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Abstract

Time evolution of a magnetic island by forced reconnection, especially the decay
process is analyzed. A simple slab model is used and the magnetic island is considered
to have a single helicity. The plasma is assumed to be incompressible. The evolution
time is affected by the presence of an original magnetic island. In the decay process, a
current flows along the separatrix of the magnetic island, and the current layer width
depends on the magnetic island width, when the island is relatively wide compared to
the current layer. In the presence of a magnetic island, even if the magnetic Reynolds
number S increases, the current layer does not become narrower. This leads to the
slow evolution of the magnetic island. It is found that the time scale S'74 is required
to reach the last equilibrium regardless of the nonlinear terms. This is slower than that

of the growth process, S3/°7,.
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1 Introduction

In toroidal plasmas, an equilibrium in which all the magnetic surfaces are nested
tori could exist if there were no perturbations. Actually, however, some of the magnetic
surfaces are not nested due to MHD fluctuations and error fields, etc. When the
boundary in the symimnetric equilibrium state, which is defined as equilibrium (1), is
perturbed so as to resonate a rational magnetic surface, the system evolves into another
equilibrium. This equilibrium has two classes of solution. The first class of equilibrium
has a surface current and a finite magnetic field jump on the resonant surface. There
is no topological change of the magnetic surfaces. This equilibrium exists in the ideal
MHD state where the resistivity does not play an important role in the magnetic
reconnection. The second class of equilibrium has a topological change and no surface
current, resulting in the presence of magnetic islands on the resonant surface. We
define the first class as equilibrium (I}, and the second class as (ITI}. Actually, the
plasma cannot stay long in (I} before evolving into (III), because the plasma has a
finite resistivity. We shall call this time evolution the growth process. The growth
process brought about by forced reconnection was analytically studied by Hahm and
Kulsrud{l.

Next, suppose that the boundary condition reverts from the state in which the
island exists on the resonant surface to the original symmetric state. The system will
then evolve to another equilibrium. As in the growth process, there are two classes
of equilibrium. The first has no topological change; there is still a magnetic island on
the resonant surface. We define this equilibrium as (IV). The second has a topological
change; the island disappears and the system returns to its original symmetric equi-
librium (I). We shall call the time evolution from (IV) to (I) the decay process. The
question is whether or not the decay process is different from the growth process. In
this article, we will analyze the decay process and show what the difference is between
the growth process and the decay process.

Th~ problem of magnetic reconnection has been widely studied during the past




many years. Historically, there are two major models for steady staie reconnection:
one by Sweet!? and Parker!®}, and the other by Petschekl4]. There also exist numerical
simulation studies 18], They discussed about the driven reconnection in which the
plasma flow to the neutral layer is important. However, when the magnetic island in the
confined laboratory plasma are controlled by adding the external coil current, the effect
of the plasma flow on the reconnection rate is weak. Instead the reconnection is strongly
affected by the flux perturbation. In the same way of ref.{1}, the island evolution by
forced reconnection in which the boundary flux is perturbed is investigated.

Control of the magnetic island in tokamaks has been studied experimentally[gl[m}
and theoreticallyill][lzl. Other researchers have estimated the time evolution of mag-
netic islands, e.g., the response of magnetic islands to external perturbations, the
necessary time for active feedback control and the matching between the island and
the perturbation phases, etc., from the technological viewpoint. In this paper, we
will study the time evolution of the magnetic island from the viewpoint of the physical
mechanism. The plasma flow and the current density profile near the separatrix, which
have a relation to the magnetic reconnection of field lines, are analyzed in detail.

A simple slab model is used and the magnetic island is assumed to have only a
single helicity. In toroidal magnetic confinement systems such as tokamaks and tor-
satron/heliotron, fusion plasmas have a low beta and a small kinetic energy. Therefore
they can be considered to be incompressible . The stationary plasma flow from the ex-
terior region is not considered and only the flux is perturbed at the boundary. Reduced
resistive MHD equations are solved to evaluate the time evolution of the magnetic is-
land. The equations are calculated numerically and can be estimated analytically only
in the ideal MHD phase.

In Sec. 2, geometry and basic equations are described. In Sec. 3, the growth
process is reviewed. The decay process is studied in Sec. 4. The analytical solution
of the flux function in the ideal MHD phase is described and numerical results are
shown. The effect of the magnetic island on reconnection is discussed. Summary and

discussions can be found in Sec.4.



2 Geometry and Basic equations

To analyze the growth and decay process, a simple geometry is used as shown in Fig.
1. The plasma is assumed to be incompressible and surrounded by the conducting wall
at the boundary z = a. The magnetic field has a uniform gradient in the z-direction

and no z-dependence. The equilibrium magnetic field is given as
B=B,Vz+ BonVy, (2.1)

where By, and B, are constant. By introducing the flux function v, the magnetic field

can be written as

B=B,Vz+Vzx V. (2.2)

When the boundary is perturbed, the system evolves into a new equilibrium. The
resistive MHD equations are solved to analyze the time evolution of a magnetic island.

The resistive MHD equations are described as

d 3
p—::JxB—Vp
off
— =~V xE
ot (2.3)
E+vxB=nJ
47 =V xB

where p,p, v,J, E are mass density, plasma pressure, flow velocity, current density and

electric field, respectively. By introducing the stream function ¢ and the vorticity U

as
v=VzxV
¢ (2.4)
U=V,
the reduced MHD equations for ¥ and ¢ are written as {13
a At
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where J is the z-component of the current density.
When the boundary perturbation amplitude 4 is small compared to g, §/a < 1,

the quantities in eq.(2.5) are approximated by

b=do+th |
J=J0+J1
U:‘_Uly

where sub 0 and 1 denote the original equilibrium terms and the perturbed terms,
respectively. We solve the time evolution of the first order terms from the first equi-

librium to the second one by using eqs.(2.5) and (2.6).



3 Growth Process

Hahm and Kulsrud analytically studied the growth process and indicated the time
scale of the evolution in both linear and nonlinear cases. Here analysis of the growth
process is reviewed in brief.

When the boundary is perturbed as
z = *(a — § cos ky), (3.1

the system evolves into a new equilibrium to the first order in §. When the boundary

is perturbed as (3.1), the flux function is given by

Y =ty + 1 (z) cos ky, (3.2)

where i = (B,o/2a)z®. The equation for the first order quantity v;(z) is obtained by
substituting eq.{3.2) into the force balance equation B- VI =0 as

2
A, (3.3

Equation (3.3) is solved by making use of the boundary condition ¢,(a) = Byo6 as

sinhkz sinh kz

_ —— 3.
ta.nhka)+ W% sinh ka (3.4)

t1(z) = ¢1(0)(cosh kz —

The central value ;(0) has two solutions, ¥4(0) = 0 and B,g6/coshka. The former
corresponds to the equilibrium (I}, the Jatter to the equilibrium (III). Island width A

depends on the amplitude of perturbations at the boundary as shown in the expression

4\/a)1(0)/ Byo.

By considering the y-dependence of ¢, we may write the stream function ¢ during

the time evolution in the following form,

¢ = é1(z)sinky. (3.5)

The flux value 4,(0) evolves from 0 to By8/coshka. The time stage is divided
into four phases, (A) ideal MHD, (B) transition from ideal MHD to resistive MHD, (C)
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resistive MED and (D)constant 1 phases. These phases are characierized by the order
of time §°74 (0 < @ < 1), where S is magnetic Reynolds number and 74 is poloidal
Alfven time.

When the perturbation is small, 6/a < (7a/7)*/®, the linear treatment is possible.
If t « $¥37,, the time stage is phase (B). The plasma fiows are given by the ideal
MHD theory. For t ~ S$¥37,, the full theory of phase (C) applies. The resistivity
begins to reconnect the magnetic field lines. For SY3r, & t & §%/°7,, the constant ¢
approximation in phase (D} applies, and the small ka theory (ka ~ 1) is applicable.[M}.
For 1 ~ S337,, the flux ¢;{0) has a second equilibrium value, which it reaches only
after overshooting. This means that the tearing time scale 58157, is necessary to reach
the equilibrium (III).

When the magnetic island has a size comparable with the resistive layer, the non-
linear effect should be considered.I!¥ Since a sizable nonlinear eddy current arises,
producing J x B forces which oppose the flow pattern, the exponential growth is re-
placed by algebraic growth on a much slower time scale. Reconnection and the island
growih occur on the nonlinear time scale 7xz ~ (6/ a)*rg. The overshooting of the

magnetic island does not occur.



4 Decay Process

4.1 Analytical Estimation

On evaluating the decay process, we will make use of the reduced MHD equa-
tions again. The equilibrium term is different from that in the growth process. The

equilibrium flux function should be changed as follows,

’ cosh kz
Weg = '(,bo + Byogc—om Cos ky (4 1)

The second term in eq.(4.1) is related to the original magnetic island. The decay
process is expected to evolve in a different way when the original island width is not
negligible.

In the decay process, an analytical estimate can be obtained only in the ideal MHD

phase. Following the coordinates (%,(, z) rather than the Cariesian coordinates is

convenient. B
= _é_yﬂzﬁ + 1, coshkz cosky
a i
VC;: 4By Vzx V¢ (4.9)
4By + kayy, | Vo |
=z

where ¢, = Byoé/cosh ka. The component 1 represents the flux surface with a nag-
netic island and the component ( is parpendicular to both 1 and -. Using these coor-

dinates, we can deduce the equation for the time dependent perturbed flux function

as
47p 4By + k*at, 2 0%, i -
A T v d =— |V 2 . .
We approximate | Vi | as
2 Byo 2 3 ;. 2
| Vo [P~ (—(;— + k", cos ky)” + (ke, sin ky)”. (4.4)

Using 22 ~ (2a/B,o){¢ — ¢ cos ky), we have
¥

[2B
| Vo [P~ —;“3 (4.5)




When the Laplacian is approximated as V2 ~ (B,0/2)(2¢8°/0¢° +8/0%), eq.(4.3) can

be rewritten as )
47rp(43y0 + k2ay, 2 * Py &
k? 4B, A2 0uu Y2

where u = +/7. This equation is solved by the same methods in ref.[1] and we have

§ (4.6)

- kut/r 3
= Cluf g i (4.7)
0

v

where h = 4k\/aB,0/{4B,o + k%a1),) and C; is constant. Since the perturbed flux
function in the ideal MHD phase of the growth process is written as(tl

ket -
Y2, sin
=~ Coz [ ™ dv : U, (4.8)
0

v

it is found that eqs. (4.7) and (4.8) have an analogous form. The perturbed flux is
distributed according to the background equilibrium flux profile.

In the ideal MHD phase, there is almost no difference in the time evolution of ¢:(0)
between the growth process and the decay process. However, the plasma flow and the
current density profile are quite different. In the growth process, the plasma mainly
flows along the z = 0 axis and the current has a large gradient around z = 0. On
the other hand, in the decay process, since the current density has a large gradient at
the X-point of the separatrix and it is distributed according to the background flux, it
has a gradient at the separatrix. The t{ime dependent perturbed stream function & is
obtained by solving the following equation:

P - -
4mp==V8 = [(VC- V)VA(FV - V3) (4.9)
where f = (4B + K?av,) | Vi | /(16w B,s). Since this equation indicates that the
stream function is also distributed according to the background flux, the plasma mainly
flows along the separatrix.

In the resistive time scale ¢ 3» S/%7,, we must consider the effect of the resistive

term which is difficult to estimate analytically. In Sec. 4.2, we will show the numerical

method and the results.



4.2 Numerical Results
4.2.1 Numerical Methods

The Cartesian coordinates are used in numerical calculations. With these coor-
dinates, higher Fourier modes coupled with the island term in equilibrium quantities
should be considered. Perturbed quantities are written as
b

% =39, cos jky
=0

‘5 = Z q:!"J sin jky
=1

" y (4.10)
J= Z J,cos jky

=0
U= Z U} sin jky.

3=1 7

Substituting {4.1) and {4.10) into (2.5), we can obtain the equations for each modes.

After setting up the perturbation, the boundary conditions are given as
_ByU‘S (J = l)

0 (7#1) (4.11)
é,(z = +a) = 0.

'(J;J(I = ta) =

The symmetry (z) = ¥(—z),d(z) = —¢(—z) makes it possible to reduce the region

0 £ z £ a. The estimate of the numerical error is given in Appendix.

4.2.2 Example

Figure 2 shows the evolution of the flux function ¢). Parameters are chosen as S =
10%,6/a = 1072 and ak = 1. Both growth and decay processes are plotted. The over-
shooting phenomena can be seen in the growth process in the absence of the nonlinear
terms, which agree with the analytical estimate in Sec. 3. The decay process is slower
than the growth one. This delay becomes large with the increase of 5. Furthermore
we should note the effect of the nonlinear terms, Vz x Vé - Vi, Vz x Vé - VI and

Vz x Vi) - V.J. In the growth process, when the magnetic island grows larger than
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the resistive layer, nonlinear eddy current becomes more pronounced, producing the
J x B force opposing the fluid flow pattern. This physical mechanism leads to a slower
time evolution of the magnetic island. This means that the nonlinear terms play an
important role in the growth process. In the decay process, on the other hand, the
evolution hardly changes regardless of the nonlinear terms as seen in Fig. 2. This
implies that other mechanism dominates the island evolution. It is also confirmed that
the current profile near the rational surface does not change. In the next subsection, we
will explain why the decay process evolves slower. The nonlinear terms are neglected.

This approximatior shortens the calculation time.

4.2.3 Effect of the Magnetic Island

In the decay process, the plasma mainly flows along the separatrix and the current
density has a large gradient there. This means that the island has an influence on its
own evolution. Figure 3 shows the example contours of flux function, current density
and stream function. The geometry of the magnetic surface affects the current density
profile. We note that the current profile near the X-point is still important because
the current density is peaked at the X-point. Figure 4 shows the time evolution of the
current density at both the X- and O-points of the separatrix. The magnetic Reynolds
number chosen is S = 10°. During the ideal MHD phase, the current density increases
as in the growth process, but it is suppressed during the resistive MHD phase. Since
the reconnection rate of field lines is determined by the current intensity at the X-
point, smaller current intensity slows down the time evolution. Figure 5 shows the
dependence of the current layer width in the z— direction on the y = 0 plane, A,
and that in the y— direction on the z = 0 plane, A, and the current infensity at the
X-point, J(0). In the growth process, analytical estimate gives us that J(0), A, and
A, scale as S8 5% and S, respectively. In the decay process, when S is small, A,
is wider than the island width, and J(0), A, scale like in the growth process. However,
as S increases, J(0), A, and A, become independent of S. This indicates that the
current density at the X-point is determined not by the Reynolds number but by the
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magnetic geometry when the current layer width in the z-direction is relatively narrow
compared to the island width.

Our result A; < A, differs from that of ref.[6]. This is because the external flow is
weak in our model. In ref.[6], there are strong external flow along the y-axis (v ~ v,)
and the magnetic surfaces near the X-point are modified. The angle # between the
z-axis and magnetic surace is nearly zero and v, is larger than v,. From the relation
of V-v =0, we have v, /A, ~ v,/A,. (The left term is not strictly equal to the
right one, because they are measured at the different points.) These results lead to
Az > Ay In our model, on the other hand, the external flow is weak and the magnetic
surfaces are weakly changed as seen in Fig.3(a). For example, when parameters are
S = 10%6/a = 107%,¢/r4 = 100, the maximum velocity is v/vs ~ 3.6 x 102, The
angle § is larger than #/4, and the maximum of v, is smaller than that of v,. As a
result, we obtain that A, is smaller than A,.

The current density oscillates in the time evolution as shown in Fig. 4. This
phenomenon occurs only in the decay process. Figure 6 shows the time history of the
current density contours at one oscillation period. The wave which has a wave length
A = 277, /(kt) is enhanced by perturbing the boundary. Though it moves to the slab
center, it cannot enter into the original island, resulting in the negative current layer
at the separatrix. When the layer width becomes thin and reaches a critical value
which scales as A ~ (1/5)}/2, the current diffuses and the wave front structure is
broken. Since the width scales as 1/#, this relation predicts that the time scale of
the relaxation phenomena is given as S*/°. This relaxation makes the current profile
level down, and the current peaking is relaxed to almost zero. When the next wave
reaches to the separatrix, the negative current layer is constructed again. In the growth
process, on the contrary, the current on the island is not peaked in the resistive phase,
except in the vicinity of the X-point. The merging of the skin current on the separatrix
and the outer oscillating current does not take place and the oscillation process does
not occur in the growth process.

The S-dependence of evolution time is shown in Fig. 7. The time it takes for

12




island width to decrease by half is plotted. In the growth process, this time scales to
the tearing time S$3/°7, as expected in Sec. 2. It is found that in the decay process,
it scales as t ~ (1/20)S'r, at ak = 1,6k = 1072, This indicates that the resistive
diffusion time is necessary for the system to reach the last equilibrium even in the
linear case. The reason is that the current density at the X-point has an upper limit,
which is weakly dependent on the magnetic Reynolds number. Since the growth rate
in the resistive MHD phase is approximated as 1/7 « 7J, we can obtain 7 < S.

From above results, it is found that the evolution time in the decay process depends
not only on S, but also on the island width. For a given S, the relationship between
the evolution time and the island width is shown in Fig. 8. S is fixed at 10°. When the
original magnetic istand is smaller than the current layer, the {ime evolution is similar
to that of the growth process. This is because the existence of the island is "hidden”
in the current layer. When the original island is wide compared to the current layer,

the island eflect appears.
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5 Summary and Discussion

The time evolution of the magnetic island by forced reconnection was investigated
in the slab geometry. In the equilibrium where the plasma has a magnetic island
(III), the boundary is perturbed so that the island may disappear. The decay process
evolves in a different way from the growth process. The plasma behavior strongly
depends on the magnetic island, i.e., the plasma mainly flows along the separatrix
and the current density has a large gradient near the separatrix. The peaking of the
perturbed current near the X-point is suppressed by the parallel resistivity and the
existence of the magnetic island.

If the resistivity is large and the thickness of the current layer governed by 7 is
large compared to the original island width, the existence of the island has little effect
on the development of the current at the X-point. On the other hand, if § becomes
large, the width of current density layer weakly depends on S and has a characteristic
value so that the current density value at the X-point has an upper limit. This leads
to a slower time evolution of the magnetic island. It was found that a longer time scale
than 53/°74, namely S'74 is necessary to reach the last equilibrium even by neglecting
the nonlinear terms. If the boundary is controlled so as to make the magnetic island
disappear, we should consider that it takes a period of time which depend on the
magnetic island size.

The reduced MHD equations can also be solved in the cylindrical geometry and the
mechanism of the system would likely not be changed. However, if the toroidal effect is
included, consideration may be given to the overlapping of multi-islands, which causes
the magnetic fields to become stochastic. The randomness of the field lines rapidly
diffuses the current in a radial manner, possibly resulting in a slower time evolution.
This problem may play important roles in recent edge-ergodization experiments in
which multi-helicity magnetic perturbations are imposed on tokamak piasmas.fm)’[lg]
The effect of the stochasticity will be studied in the forthcoming work.

The perturbation at the boundary is rapidly set up on the MHD time scale. This
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boundary control is possible, but in real systems more set up time may be necessary.
We also determine the effect of the set up time on the time evolution. The result is
that if the set up time is within the limits of the ideal MHD phase (5'/37,), the time
necessary to reach the equilibrium is not greatly affected and the S'74 property is not
changed. Since real set up time can be set to less than 5137, the model rapid set up
time used in this article would be appropriate for real plasma analysis.

If the plasma kinetic energy is small, the plasma can be assumed to be incompress-
ible. In general, the effect of the compressibility should be estimated. For example, in
astronomical plasmas which have a large flow yelocity, the compressibility car not be
neglected in fast reconnection.192% The resistive MHD equations applies only in low
B, incompressible and large aspect ratic conditions. 13 If the compressibility is taken
into account, the MHD equations must be solved directly and the calculation is likely

to be complicated.
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Appendix

In this appendix, the numerical methods and the numerical error are shown. Since
the reconnection rate is strongly connected with the current density J at the X-point
of the separatrix, the relative error is estimated in terms of J. We carry out the
spatial difference in the x-direction and the Fourier expansion in the y-direction. The
mesh number in the x-direction and the mode number are defined as M, and M,
respectively. As for the time evolution, we employ two step algorithm. One Alfven
time is devided by the mesh A,.

Figure A.1 shows the relative error ¢ as a function of M,. Parameters are S =
5x 10%,6/a = 107 M; = 50, M; = 500. and the evolution time is /7, = 400
(¥/%, ~ 0.25). The relative error is given as &, & M= because the fourth order
central difference is done. Since we take M, = 500 in this paper, the relative error is
about 3 x 107%. As for the mesh A,, the relative error is given as £, oc M;? because
of the second order explicit method. Figure A.2 shows the M; dependence of «;.
Parameters are S = 5 x 10%,§/a = 1072, M, = 500 and M, = 500. We can see that the

error decreases exponentially with the increase of ;.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1
Slab geometry of the system.

9
Time evolution of the flux function. Real lines correspond to full calculations and

dotted lines correspond to the case of neglecting the nonlinear terms. Parameters

are §/a = 1072 and S = 10°.

3
Contours of {a) flux function, (b) current density and (c) stream function. Pa-

rameters are §/a = 1072, 5 = 10* and ¢ = 1007,.,

4
Time evolution of the current density both in the growth and decay processes.
Parameters are the same as in Fig. 2. Real and dashed lines correspond to the

X-point and O-point, respectively. The dotted line denotes the growth process.

5

Dependence of the current layer width and the current intensity at the X-point.
Symbols o, A and O correspond to j/Js, Ak and Ayk. J, is defined as J, =
1,k% /47, These are the values at /1, = 0.25.

6
Time history of the current contour. Each figure correspond to the point A, B,
C, and D in Fig. 4. Real and dotted line denote the positive and negative value,

respectively.

7
S-dependence of the time it takes the magnetic island width to decrease by half.

Real and dashed lines correspond to the decay and growth processes, respectively.
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Fig. 8
The relationship between the equilibrium time and the island width. As the island

widih increases, the equilibrium time comes to depend on the island width, being

proporticnal to S.

Fig. A1

Numerical error as a function of the spatial mesh M,.

Fig. A2

Numerical error as a function of the Fourier number M;.
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