation Model

To simulate the phase locking process of RFP, we use a Fourier-expanded MHD code
which is the same code used in the previous paper [3]. A periodic cylindrical geometry
is adopted and the physical variables are decomposed into the poloidal (m) and the

toroidal {n) mode components, i.e.

flr,8,2)= Zf(r, m; n)expi(mb —nz/R). (1)




The aspect ratio of the cylindrical torus is 5/7. The azimuthal () and axial (z) deriva-
tives are calculated in the complex Fourier space, but the radial one is approximated
by a two point central difference. The number of the radial grid elements is 51. The
Runge-Kutta-Gill time advancing method is used.

The basic equations and the normalization except for the magnetic field are the
same as those in the previous paper (see Eqs. (2) to (6) in Ref[3]}). The normalizing
factor for the magnetic field By is chosen to be the initial toroidal magnetic field at the
axis B, (r = 0). The resistivity » and the viscosity v are fixed to 107%

The initial condition is composed of a force-free equilibrium and kink perturbations
given by

Vinatrai _ 0 . Vo | (2)
Biritia Biorce—free by
The equilibrium By, cefrec is similar to that used in the previous paper [3]. It is
specified by the following profile of the ratio A between the magnetic field B and the

current I,

J-B cosar + 1

A= B :AO{ 5 }C- (3)

Tn our initial equilibrium, A, and  are chosen to be 6.57 and 2, respectively. This is an
unstable equilibrium against the kink mode instability for n = 2 to 9. Figure 1 shows
the linear growth rate for each mode, and we can see that the mode (1;5) is the most
unstable mode. The g-value at the central axis is 0.19, and hence the mode (1;3) is
almost the on-axis mode.

The perturbations, v, and bg, are given by the linear eigenfunctions and an addi-

tional phase at the origin, ¢, {—7 < ¢, < 7), i.e.

Vo {rezgen—fﬂnctwn(ra n)

= Z _ expz(é — nz/R -+ qsn)l (4)

bO = bei gen— function (7"1 T’?,)

where the phase distribution {¢, : n = 2 to 9} is given by a random number. In eq.(4},
the summation is over all unstable modes (n = 2 to 9). The relative amplitude of the
perturbation for each mode to the equilibrium is 107*.

The boundary conditions are given by

vV = o )



B, = ¢, (6)
E = o (7)

Condition (5) is the condition of the standard rigid boundary for viscous fluid. Con-
ditions (6) and (7) are the conditions of the perfectly conducting boundary. In this
paper, in order to confirm that the phase locking process is a general feature of RFP
dynamics rather than a special instability in the thin shell {resistive shell) device, we
employ the perfectly conducting boundary condition.

Simulation runs are performed for two cases, Case 1 and Case 2 which are given in
Table L. Since the principal modes in the MED relaxation process are the low 77 modes
[3], this mode system may be sufficient to simulate the basic nonlinear processes in the
RFP plasma. The difference between Cases 1 and 2 is that the most unstable kink

mode, (m;n) = (1;3), is removed in Case 2.

3 Simulation Results

First of all, let us examine Case 1, using the same diagnostic formats as those used

in the OHTE experiment {1]. Figure 2 shows the typical simulation results for three

different times, namely, at ¢ = 10, 28 and 40 74 (Alfvén time). The top and the third

subsets, (a) and (c), show the normalized toroidal mode profiles of B,, i.e.

B.(r =0.9,m=1;n)
B,

for the Jow n (n =1 to 10) and for the high n (n = 11 to 20) modes, respectively.

B(z) = Re{ exp(—inz/R)},

The second and fourth subsets, (b) and (d), represent the dispersion & of the phase
distributions for the low n and the high » modes, respectively. The bottom subset {e)
shows the real profile of B,(r = 0.9, = 0, z). The dispersion of the phase distribution

o is calculated by

2{2) —(2)}2
o(0) = [EAECT=FOF ”
where .
_ 1, 1 Im{B.(r =0.9,m = 1,n) exp(—inz/R)}}
#nlz) = 7" tan Re{B,(r = 0.9,m = 1, n) exp(—inz/R)}’ )
and
7ls) = Znfole) (1)




In eqs.(8) and (10), N, is the number of the modes which contribute to the summation

.. In eq.(9), the phase ¢,(z) has a value in the range

£(z) 2 on(2) 2 £(2) + 2,

and £(z) is adjusted so that o(z) has the smallest value. So, the dispersion o can be
a good indicator for the phase locking. Phase locking becomes more complete, as the
dispersion ¢ becomes smaller.

We can see that at £ = 107, the phase distribution is exiremely random both for
the low n and high n modes. It obviously reflects the initial random phase distribution
of the perturbation modes. After some time has elapsed, the phases of the high »
modes are locked at a certain toroidal location, i.¢., z = 1.1 at ¢ = 2874. Note that the
dispersion ¢ for the high n modes has a clear minimum at this point, whose value is
0.03. The real B, profile is locally perturbed around there. Therefore, phase locking,
‘slinky mode’, appears. However, phase locking disappears at ¢ = 4074 and the phase
distribution becomes random again. On the other hand, the low n modes do not exhibit
such a clear phase locking as obtained for the high n modes at any time.

Let us examine the phase evolution for each mode. In Fig. 3, the time history of the
phase v, for each mode seen at the point z = 1.1, where the ¢ has a minimum in time
and space, is plotted along with the evolution of the spatially minimum . In the linear
phase, before ¢ & 1074, the phase of each mode is almost fixed to the initial phase.
In the period 1074 < t < 207,, however, the phases are greatly altered by nonlinear
coupling among the modes. As a result of the nonlinear evolution, all high n modes
have the same phase at ¢ & 2074, and phase locking starts. Here we should notice that
the modes attributing to the phase locking are not only the high n modes (n > 11)
but also the middle n modes (n=5, 7, 8, 9, 10). (The locked modes are bundied by
the circle with the arrow.) Remember that the initial on-axis mode is the n = 5 kink
mode. Therefore, the locked modes are only the internal kink modes. These results
are consistent with the results of the experiment [1] and the previous simulation {2].
The phase locking continues until about ¢ = 3074. For { > 3074, the phase locking is
lost and the distribution becomes random again.

From the results shown in Figs. 2 and 3, it is confirmed that the phase locking

process can take place for the case with perfectly conducting boundary condition.



Therefore it is not a special phenomenon subject to the resistive boundary condition.

4 Discussion

Now, let us advance to the study of the physical mechanism of the phase locking
process. The key-question addressed is what decides the toroidal location where the
phases locking appears. The answer is that the phase distribution of the most unstable
two kink modes in the linear phase determines the location.

In order to prove this answer, we carry out the tweniy six different simulations,
those have different random phase distributions, {¢,} in eq.(4). However, all other
parameters except ¢, are the same as those in the simulation shown above. Figure 4
shows the relation between two toroidal locations z,; and z, /s, for the twenty six
simulations. The z;; is the location where the phase locking takes place, 1.e. the
location where the dispersion ¢ for the high n modes has the smallest value in space
and time. The 2, jn, is the location where the two kink modes, (m;n) = (1,n;) and

{1, nz), initially have the same phase, that is given by

¢n _¢’n
an/m = R?l—:n_; (11)

Figures 4 (a) and (b) are for n;/n, = 4/5 and 5/6, respectively. We can see that there
is a good correlation between the locations z,; and zy5. In fact, the location z,; is

distributed around the line,
2,0 = (245 + TR) mod (27 R). (12)

On the other hand, the relation between z,; and zs is not well correlated, as is shown
in Fig. 4 {b). Actually we cannot find that the other mode sets except n;/n, = 4/5
have a systemalic relation with the location z,; .

As shown in Fig. 1, the modes (1;4) and (1;5) have the largest linear growth rates
in the initial state. Not only in the linear phase but also in the nonlinear phase, they
are the most dominant modes. Figure 5 shows the history of the magnetic energy for
the initially unstable modes. We can see that each mode grows exponentially with
its linear growth rate in the linear phase (0 < ¢t < 1074). Because of the large linear

growth rates, the amplitudes of the modes (1;4) and {1;5) quickly grow. In the period




107, < t < 2074, although these modes exhibit gradual saturation, the modes (1;5)
and (1;4) remain the dominant and the second dominant. However, the amplitudes for
these modes start to decrease after about ¢ = 2074, and at ¢ = 2774 the mode (1;5)
gives up being the most dominant mode. It is worth to point out that phase locking
appears when the magnetic energy for the modes (1;5) and (1;4) are maximized, and
that the phase locking continues as long as the mode (1;5) is dominant.

These results in Figs. 4 and 5 indicate that the most dominant two kink modes
govern the other modes whereby they are phase locked. It is also indicated that when
the leading modes lose their influences, the phase locking process terminates. In order
to examine this hypothesis, we carry out another type of simulation, namely, Case 2.
In Case 2 simulation, only the mode (1;5), that seems to be the leading mode for
phase locking, is removed from the simulation system. Figures 6 (a) and (b} are the
histograms for the minimum dispersion ¢ in the different twenty six simulation runs
for Cases 1 and 2, respectively. In the both simulations, the initial phase distributions
{¢,} are determined by different random numbers. Figure 6 (a) is the result taken from
the same simulation runs as shown in Fig.4. We can see in Fig.6 (a) that the most runs
for Case 1 have smaller dispersion than 0.05. This means that the clear phase locking
process appears irrespective of the initial phase disiribution. On the other hand, as
shown in Fig. 6 (b), the peak of the minimum dispersion distribution shifts to the range
0.1 to 0.15 for Case 2. Furthermore, the distribution becomes broader in comparison
with Case 1. These results indicate that the removal of the most dominant mode (1;5)
makes phase locking less clear, which supports our hypothesis given in the beginning
of this paragraph.

Now, let us show more directly the fact that the most dominant modes govern the
other kink modes. In Fig. 7, the amplitude of each coupling term in the nonlinear
phase (at t = 157,) is plotted. This diagram shows the amplitude of the nonlinear
coupling between the modes (m/;n') and (m — m';n — n'), which affects the evolution
of the mode (m;n). The abscissa and the ordinate correspond to the mode (m;n) and
the mode (m';n'), respectively. The size of each diamond plotted in the diagram is

proportional to the amplitude of nonlinear coupling =, that is given by

E(myn,mhn) = lrot{{f(r = 0.9, m";n') x B(r = 0.9,m — m';n—n')}.|. (13)



The size of the diamond for the modes (m; n) and (m'; n') is normalized by the largest

coupling term =,,,.(m; n),
Emaz(m;n) > E(m;n,m’;n’}  for any (m'; n’),

which is scaled as the unit. Only the three largest couplings are plotted for each mode
(m;n). Hence, the position of the unit scale diamond represents the most influential
coupling on the mode (m;n).

First, we can see that for the low n kink modes the most dominant coupling is
located on the line A, while the dominant coupling for the high n modes is located
off the line. The coupling on the line A is the coupling with itself, i.e. the linear
coupling. Hence it means that the low n kink modes are almost governed by the linear
response, while the high n kink modes are affected mainly by the nonlinear coupling.*
The second important result is that most of the diamonds are distributed inside of the
two triangle zones surrounded by the lines A and B. The coupling on the line B is
the coupling with the mode (1;5), that is the key-mode in the phase locking process.
It means therefore that the kink modes for n > 5 are governed by the lower n mode
than itself. On the other hand, the modes for n < 5 are affected by the higher n mode
than itself. Eventually, all the kink modes are more or less affected by the mode {1;5).
However, the effect of the nonlinear coupling on the low n modes is not so influential in
comparison with the linear effect. This fact explains that the lower » modes than the
most dominant kink mode (n = 5) can not contribute to phase locking. Furthermore,
it is worthwhile to point out that the most dominant kink mode is almost usually the
on-axis mode. (For instance, see Fig.2 in Ref.[4].) Therefore, only the internal kink
modes, that have a higher n number than the on-axis mode, can attribute to the phase
locking process as observed both in the experiments and the simulations.

These simulation results strongly support our hypothesis, so we can conclude that
phase locking takes place through a nonlinear coupling process that the most domi-
nant two kink modes rule over the evolution of the other kink modes. We can easily

understand this conclusion, if we notice the following fact: When there are only two

1This fact does not mean that any low = modes are linearly unstable, becanse the coupling ampli-
tude = is given by the absolute value in eq.(23). Even if the mode is linearly stable, the large linear

reaction against the nonlinear perturbation gives the large = on the line A in Fig.7.




perturbation modes in the initial state, all other modes induced from these modes have
the same phase as that of the initial two modes at a point where the initial two modes
have the same phase.? Therefore, we can regard :Lhe phase locking to be the result of
a nonlinear process, in which one coupling overcomes the other coupling processes.

In the OHTE experiment, it was observed that the two modes were first locked
simultaneously and then the other internal kink modes join the phase locking (see Fig.5
in Ref[1]). The first locked two kink modes (n = 10 and 11 in OHTE experiment)
have the helicity m/n corresponding to the g-value on the axis. This experimental
observation is consistent with our result, and the first locked modes correspond to the
leading modes for the phase locking.

Quite recently, it is found that two kink modes become unstable in the self-sus-
tainment process of the RFP configuration [3}. The nonlinear coupling between these
unstable kink modes effectively reproduces the reversed field and introduces the MHD
relaxation process. Note that the nonlinear coupling between the most unstable kink
modes 1s also a key-process of phase locking. In fact, it is observed in simulations
and experiments [1] that the plasma quickly approaches the Taylar’s relaxed state
through the phase locking process. Therefore, all RFP plasma accompanied by the
MHD relaxation must have a tendency that the phases are locked in the relaxation
process. The fact that the phase locking process has not yet been observed in the
experiments of the conducting boundary might be due to the stabilizing effect of the
boundary. The detailed linear analysis for the kink mode predicts that replacing the
conducting boundary by the resistive one greatly enhances the linear growth rate of
the kink instability [5,6]. In the phase locking process, the leading modes must have
large growth rates whereby they can rule over the other modes. It is likely that the
enhancement of the growth rate under the resistive boundary makes the phase locking
process clearer. Actually, in our simulation study there is a tendency that phase locking

appears more easily as the initial equilibrium is more unstable.

2Tt is mathematically proved in Appendix A.



5 Summary

In this paper, we have in detail investigated the phase locking process in the RFP. Our

findings are summarized as follows:

1. Phase locking can take place under the perfectly conducting boundary condition.
Hence, it is not a special phenomenon subject to the resistive boundary, but is a

common feature in the RFP dynamics.

2. Phase locking takes place at the location where the most dominant two kink

modes have the same phase,

3. Phase locking takes place through the process, in which the nonlinear coupling
between the most dominant two kink modes rules over the dynamics of the other

mode. Therefore, it terminates when the ruling modes die.

Finally, we can conclude that a few kink modes control the almost entire evolution

in the RFP dynamics during the MHD relaxation and phase locking processes.

A Appendix

We can easily prove that when there are only two perturbation modes, the phases of
any modes driven by these two modes are always locked. Let us assume that the initial
state includes only the equilibrium component (Bg) and the two perturbation modes

(Vlr B]) a.nd (Vg, Bg)} 1.€.
V = (V,1,iVg,iVa)expi(mif — niz/R+ ¢y)

+ (V,2,1Vg2, 2V z) expi(maf — naz/R + ¢2), (14)

B = (OaBBO:BZO)
+ (iB;1, Be1, Bor)expi{mif — nyz/R+ &)
+ (Z-B1'27 B@‘Z: BzZ) €xp 3(m26 - n’ZZ/R + (152): (15)

where the variables V,, and Bg; (€ = r,6, 2, and 7 = 1,2) are real functions of radius

only. Because the phases ¢; and ¢, are included, the equations (14) and (15) do not
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lose a generality. The poloidal and the toroidal coordinates are periodic in the torus
system, hence there is a freedom to choose the origin of the coordinates 4 and z at
any place. For Convenience, we put the origin at the place where the phases of two
perturbation modes are equal to zero. Namely, the coordinates 6 and z in equations

{14) and (15} are translated into & — 6y and z — zo, where

8, = nigs — N2y (16)
ming — Myl
mydy — m2¢1 R.

miny — MMy

Zn =

(17)

Through this translation, the phases ¢; and ¢ in equations (14) and {15) are vanished
without losing a generality. According to the definition of the phase ¢, that is given
by (9), the phases of the initial two modes ¢ = +1/2 at the origin.

Now, the third mode (Vs,Bj) is driven by the nonlinear coupling between the
modes (Vy, B;) and (V;, By), that mode number (ms,n5) = (my +mg, ny + na). The
third mode {V3, B;) is governed by the equations

oV,

5 = 2 {=(Ve AV, 479 x B, (18)
(1.)=(1,23, (2,1)

B3

- = 2 wiVixB) (19)

(L=(1,2), (2.1)

(Vo AV, =( {1 Vo Bt = VeV, + 5V VeVl

i Vo D TV Ve + BV, Ve +1VeV, ) (20)

i Va2l o my v+ BV,V, Dexpi(maf — %2),

o
@
P

3.xB, =( { (5B~ Di) B,
— (44(Ba) + B.) Be},
i (3Z(Bs) + 2B,) B, o
- (3B + %Ba) Bl
i (=B,  + %Ba) B,
- (%Bﬂ' - %“') B,,} Jexpi(masf — Fz),



rot(V, x By) =( e (ViBy, + VaB,)
-5 (V.B,, + V.B. )k
{ % {(VaB., + V..Bg) 2)
£ (V,.Bs, + VaB,) },
{ —+&r (V.B,, + V,B,)
=2 (VeB,, + V.Bg) 1) expi(myd — mz).

In the equations {18) and (19), we neglect the diffusion terms, since the diffusion terms
have no effect to change the phase of the mode. Through these equations the third

mode can be expressed by

V3 = (\/7.37 iV93, ing) exXp z(mgﬁ - ngZ/R), (23)
By = (iB,s,Bss, B.a)expi(maf — n3z/R), (24)
where the variables Vi3 and Bgy (€ = 7,8 and z) are real functions. The third mode
has the same form as the initial modes. The phase ¢ of the third mode at the origin

is also +1/2. Therefore, using the mathematical inductive method, it has been proved

that any modes driven nonlinearly have the same phase ¢ = +1 /2 at the origin.

12
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