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Abstract

A new interpolation method is proposed to solve the multi-dimensional hyper-
bolic equations which appear in describing the hydrodynamics of ICF implosion.
The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly im-
proved, by assuming the continuities of the second and the third spatial derivatives
in addition to the physical value and the first derivative. These derivatives are
derived from the given physical equation. In order to evaluate the new method,
Zalesak’s example is tested, and we obtain successfully good results.

keywords ICF, inertial confinement fusion, multi-dimension, hydrodynamics,
target implosion, cubic interpolation, hyperbolic equation,
cubic-interpolated pseudo-particle, CIP



I Introduction

Non-uniform target implosion of inertial confinement fusion (ICF) has been
discussed recently. The hydrodynamics of the imploding target is quite important, and
many works using simulation have been devoted to this issue. Most of them used the
Lagrange scheme, however, it causes mesh distortion in multi-dimensional cases, so that
a kind of rezoning is commonly introduced. This means that a large artificial viscosity is
included, and shock waves are not captured accurately.

As a universal solver of hyperbolic equations, Cubic-Interpolated Pseudo-Particle
(CIP) method has been proposed[1—4], and successfully good results have been obtained
for many one-dimensional (1-D) problems[4]. In the method, the equations are split into
two phases named non-advective phase and advection phase. When the given equation

has the following form,

of

5 +V-fu=g¢q, (1)
the equation for the non-advection phase is
of .
o g—fV-u=g, (2)

where the advection velocity is denoted as u. In the non-advection phase, the physical
value of the previous time step f* is advanced to f* by a usual finite difference method.
The superscripts mean the time index. In the advection phase, the equation for the
physical value is

of

5 Tu V=0, (3)

as is proposed in the previous papers{l-4]. We also advance the spatial derivative f' in
the non-advection phase, by differentiating Eq.(1) with respect to z,
af'
Bt
In the advection phase, the equation for the spatial derivative is 3f'/0t+u-Vf = 0. In
order to determine f*, we approximated Eq.(4) without calculating §’. In 1-D case, we

=4 ' —u'-Vf. (4)

used the following difference equation,
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where the subscript means the index for the spatial difference, and we define Az —
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In the advection phase of 1-D case, we make use of the analytic solution of Eq.(3),
that is well known as f(z,t} = f(z — ult,t — At). At the time step ¢ — Af, the cubic
interpolation function F(z) within spatial grids is determined by the continuities of the
physical value f* and the first spatial derivative f'* on the grids. For u; <0, F(z)is
interpolated between z; and 44, and is described as follows,

Fs) = aX*4+bX%+ fIX+ 7, (©)
a 4+ fia” 2 —Fa b= 37 = fin _f;*—2 i1
Ax? Az Ax? Az ,

where we define X as X = z — z;. The physical value f**! and the first derivative frett
at the time ¢ become,

Al = Pz — wlt) =af + 08 +c€+d,

f,ﬁmﬂ = aa—f(x, — u;At) = 3af? + 266 + ¢,
where £ = —u;Af. For u; > 0, F(z) is interpolated between z; and z;_,, and { =
Az — ’U‘..,'At.

11 Two-dimensional case

In two-dimensional (2-D) case, the non-advective phase is easily extended from the
1-D case. For simplicity, we construct the formulation in the Cartesian coordinate, and
the advection velocity is w = (u, v), and it is assumed to be constant (u < 0, v < 0).
We define the first derivatives as o = 8f/0z and § = 8f /0y , and these quantities are
advanced by the following approximate equations,

of;—of; _ fhag—fiay  Fhai—fy _Buy . _ (90 g
At - 2Az 2Azx (6:B)i,iai’j (aa:)i,i Hi ™
it A L S S i =i (?E) . _ (?ﬂ) g (8)
At 2Ay 2Ay Oylig ™! Jy/ii"

The advection phase uses the analytic solution f(z,t) = f(z —uAt,y~vAt, t— Af)
for the equation, %%-i—ugf%—v%g = 0, so that we have to determine a two dimensional cubic
interpolation function F{z,y) within four grids (z;, ¥;) — (Zi+1, ¥;) — (Ti+1, Yje1) —
(#:, ¥j+1) at the time step ¢ — At. If we use an analogy of the 1-D case, the interpolation
function is thought to be

F(ﬂ.’:, y) = Z Z Cn,mwn'ym ) (9)

n=>0 m=0
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and the 16 unknown coefficients Cj, ,, must be determined by the conditions at the four
surrounding grids. In the previous paper [5], it was used that 5, o*, and p* were
continuous at the 3 grids, (z;, ;) , (zis1, ¥;), and (z;, yj41)- In addition, f* was
continuous at (11, ¥;+1). The interpolation function had the following form,

Flz,y) = CsoX 4+ CooX®+ 0ijX + fij + CosY> + Cos XY + 8,,¥  (10)
+ Con XY + C i XY + Cp,XY?
Cso = [-2fiz1;+ 2fi; + (i1 + @i j)Az]/AL®
Con = [A = (aip1; — 0 ;)Az]/AZPA
Cao = [Bfirrj — 3fi; — (qigrj + 2a;;)Az]/Az? |
Crr = [—A+ (eijr1 + aij)Az + (Biyr; + 8: ;) Ay]/AzAy
Cos = [-2fiju1+2fi; + (Bije1 + Bi;)Ayl/Ay®
Ci2 =[A— (Birr; + B ;))Ay]/AzAy?
Co2 = [3fijr1 —3fij — (Bij+1 +26:)Ay)/Ay?

where A = fi; — firr; — fijn 4 firrji1 , X = v —2; ,and Y = y — y; . The co-
efficients Cy3, Cs, Ca3, Csy, C13, and Cp3 remain unknown, and we set them to be
zero. The quantities at time index n + 1 were given as f**! = Fx; — ult, y; — vAL),
oftt = & r—os—udl, ymg;— vt and grt! = %f_l,—,:z,-—um, ymgj—vat We call this interpola-
tion "TYPE-A’ here, and it gives sufficient results for many problems, however, it becomes
diffusive in applying to the case of uA¢/Az > 0.5 and vAt/Ay > 0.5.

We consider to use the continuities of & and 9 at (Zi+1, Yj+1) in addition to the

above conditions. The interpolation function is described as follows,

F(.’c, y) = Cs’gXS + Cg,ng + a,-,jX + fisj + 00,3Y3 + Cg,gyfz -+ ,Bi,jY (11)
+ CouX°Y + ConX?Y + C1pXY? + €13 XY? + C i XY,

Cso = 2(fij — fin )/ AL® + (i + aip ) [A?

Coo =3(—fij + firri)/ Az — (o ; + @ipa )/ Az

Cos =2(fij ~ fujs)/AY + (Bij + Bije1)/AY7

Co2 =3(—fij+ fiju1)/ AV — (Bij + Bij11)/ Ay ,

Csi = —24/A°Ay + (—0u; — Qi1 + @i g + it1541)/ Az Ay |
Cy1 =3A/Az Ay + (2045 + 04415 — 204 54 — iy j+1)/AzAy |

4




Cii = —AJAzAY + (—aij + i) /Ay + (=Bij + B ) [ Dz
Cig = 3A/AxAy2 + (26 — Biyri + 2Bij41 — Biy1,j+1)/AzAy
Cis = =24/ AzAY® + (=Bij + Bisry — Bojrr + B jra)[Aziy? .

In comparison with Eq.(10), the symmetry of Eq.(11) increases with respect to X' and
Y for 0 < X < Az and 0 € Y < Ay. The unknown coefficients Cs3, Cs2, Ca3, and
Cs 3 are assumed to be zero, This interpolation is named "TYPE-B’, and the accuracy of
interpolation is increased more than Eq.(10), especially for the case of uAt/Az > 0.5 and
vAt/Ay > 0.5.

In this paper, we consider the interpolation of the advection phase in a different way.
It is essential to interpolate the quantities at the point (&, %) on the (z, y)-plane, not to
determine the functional form F(z —uAt, y—vAt), where { = z;—uAt and 5 = y; —vAL
We propose to use the continuity of the second mutual derivative § = gaf;’ in addition to
the continuities of f*, o*, and B*. We illustrate the process of the interpolation from
S(z:, ;) to T(¢, 7) in Fig. 1. Starting from the point S, we have two ways to arrive at
the point B, that is, S — A(¢,y;) — T and S — B(z;, ) — T. For instance, we show the
way of S = A — T. It is necessary that the physical values and the spatial derivatives
at all the grids have been advanced in the non-advection phase. To advance the second

mutual derivative from 6™ to 6*, we use

6;; — 6 _ frage — Flivje — -t fiyya (12)
Al ahzhy
fragn — fm — faja tfla ( % ) ot — ( v ) n
ANz Ay drdy’/is W \Bxdy/is W

In the advection phase, first of all, f*,a*, 8%, and 6* at the point A are interpolated
between S and (41, ¥;) in the z-direction. This interpolation is similar with Eq.(1), and

we obtain
fay = e +bh& +aié+ fij,
Q) = 3(1162 + 266+ Qi
By = as8® + b€ + b€+ Bij -
b4y = 3a28®+2bf+ 65,
@i toiay 2y fing b = 3fij— fiyny i — 204,
“W=TTRE T AR AT T Az T Az
o = bijtbivy 28— Biny b = 36 — Biv1y _ bij —26i,
2 Az? Ax? 12 Ax? Az '



Similarly, we can interpolate these quantities at the point A'(¢, Yj+1) between (z;, yj41)
and (241, Yj+1) as follows,

fay = € +6£82+ @ijr1l + fijer,
aay = 308+ 2t + Qi+l
By = @€ +bE+68 6+ B,
§lay = 3aof? +2b8 4 854

@ij+1 + Q11 2fije1 = firiia 3fijr1 — firrjer  Ojir — 20641501
— by = -

a1 =

! Ad? Azs 7 A’ Az ’
o = bijr1 + Sivr41  20i541 — Bivrjn by = 3Pejrt — Birjr Gijir — Wiy1jn

2 Az? Azd ! Az? Az

The quantities at the destination T(£, 7) are interpolated between A and A’ in the
y-direction, and we have

o= fay = an® + by + Beayn + fray (13)
of ™' = a@ =am’ by’ + Sayn + oqa) (14)
BrT = Bey =3am’ + 25 + Bray (1)
& = 8y = 3aan® + 2bym + §(ay (16)
. _ ﬁ(A) + ﬁ(A’) _ 2f(A) —_ f(A’) b _ 3f(A) - f(A") _ f@(A) - Zﬁ(A’)
! Ay? Ay 0 Ay? Ay
b = S oy 200 — e b, = S T %) _ Ot — 200
2 Ay? Ayp Ay? Ay

The above interpolation is named "TYPE C’. The second mutual derivative a—a:?a'f; was used
to interpolate %;i in the z-direction and g—g in the y-direction. If we write down the above
interpolation such as Eq.(9), there is no unknown coefficient, because the continuities of
[y e, B, and § are used at 4 grids. In the case that we choose the other way, S — B{z;, 7)
— T, in Fig.1, it is easily shown that the same interpolation result is obtained.

In order to check the new interpolation, we have tested Zalesak’s example, that is,
the 2-D solid body revolution[6,7]. The given equation is %ti + u‘—gf + v%ﬁ = 0, and the

equations for the non-advection phase reduce to

s G50l Oy P Buy .
=it gt PRt -Gl sieg. W)




Figure 2(a) shows the schematic view of the test. We show the true result and the
computational results after one complete revolution in different interpolation ways in
Fig.2(b). The contours are drawn from f = 0.1 to f = 1.0 with intervals of 0.1. It is
shown that *TYPE C’ gives the least diffusive result among them.

III Three-dimensional case

In the three-dimensional (3-D) case, the interpolation technique is almost same as
the 2-D one. However, the advection velocity has three elements u = (u,v,w), and we
assume u < 0, » < 0, and w < 0. Here, we propose to use the continuities of the set of the

‘g af 8f @ a2 8? 9% i —
quantities I = {f’ 55’ 55’ 35’ azéfy’ Byafz’ Bzafa:’ 323;:9::} = {fﬂ a, 6: Ys 63 A: s w}'
All of these elements must be advanced in the non-advection phase. We use the similar

approximation with 2-D case, so that we can advance w = %}5;, from w® to w*,
ot
Yigk ~Yiik  _(fr — — ¥ (18)
At - i+1,i+1,k+1 i=1,74+1,k+1 i+1,7—1,k+1 i—1,5—1,k+1
* * * *®
— e T e + Fivn e — filnjoiee) /88T AYAZ
™ i3 bt 13
(fieipn — Fiinjries — Firnj-nen T i1

_f:l-l,j+1 e T f e + e — flajo1e1)/8B2AyAz

v n Bw
(6x8yaz) R ”J’k (m);,j,k ik T (8:85’5,132)!,1 k'}'.,,,

After obtaining the set I™ = {f*, a*, B8* %, 6%, X, p*, w*}, we advance all the
clements to [Ptl = [fotl) gntl gotl amtl gnbl mdl o mdl eti) o uging 3D
version of "TYPE C’ interpolation. In Fig.3, we show the 3-D interpolation process to
have I'* at the point T(£, n, ), where { = z;x—wA¢t. First, we interpolate I'™* at the point
B on the (z, y)-plane (z = z), using the same process with the previous section. Next,
I* is similarly interpolated at the point B’ on the (z = z;y1)-plane. The set I' at the
destination T is interpolated in the z-direction between B and B’. This is equal to I'**! at
the grid S. The third derivative 3%2;%; is used to interpolate %ﬁ% in the z-direction, -g—zg—
in the y-direction, and g;% in the z-direction. We showed the process of the interpolation
tracing the way S — A — B — T. Although there are 5 ways from S to T besides this,

all of them give the same result. If we write down the 3-D interpolation function, it will



be the following form,

3 3

3
Flz,y,2) =3 3.3 Copmyz™y™2', (19)

=0 m=0 I=0

and there are 64 unknown coefficients C, ,,, ;. The above interpolation used the continuities
of 8 elements of the set I" at the &8 grid points, so that the 64 conditions were used to
determine C), ,,.;.

In order to evaluate the developed 3-D interpolation processing, the problem of 3-
D solid body transfer(5,8] is checked. The non-advection phase disappears, because the
given equation is the linear advection equation. We set v = v = w = 1.0 everywhere,
and the spatial division and the time step are employed to be Az = Ay = Az = 1.0
and At = 0.5. In Fig.4(a), the schematic picture of this test is shown. The detail profile
of the initial state is drawn in the left-hand side picture of Fig.4(a). At the boundary
and inside the shaded region, f = 1.0 elsewhere f = 0.0, and this region is located at
the extent 0 < 2 <10, 0 € y €10, and 0 < z < 10.0. Idealy, the profile after transfer
should be the same as the initial one. Figure 2(b) shows the profiles on z = k plane
(k = 20, ---, 31) after 40-time-steps computation. The contours are drawn from 0.1 to
1.0 with each interval of 0.1. The computational result shows that the initial shape is well

maintained.

IV ~ Summary

In order to solve the hydrodynamic equations, we proposed new interpolation
processing named "I'YPE C’ in the advection phase of the multi-dimensional CIP scheme.

We introduced the idea to use the continuities of the second and third spatial derivatives

3 a
dzdy? dzBydz?

computation results were quite less diffusive. This interpolation processing is seemed to

and so on. The procedure did not become so much cumbersome, and the

be the true extension of the 1-D CIP scheme. In the hydrodynamics equation[8] which
is used to simulate the ICF implosion, only the non-advection phase changes, and the

proposed interpolation processing is available in the advection phase.
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