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Geometrical effects of the magnetic field on the neoclassical flow, current and

rotation in general toroidal systems

N.Nakajima and M.Okamoto

National Institute for Fusion Science, Nagoya 464-01, Japan

abstract

In order to clarify geometrical effects of the magnetic field on neoclassical theory, the
neoclassical parallel particle flow, heat flux, current and plasma rotation of a multispecies
plasma in general toroidal systems are examined in several collisionality regimes. The
quantitative and qualitative differences between axisymmetric ( tokamaks ) and
non-axisymmetric toroidal systems ( stellarator, heliotron /torsatron ) appear mainly
through a geometrical factor which prescribes the parallel flow due to the gradients of the
density, temperature, and electrostatic potential. In axisymmetric toroidal systems the
geometrical factor reduces to the same expression in all collisionality regimes due to
axisymmetry. By contrast, in non-axisymmetric toroidal systems, it changes drastically
depending on the magnetic field structure and the collisionality regime. Thus, the
poloidal flow has the radial electric field dependence. When the geometrical factor is very
small, the ion parallel flow almost vanishes and the jon rotation consists of the

diamagnetic and E x B flows ( perpendicular flows ).
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I. INTRODUCTION

The transport theory of axisymmetric toroidal systems ( tokamaks ) has been
extensively studied by many authors. About 20 years ago, the geometry of the magnetic
field was first taken into account in it, where the effects of particles trapped in the
weak-field region, i.e., the neoclassical effects were considered.’ Later, a variational
method based on the principle of minimum entropy production was used to obtain a
complete set of neoclassical transport coefficients. 2 Moreover, as a new approach the
moment approach was developed, which is based on the direct solution of the exact
moment equations using the closure relations of viscous stress tensors written in terms of
the particle flow and heat flux.®

Recently the neoclassical theory using the moment approach is extended in many
aspects. To study the momentum transport in axisymmetric toroidal systems, the
neoclassical theory was extended so that the toroidal flow with M, ~ 1 is allowed where
M, is the toroidal Mach number. ® The assumption of axisymmetry is excluded to
construct the meoclassical theory in non-axisymmetric toroidal systems (
- stellarator heliotron/torsatron ) in several collisionality regimes. ™12 Concerning with the
anomalous diffusion fluctuations are included in the neoclassical theory. ® To explain the
L-H transition in tckamaks ion orbit losses are taken into acount together with the
poloidal viscosity being valid to M, ~ 1 where M, is the poloidal Mach number. 115 The
neoclassical current in a plasma with an impurity and a fast jon beam is considered
numerically using flux-surface-averaged parallel momentum and heat flux equations to
investigate a steady state tokamak. '® According to the problems to be examined in
which some have axisymmetry and others not, various extended neoclassical theories will
be constructed. Therefore, it is now meaningful for us to reconsider the neoclassical
theory of a multispecies plasma, in the general toroidal systems paying attention to the
geometrical effects of the magnetic field.

In this paper, in order to clarify geometrical effects of the magnetic field on the
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neoclassical theory in general toroidal systems, the neoclassical parallel particle flow, heat
flux, current and plasma rotation of a multispecies plasma are examined using the
moment approach on the basis of the original papers > under the assumptions of no
fluctuations, no external sources and losses except for a fast ion beam and an external
inductive electric field, steady state, and | #, | vr, where %, and vy, are the macro and
thermal velocity of species a, respectively. Hence, we might have a point of view of
unifying understanding the neoclassical theory in general toroidal systems. Three
collisionality regimes, i.e., the 1/v { in non-axisymmetric toroidal systems ) or banana {
in axisymmetric toroidal systems ), plateau, and Pfirsh-Schliter collisionality regimes are
examined separately.

The flux-surface-averaged parallel momentum and heat flux balance equations are
used to obtain the flux-surface-averaged parallel particle flow and heat flux. In these
equations, the flux-surface-averaged parallel friction and viscosity and the external
:nductive electric field balance. The friction coeffecients are classical quantities in the
sense that they are independent of the magnetic field B. The geometrical effects of the
magnetic field come from the viscosity terms. 5 In axisymmetric toroidal systems the
magnetic field strength B is a function with respect to the flux Jabel, for example, the
volume V and the poloidal angle §, so that there is only one type of trapped particles and

the geometrical effects of the magnetic field structure in the flux-surface-averaged parallel

viscosity appear through the connection length proportional to \/? B>/ <{n-VB)Z>
where 4 = B /B and <> is the flux-surface average, and through the fraction of trapped
particles except for some magnetic-surface quantities, for example, rotational transform ¢,
and dV/d®; where @7 is the toroidal flux. In contrast to the axisymmetric foroidal
systems, in non-axisymmetric toroidal systems the strength of the magnetic field B also
depends on the toroidal angle ¢, thus there are many types of trapped particles and
another type of factor reflecting the magnetic ﬁela structure appears in the parallel

viscosity. which is called the flux-surface-averaged "geometrical factor” < Gpg >. 7171
Yy £ g
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This factor prescribes the parallel particle flow due to the gradients of the density,
temparature, and electrostatic potential: Although this factor reduces to the same
expression consisting of well known flux surface quantities in all collisionality regimes in
the axisymmetric torcidal systems, in the non-axisymmetric toroidal system it changes
drastically depending on the magnetic field structure and the collisionality regime.
Therefore, this geometrical factor mainly makes differences to neoclassical results between
axisymmetric and non-axisymmetric toroidal systems.

The self adjointness and the momentum conservation of the Coulomb collision
operator give common properties to the multispecies plasma in general toroidal systems
in spite of the geometrical effects of the magnetic field. The parallel particle flow due to
the radial electric field is independent of the particle species and the parallel heat flux is
independent of the radial electric field, if there are no other external sources and losses
without the momentum conservation, for example, the charge exchange loss.
Consequently, the charge neutrality guarantees the neoclassical current ( the bootstrap
curent ) be independent of the radial electric field. Quantitative changes, however, appear
in the neoclassical current mainly through the geometrical factor. 71 The magnitude
of the bootstrap current, which is proportional to the flux-surface-averaged geometrical
factor, changes considerably in the non-axisymmetric systems according to the magnetic
field structure. Moreover, the poloidal and toroidal rotations change both qualitatively
and quantitatively. In the axisymmetric toroidal systems, the poloidal rotation in the
multispecies plasma is independent of the radial electric field. 2° In non-axisymmetric
toroidal systems, however, the poloidal rotation has the radial electric field dependence.
The radial electric field dependence becomes larger as the geometrical factor decreases.
Consequently, if interactions between thermal ions and fast ions are negligible, then the
ton parallel flow almost disappears in non-axisymmetric toroidal systems with a
sufficiently small geometrical factor, which contrasts with the fact that the ion parallel

flow streams to cancel the ion poloidal flow in axisymmetric toroidal systems.
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The organization of this paper is as follows. The magnetic coordinate systems are
given in Sec.]I. Basically Hamada coordinates *** are used, however, in some calculations
Boozer coordinates 232¢ are useful. In Sec.IIl, flux-surface-averaged parallel momentum
and heat flux balance equations of a multispecies plasma in a general toroidal system are
shown. The flux-surface-averaged geometrical factor < Gps > and the viscosity
coefficients u are indiceted in the 1/v ( in non-axisymmetric toroidal systems } or banana
{ in axisymmetric toroidal systems ), plateau, and Pfirsh-Schliiter collisionality regimes,
separately. The general properties of the flux-surface-averaged parallel particle flow and
heat flux, the parallel current, and the poloidal and toroidal rotations are discussed in
Sec.IV. The results using the small mass ratio expansion are also shown. In Sec.V, the
explicit forms of quantities discussed in Sec.IV are given for a simple electron-ion plasma

to obtain clear results from physical views. Discussion and conclusion are given in Sec. VL

II. MAGNETIC COORDINATE SYSTEMS
To describe a general non-axisymmetric torus, Hamada coordinates (V. #, () **

and Boozer coordinates (1, 8z, Cg) *>* are used. In Hamada coordinates the magnetic

field B and the Jacobian /7 are expressed as follows:

-

B = ®.VV x Vi+ 8,V x VV, (1)
1
Ve = Vvae-vc_l’ )

where V is the volume, 8 and ¢ are the poloidal and toroidal angles, respectively, ' means
d/dV, and ®p and ®r are poloidal and toroidal fluxes, respectively. Similary, in Boozer

coordinates the magnetic field and the Jacobian are shown by

B = Vi x Vg +¢VEs x Vb, (3)
B = IVlg+JVis+ VY, (4)

1 JF el
VIB T Gy x Vg V(s  B? ' (3)

5



where ¢ = ®7/27, 65 and (p are the poloidal and toroidal angles, respectively, ¢ is the
rotational transform, and 3 is a periodic function with respect to fg and (g. 2%J is the
total poloidal current outside the flux surface and 2#7 is the total toroidal current inside
the flux surface. In Hamada coordinates the magnetic field is expressed in the
contravariant form. In Boozer coordinates, however, it is expressed in both the
contravariant and covariant forms. For these characteristics of Boozer coordinates some
calculations are performed using Boozer coordinates. The Hamada coordinates are

related with Boozer coordinates using the following equations:

Vo= V() (6)
6 = {65 +eG(%, 05, Go)}, 7)
¢ = 5-{Co+ Gl 05, (o)}, ®)

where the generation function G is a periodic function with respect to §5 and (p and it is

given by
= 1
VG = B?> _pB?
B-V J+¢I{< > 4 (9)
< B > = 2a®L(J++)). (10)

Above properties are used, for example, as follows:

<§XVV-V€>

dV "
= = <V§x V(05 +:G) BV + [Vép + IV >
T
dv 1 oG oG
= E<E(J—615'C—B+¢J%)>
_ dV J<B*>
T dB®p J 4]
= 2uJ. (11}

In the following expressions, terms with J or I are calculated using Boozer coordinates.

For numerical calculations Boozer coordinates are useful 2526 together with the
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transformation given by Eqs.(6)-(9). Spectrum broadness of B is different between
Hamada and Boozer coordinates. Generally, Boozer coordinates need less number of
spectra than Hamada coordinates. Detail discussion on Hamada and Boozer coordinates

will be given elsewhere.

1II. FLUX-SURFACE-AVERAGED PARALLEL MOMENTUM AND HEAT
FLUX BALANCE EQUATIONS

The moment equations to describe the macroscopic plasma behavior are given by
Ref.5, thus they are not repeated here. We will consider a multispecies plasma consisting
of electrons and N species ions. The particle species are indicated subscript a. The
electron is expressed by a = 0 and the i-th ion is expressed by a =4 (¢ =1~ N). The

flow @, and the heat flux , have the following forms:

—

— B —
Ug = uIIaE + UL, (12)
-~ B -
fa = Qg+ (13)

The lowest orders of moment equations are 7

Vi, = 0 (14)
o P! BxVV
uJ.a i (eana + QS) B2 3 (15)
v-i, = 0, (16)
. SPT.BxWV -
10 — 9 €, .82 . ( )

Using above equations the parallel flow and the heat flux without the flux-surface average

are given by

Pr 2 B2
By, = —(—2 "Wgo — < gy >+ ——— < Buyy, 8
“ (e.,na ot - gz <o b s < Bue > (18)
5P,T! B? B?
By, ———2{gy— < gy > < Bqy, >,
ql 2 e, {92 < B> gz .}+ < B’> QYla = (19)



where
1

BV (3_22) =B xVV.V (ﬁ) , 02(Bpaz) = 0. (20)

For axisymmetric toroidal systems g, becomes

BZ
g2 =< Ggg >r (1 -

), (21)

maz

therefore
B B?
_—— >=<G 1-— . 2
192 <B2><92 } 5s >1 ( <Bz>) (22)
Here < Ggg >7 is defined as follows:
JdV  2xJ
<G = — ="
B85 >T cdp . T (23)

The meaning of < Ggg >7 will be shown later.
To determine the flux-surface-averaged parallel flow < Buy, > and heat flux
< Bgy, >, the flux-surface-averaged parallel momentum and heat flux balance equations

are used: %7?

<B-v-I,> <B-F, > <B-Fo> naee < B- B >
o | = + . +
—< B-V-0,> —<B-Fp,> —<B-Fupp> 0
(24)

where ﬁa and 6a are the viscosity and heat viscosity tensor, 1espectively. F oy and F, n(
j=1or2) are frictions of a species a with thermal species and fast ions due to the
neutral beam injection, respectively. Also an external inductive electric field E'(A) is
included.

The flux-surface-averaged parallel friction < B. ﬁal > and the heat friction

—

< B - F,, > with thermal species are given by °

< é . ﬁal > N Iﬁ’ llag < Bu[[b >
IRAEESS o (25)
—<BFa> | by og || e

where lf;’ (2,7 = 1,2} are the friction coefficients between species o and b, which are

independent of the magnetic field B. Therefore, the expressions in Eq.(25) for the parallel
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friction forces in terms of the parallel flow and heat flux are same between axisymmetric

and non-axisymmetric toroidal systems, and valid in all collisionality regimes. From the

self adjointness of the Coulomb collision operator
=t (%)

and the momentum conservation of the Coulomb collision operator gives the following

property:
N

Yl =0 (i=1,2). (27)

b=0

The flux-surface-averaged parallel friction and heat friction with fast ions are

expressed by 327
< B . ﬁ'g 1> e CZQTL
L ! = DeMMe 27 < Buy; > for electron, (28)
__<B.F0f2> Tee T %
o o 5 o 3 2€2 1 1
< B-F,n>=<B-Fop1 > E)~‘:—L(— + —) for ions, (29)

ey
Uy Yoy mpeifmy my M,

o 3T me & nbegmfvs (30)
¢ 4 myiz memy Te

1 o f%’lffdsv
@ Jofyd (31)

where the quantities with subscript f denote those who belong to fast ions, v, is the
critical velocity at which the drag exerted by the background electrons on the fast ion
beam will equal that of the background ions on the fast ion beam. Here the conditions
vpg > | @y | > vr, for a=1~ N have been assumed where #; is the beam velocity and
the heat friction of thermal ions with fast ions is neglected.

The flux-surface-averaged parallel viscosity and the parallel heat viscosity have the

following general form

<B-V-1.> My a1l Ha2 < Buua >
- = - B
—<B-V-0,> Tea oz e _%i‘.g;lllﬁ



Iaﬂ._}_ﬁ)

N Hal Ha2 eq Py A
+ < Gpgs > F T (32)
Taa. T’
MHa2 a3 -

€a

where pi,, (j = 1~ 3) are the non-dimensional viscosity coefficients which reflect the self
adjointness of the Coulomb collision operator and < Ggg > is the flux-surface-averaged
geometrical factor. The above general form is obtained by modifying the original results.
579 The viscosity coefficients and the flux-surface-averaged geometrical factor suffer the
geometrical dependences of the magnetic field. Hence, the difference of the parallel flows
between axisymmetric and non-axisymmetric toroidal systems, and collisionality
dependence of the parallel flows appear through the parallel viscocity. Here, the 1/v
collisionality regime ( in non-axisymmetric toroidal systems ) or the banana collisionality
regime ( in axisymmetric toroidal systems ), the plateau collisionality regime, and the

Pfirsh-Schliiter collisionality regime are treated separately.

In the 1/v or banana collisionality regime, the viscosity coefficients are >7
feo
Hay = Tl (j=1~3) (33)

where f; are the fraction of trapped particles and f. = 1 — f;. The coefficients
fig, {7 =1~ 3) are not dependent on the magnetic field but dependent on the particle

constitution. The flux-surface-averaged geometrical factor < Ggg > is given by the

7

<Gps> = - {<g2> 2B e, dx}, (31)

following equations:

. S4B, b {g)
3(B% 1
IR A S A RN
=10 b ey .
B

o = \/1_>‘ﬂ’ (36)

— — 1
BV (gi) = vaV'v(—)’ 9+(Brmaz) = 0, (37)

5 91

where g, is given by Eq.(20). For axisymmetric toroidal systems

9’1)

=< Gpgs > (1 - .
g4 BS T( T

(38)
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From this result and Eq.(21) we have
< Gggs >=< Ggg >7 (39)

for axisymmetric toroidal systems, so that we use the definition given by Eq.(23).

In the plateau collisionality regime, the viscosity coefficients y,, (j = 1 ~ 3) are

expressed as follows: >%1
= 5P G179 (40)
Hay = )\PL#G-] J= ,
1 P!
= T('égup + /.lt) , (41)
where A, = 7,4, is the mean free path of species a, fi,; = 2, L, = —1, 3 = 13/2, and

Apg 1s a characteristic length of the magnetic field in the plateau collisionality regime.

Note that fi,, (j = 1~ 3} is independent of the particle constitution. u, and u, are given
by

Fo = 79 2 m#%#ﬂ 2rlem+n| b (42)
He = 7y ( o/ m;éozméo 2?r|¢m+n|)’ (43)

where 7t = B/B and B=3_  Bnu(0,() = ¥, o Bancos(2mmé 4 270 + @yny,) s
assumed. The flux-surface-averaged geometrical factor < Ggs > is given by

dV Jpp = I
< Ggs >= ——F—— 44
AT (4

For axisymmetric toroidal systems, y; = 0, thus the flux-surface-averaged
geometrical facor < Gpg > reduces to < Ggg >7 as well as in the 1/v or banana
collisionality regime. It is noted that for non-axisymmetric toroidal systems x, = 0 and
4t 3 0 on the magnetic axis so that < Gpg > reduces to —I/dV/dy on it.

In the Pfirsh-Schliiter collisionality regime, the viscosity coefficients are 57

) )
pa_g = (A )2#5:._1 (] = 1 ~ 3)’ (45)
PS
1 3<(r-VB)¥>
)\pgz 2 <B*> (16)
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where i, (j = 1~ 3) are not dependent on the magnetic field but dependent on the
particie constituiion as well as in the 1/v collisionality regime. Apg is the characteristic
length in the Pfirsh-Schliiter collisionality regime. The flux-surface-averaged geometrical

factor is given by

< LB -1)7-VE) >
< Gpgs >=21—2 47
b < (h-VB)? > (47)
As well as in the 1/u or banana collisionality regime and in the platean collisionality

regime, for axisymmetric toroidal systems < Gpg > reduces to < Ggg >r.

It follows from above discussions that the geometrical effects of the magnetic field
on the flux-surface-averaged parallel particle flow and heat flux come from the
flux-surface-averaged geometrical factor < Ggg > and the viscosity coefficients
tay (7 =1~ 3). In axisymmetric toroidal systems, the geometrical factor reduces to the
same expression given by Eq.(23) in all collisionality regimes. In contrast with it, in
non-axisymmetric toroidal systems, the expression of the geometrical factor changes
according to the collisionality regime as well as the viscosity coefficients, i.e., it has the
dependence of the fraction of trapped particles in the 1/v collisionality regime, and the
connection length dependence in the plateau and Pfirsh-Schliiter collisionality regimes.
The normalized geometrical factor < Ggs >y, which is defined as < Ggs > / < Ggs >r
and generally smaller than unity, may indicate the deviation of the general toroidal
system from axisymmetric toroidal system. The normalized geometrical factor changes
drastically according to the magnetic field structuze in the 1/v collisionality regime and it
becomes very small and even negative. “17~° In the platean and Pfirsh-Schiiter
collisionality regimes, it is considerably small. Then, in the general toroidal systems
where the nermalized geometrical factor is small enough, considerably different properties

of the parallel flow, heat flux, current, and plasma rotation from those of axisymmetric
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toroidal systems are expected. At this point we will discuss in the next section.

IV. PARALLEL FLOW, CURRENT, AND PLASMA ROTATION

To solve Eq.(24), we define the following quantities (a,b =0~ N}

Ft—{Ft:} Ft2a+15<-§'fﬁal>y Ft2a+25_<-§'ﬁa2>a (48)
FfE{Ff,} Ff20+1E<§'ﬁ‘af1>, Ff2a.+2E_<-§‘F,af2>6a0; (49)
E,= {EA ,} By 2041 = €472 < B-FE >, Ejo042 =0, (50)
F={V}: Ven=<B VIL> Vep=-<B V-0, (51)
— s T’
Gy ={G1:}: Gt 2041 = ;ﬁ‘;, G142 = —e_a, (52)
G, = {G2 i} G3241= ¢, Gy 2,42 =0, (53)
- 2 < Bqjje > .
X = {X,} X23+1 = Bu"a >, X2a+2 = —g—ﬂm—gu—, (-34)
LtE {li_;} . lk+2a. k426 = lZi‘ (I’C, }CI = 1, 2), (55)
o
o NgMg | Hal Ha2 - ﬁl
a.E , M= . (56)
Taa
Ha2  Ha3 .
] By
Using above definitions, Eq.(24) becomes
{}Z'F't-‘}‘ﬁ'f‘}'E‘A, (57)
where
F't = Zt X, (58)
(59)

V = p{X+<Gps> G+ G}

Solving Eq.(57), we have the following flux-surface-averaged parallel flow and heat flux:
% =< Gys >L (Gr+ Go)— N Fy— N B, (60)
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where

1

E = NE: {Lij}r (61)
N o= i =)= 1w, (62
M = L —j={Mj={M}. (63)

Properties of the friction coefficients 2} given by Eq.(27) are succeeded in matrix M as

follows:
N
Z Maati 241 = —par (@ =0~ N), (64)
b=0
N
YoMy = —pa (a=0~N), (65)
b=0

Using Eqs.(64) and (65), we see

N N
Z Liossn = E{Nz wa1ps + N, svrapina}
=0 b=0

1 & - .
= ﬁ Y AMoprr ipn + Mapir i}
b=0
] NNtz

= -5 M, M
IMI bz:g Jz:l 7 7 2b+kl

N
— > b 2
b=0

-1 for 1=1,3,--- 2N +1
= (66)

0 for i1=24,--- 2N +2

where the linear algebraic relations N,, = #,;/ |Jl(_/;’|, and Y30 M, M, = 6, [J?ﬂ (M,
is the cofactor of the matrix M } are used. Then,

- . —¢' for odd ¢
0 for even 1

Consequently, the flux-surface-averaged parallel particle low and heat flux have the

following forms:

N P! i
b b

< Buyp > = —<Gps > ¢+ <Gps > {Lans1 a1 — Lyar1 2642—}
b=0 €p7% €
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N

2 2 = =)
- ZN2a+l wt1{< B Fps1 > teeny < B- E >1,
b=0
+ Nagp12< B- Foga >, (68)
2 < By, > Y P 3
—_— " = < Gpgs> Lo, — L, at-4
5 B, BS g{ Z+2 21 = Ya+2 2b+2 6b}
N — — — —
— Y Napsz 241 < B-Fiyp1 > +Noay2 2 < B- Fopa > . (69)
b=0

Tt is shown in Eqs.(68) and (69) that the flux-surface-averaged geometrical factor

< Gps > prescribes the parallel particle flow and the parallel heat flux due to the
thermodynamical forces consisting of the gradients of the density, temperature, and
electrostatic potential. Other driving terms, i.e., the friction with fast ions and the
external inductive electric field are independent of the geometrical factor. If there are no
other external momentum sources and losses without the momentum conservation, for
example, the charge-exchange loss, then the self adjointness and the momenium
conservation of the Coulomb collision operator guarantee that the effects of the radial
clectric filed on the parallel particle flow are independeni of the particles species and that
the parallel heat flux is independent of the radial electric field. Therefore, under the

condition of the charge neutrality 32, e,n, = 0 the neoclassical current is independent

of the radial electric field:

N
BJ“ = E eanaBu”a+ < BJHf >
=0
= BJHp5+ < Bdysp >+ < Bgs >+ < BJyon >, (70)
where
N 2
BJ = =% Plg,— ———— <
s g__% do— ez <9:>}
Pfirsh-Schliiter current, (71)
i o (A
< Blysp> = — 2 €afalNaoq1 ey < B-E 7 >
a,b=0
Spitzer current, (72)
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ey

€q
< BJjps > = < Ggs> Z {Lza41 241 P — Laat1 2642—n, T3}
,6=0 Celly o
Bootstrap current, (73)
< BJ”OH > = < BJH >
N N . o .
- E eana{z Noat1 2641 < B Fop1 > —Noyp1 2 < B Fop >}
a=0 &=0
Ohkawa current. (74)

Here < BJj; >= Zseny < Bujy > is used and the Pfirsh-Schliiter current is defined as
< BJyps >= 0. In axisymmetric systems, the geometrical factor of the Pfirsh-Schliiter
current is given by Eq.(22).

Using Eqs.(12) and (15), we have the expressions of the plasma rotation in the

Boozer coordinates (v, 85, (5):

" J 1 dF, dg¢
—oa . 9 — B o -,
St VO > = gy < Bue > 4y ) (75)
. _ 1 I 1 dP, d¢
< e Vg > = J+sl < Buje > J +¢I(eana dif * E) (76)

Then, the poloidal and the toroidal rotations are connected by the following equations:

" . 1 dP, dfgb
< Ug VHB > —4 < Uy - VCB > = (eana d’gb w) (77)
T <, Vig>+I <4, - Vig> = < Buy, > . (78)

Substitution of Eq.(68) into Eqs.(75) and (76) gives the poloidal and toroidal rotations of

the multispecies plasma in the general toroidal system:

< &‘a -V >
. J ( < Ggs > 1 dP d¢)
N J+ el < Ggs 7 eaN, d’{b 'l/)

J < (Ggg >

N
+ J¥el< Gps >g Z{ 2a+1 2b+1(

1 de 1 dP, 140,
cor )~ Laais B4

¢

J A+l

(Z Nga+1 zb+1{< B bel > tegngaepig < B E >}
—Nogg1 2 < B- F()fz >) ) (79)
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<i,-V(g>

1 < Ggs > 1 dP, qu

= — J I —
a(J+¢I)( < Ggs >r T )(eana di) + dif

J < Ggs >

N
L;,
+ t(J+¢I)< Gpgs >T 0 Z{ 2atl ZHI(

L 5. F 5 =)
T Tl (52::0 Nogt1 p41{< B+ Fop1 > teanaeymy < B- B >}

—Noat12 < B- Fop >)a

1 dF 1 dP) L ldTb
endi,b eanadzb 2a+126+2;,d1,[1

}

(80)

where Eq.(66) is used. It follows from Eq.(79) that in the axisymmetric toroidal systems

without external sources and losses which do not guarantee the momentum conservation,

the flux-surface-averaged poloidal flow is independent of the radial electric field because

< GES >=< GBS >T.

To obtain more physical results, we use the small mass ratio expansion, i.e.,

mo/m, € 1for a =1~ N. Neglecting terms with the order of \/mo/m, fora=1~ N,

we obtain the following parallel flow and heat flux:

P’
< Bup> = —<Gps> ¢+ <Gas >Z{L1 Zb+1_'“_L1 2t }
b=0

— N11{< B'F()f1>+€0ng<B'E >},

N
- ZN;{ 2H1<B°Fb_f1>+N12< B'F0f2>,

b=1
2< Bgyo > P T
IR T o <G> Z{Lz Zb+1— - L, 2b+2_}
5 B o Ny
- ZNZ 2541 <.§'be1 >4+Np < B'F'gfg >, for electron
b=0
N Pl
< By, > = —<Gps>¢+<Gps>) {Lana 2b+1_‘; — Lyopr 2b+2—}
b=1
- Z Nogt1 241 < B- ﬁbfl >,
b=l
2< Bgy, > P T,
22 o Ggs > Z{L2a+2 2b+l_' — Laaya 2b+2_“}
5 P, b1 np
— Z N2a+2 241 < é . ﬁbfl >, for ions (a =1~ N)
b=1
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where the friction term of the thermal ions with the fast ions < B - F bf1 > Is retained,
because the term (v2/u3)(n.e2/ Til, nyel/mp}(1/m;s + 1/m,) in Eq.(29) may becomes
large ( ~ m ) for high charge number impurities if 42/} ~ 1. From Eqs.(81)-(84)
we see that the external inductive electric field mainly contributes to the parallel flow of
light electrons. Although fast ions due to the neutral beam injection contributes to both
electrons and thermal ions, if v, < | @y | or v2/4} < 1, then the contribution of fast ions
to thermal ions disappears. Thus, the Spitzer current and Ohkawa current in the
multispecies plasma are determined only by the electron responce. Moreover, in the
non-axisymmetric torotdal systems with the very small geometrical factor, the parallel
flow and the parallel heat flux almost disappear. Hence, the ion rotations reduce to the

E x B and diamagnetic drifts.

V. A SIMPLE ELECTRON-ION PLASMA CASE

In this section, we consider a simple plasma consisting of electrons and ions with
effective 1onic charge number Z using the small mass ratio expansion. In order to indicate
quantities belonging to the electron and the ion, subscripts ¢ and ¢ are used. Neglecting
terms of O(M), we introduce the non-dimensional friction coefficients Z?Jb, ie.,
ly==2,15=-3%,1;=-(V2+ 12), and fgz = —/2. The viscosity coefficients in
the plateau collisionality regime are given in Eq.(40), which are independent of the

particle constitution. The viscosity coefficients in the 1/v and Pfirsh-Schliter

collisionality regimes are given by >7

B = V2—In(1+V2) +Z6,, (85)
5 3
By = 22— Sin(1+ V2) + 5 b, (86)
39 25 13
Bop = V2= Fin(l+ V2) + - Zbae, (87)
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and

o 3.020 + 4.25025,, (58)
Hai = 55085 1532176, + 2400226,

R 4.876 + 9.50026,. (&)
Ha2 = 5 995 1 5.32176,. + 2.400226,,’

i 15.394 + 27.000Z5,,

f‘fu3 = (90)

2.925 4 5.32126,. + 2.400228,,

respectively, where 8,, = 1 for electron and 0 for ion. It is found out from Eq.(29) and

straightforward calculations that for the simple electron and ion plasma using the small

mass Tatio expansion the friction of thermal ions with fast jons are negligible even if

v?fu ~ 1. Thus, we have the following flux-surface-averaged parallel particie flows from

Eq.(68):

< Bu”e > =

< Bu“,- > =

where

< Gps>{-9¢'— L“::i — (L + 1)% + LHT?‘; — Ly( Ly + 1)%}
[1— Fno) e;erenf < Buy; > —Z—ZCQ < BE{" >, (91)
R (%)
ONc = ezz::ﬁ/\?ws {93)
Ao = ——Z(li;ﬁs—), (94)
Ly = prer (135 — pte3) l—)#ez(lfg - Mez)’ (95)
by = P PR (9

iii

b = G Tzui) + (&7)
Fye = 1- %{A?\fc + %A}vc}: {98)
Axe = —%ﬁﬂ, (99)
D o= (55— pa ) — ps) — (55 — pa)”. (100)

For the viscocity coefficients p,, and the flux-surface-averaged geometrical factor

< Ggs > Eqs.(20), (33)-(37), and (85)-(87) (in the 1/v or banana collisionality regime ),
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Eqs.(40)-(44) (in the plateau collisionality regime ), Eqs.(45)-(47) and (88)-{90) ( in the
Pfirsh-Schliiter collisionality regime ) are used.

As well as in Sec.IV, the parallel current is obtained:

BJ” = eneB(u”,- — u"e_)+ < BJ"f >

= BJjps+ < BJysp > + < BJjss > + < Bljoy >, (101)
where
'] F :
BJ = —(P.+P —
175 (Pt PHgn ~ 7S <9 >}
: Pfirsh-Schliter current, (102)
<BJsp> = oxo< BE;(EA) > : Spitzer current, (103)

<Blps> = < Gps>{Lu(Pi+ P!)— Lign,TL + L11 Lasn, T4’}
: Bootstrap current, (104)

< Bhor > = Fyoc<BJy>; : Ohkawa current. (185)

Neoclassical electric conductivity oy¢ and the ratio of Ohkawa current to fast ion
“current Fy¢ in the 1/v collisionality regime have the same forms as ones in tokamak. 2728
The reason of which comes from the fact that the interaction between thermal particles
and the parallel ‘external inductive electric field EI(IA) or fast ions occures in the velocity
space, so that in these quantities the difference of the magnetic field structure appears
through the fraction of trapped particles f,. Contrastively, the bootstrap current has
signficantly different magnetic field dependence through the geometrical factor < Gy >,
which of axisymmetric cases is given by Eq.(23). "#7-1°

Substitution of Egs.(91) and (92) into Eqs.(75) and {76) gives the poloidal and

toroidal rotations for electrons and ions:

<u,-Vig >

J 1 1
= {< Blysp > +(1~ —) < BJjon > +H(1+
Fye

1
_J+¢Iene<G55 > Ly

Lll

) < BJyss >}
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J  <Gps> Lpldl, J <Gps>., 1 dP.  d¢

" J+el<Ggs >r Lipe dv J-i-tf{ -<GBS>T)(Cne a0 _@), {106)
<, - V(g >
J 1 1 1
= T +el)en. < Gps 5o 1< Blise > +{1— 5=) < Blyow > +(1+ 7o) < Biss >}
_ < Gps > Lip 14T, 1 ( < Gps> 1 1 dP, i{é) (107)
(J+¢)<Gps>rLpedy  ¢(J++])" < Gps>7 en. dv du
<u,-Vég >
_ J < Gps> 1 dT; J <Ggs>.,, 1 dP. d¢
= TTT<Gas sz el T TH T < or e dp T dp (108)
<u;-V{g>
J < Ggs > 1 dT, 1 <G 1 dP, d
T Tt < GBBSS>TL3"EEE e oy G GBBSS:T et ﬁ)- (109)

For axisymmetric case, < Gps > reduces to < Ggs >7, therefore, Eqs.(106)-(109) change

as follows:

<1, Vg >
= J ! {< BJysp > +(1 1)<BJ >+(1+1)<BJ >}
- J+elen, < Ggs >r t lis? Fye llo# Ly 15S

J L5 1dT,
T T4 el Lyedy’ (110)
<u, V(>
J 1

1 1
= - < BlJysp > +(1 — =—) < BJyos > +(1+ +—) < BJ,
T o <G st Blisr > +1= 72) < Bliow > +(1+ 77) < Blyms >

J Lp1dl, 1,1 dP. d¢
PR ) ()
e(J+eLyedy ¢ en.dy  dy
<u Vg >
J 1 d1;
= TRz )
< -Vig>
i 1dn b
d(J+el) ez dy  sen.dy

). (113)

From the comparison between Eqs.(106)-(109) ( in non-axisymmetric toroidal systems )
and Eqs.(110)-(113) ( in axisymmetric toroidal systems ), the effects of axisymmetry on

the plasma. rotation are found out. If the system has axisymmetry like a tokamak, then
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the geometrical factor < G'zg > reduces to < Ggs >7, resulting in the contribution of the
radial electric field d¢/dy to the poloidal rotations of both ions and electrons disappears ~
in all collisionality regimes as shown in the multispecies plasma. ?° Contrastively,
non-axisymmetric plasmas are driven poloidally by the radial electric field.

The flux-surface-averaged geometrical factor in non-axisymmetric toroidal systems
< (Ggg > is generally smaller than that of axisymmetric toroidal systems < Ggs >7. The
nermalized flux-surface-averaged geometrical factor < Gps >y=< Gps > / < Gps >r is
advantage to investigate the plasma rotation. In the 1/v collisionality regime < Gyg >x
changes drastically according to the magnetic axis shift and the shaping of the
toroidally-averaged magnetic surface, i.e., the ellipticity. *® < Gyg >y in the plateau
collisionality regime also has the dependence of the magnetic field structure, however, its
magnitude is considerably small. In the Pfirsh-Schhiiter collisionality regime < Ggs >y is
very small. The detail discussion on the geometrical factor in each collisionality regime
will be given elsewhere. Depending upon the plasma parameters, i.e., the density », and
the temperature T, and the structure of the magnetic field, the collisionality regime of
the non-axisymmetric plasma changes variously. Generally speaking, in the periphery and
near the magnetic axis the plasma may belong to the plateau collisionality regimes, and
in interspace the plasma may belong to the 1/ or plateau collisionality regime.
Moreover, near the outermost surface the collisionality regime may be Pfirsh-Schliter.
Therefore the poloidal and toroidal rotations of ions in the periphery and near the

magnetic axis reduce to

. J1dP d
V8 ~ 9

<t Vs> Trellends T ag) (114)
3 I, 1dP  dé

<G V> T+ d(ene di @) (115)

Note that above equations are valid in all plasma region as long as < Ggs >y is small
whether the plasma belongs to the plateau collisionality regime or the 1/v collisionality

regime. From Eq.(92) we see that the flux-surface-averaged geometrical factor < Ggg >
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prescribes the magnitude of the parallel ion flow for given density n;, temperature 7, and
electrostatic potential ¢ profile. Hence, in non-axisymmetric systems with small

< G'gs >y the parallel ion flow almost disappears { Compare between Eqs.(75}-(76) and
Eqs.(114)-(115} ). Consequently, in non-axisymmetric systems the poloidal and toroidal
rotation of ions is usual diamagnetic and E x B drifts. This fact is true for electons if the
neutral beam injection and the external inductive electric field do not exist. Using the
cylindrical coordinates (7,8, (), we can get the following simple expressions:

1 dP, dc;S
€T dr dr)’ (116)
Bg 1 ij.:_)i do

L Uy € > o —— + —
£ B?'en, dr dr?”’

< U 8> ~ (

(117)

where &g and é, are the unit vectors in the poloidal and toroidal direction, respectively.

From above equations,
In non-axisymmetric systems the poloidal rotation is dominant.
In axisymmetric systems, the ion poloidal rotation of a simple electron-ion plasma is

caused only by the temperature gradient. If d7,/di is negligible, the toroidal rotation is
dominant and Eqs.(112) and (113) reduce to

<u,-Vbg > ~ 0, (119)
1,1 dP, @

<E V>~ ot

In this case the parallel ion flow given by Eq.(92) becomes

). (120)

1 dP, qu
< Buy, > ~ —:(ene ?J) 75

Substitution of Eq.(121) into Eq.(75) gives < 4, - Vg > ~ 0. Hence the parallel ion flow

(121)

is made so that it cancels the poloidal rotation. In the cylindrical coordinates Eq.(120)

becomes

1, 1 dP an do
Bylen, dr  dr”’

(122)



thus for the similar profile of n,, T}, and ¢

| < g, - €¢ > helical |

By,
— 1 12
l< 'EL’, : é( >tokamak[ (BC) < ’ ( 3)

7.5 . B
l <_'UJ, Aee > helical [ ~ ol < 1. (124)
l< U, - €¢ >tokamak[ BC

Therefore, the toroidal flow in axisymmetric systems is larger than the poloidal and

toroidal flows in the non-axisymmetric systems.

VI. CONCLUSION AND DISCUSSION

The neoclassical parallel particle flow, parallel heat flux, current and rotation of a
multispecies plasma in general toroidal systems are studied in several collisionality
regimes, in order to clarify geometrical effects of the magnetic field structure on the
neoclassical theory. Fast ions due to the neutral beam injection and an external inductive
electric field are included as external momentum sources, where fast ions contribute to
the thermal species as friction forces. The flux-surface-averaged parallel particle flow and
parallel heat flux are obtained by using the flux-surface-averaged parallel momentum and
heat flux balance equations, where the parallel viscosity, friction, and inductive electric
field balance. The firction coeflicients are classical in the sense that they are independent
of the magnetic field. Thus, the geometrical effects of the magnetic field come from the
viscosity terms. ® In axisymmetric toroidal systems the magnetic field strength is a
function with respect to the flux Iabel and the poloidal angle. Hence, there is only one
type of trapped particles and the geometrical effects of the magnetic field structure in the
flux-surface-averaged parallel viscosity appear through the connection length and the
fraction of trapped particles except for some magnetic-surface quantities. In contrast to
it, in non-axisymmetric toroidal systems the strength of the magnetic field also depends
on the toroidal angle, thus there are many types of trapped particles and the geometrical
factor reflecting the magnetic field structure < Ggg > appears as another type of factor.

71818 This factor prescribes the parallel particle flow due to the gradients of density,
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temparature, and electrostatic potential. In axisymmetric toroidal systems, this factor
reduces to the same expression in all collisionality regimes. In non-axisymmetric toroidal
systems, however, its expression and magnitude changes drastically depending on the
magnetic field structure and the collisionality regime as well as the viscosity coefficients.
The normalized geometrical factor < Gps >N=< Ggs > [/ < Gps >7 ( < Gps >7 is the
expression of geometrical factor in axisymmetric toroidal systems ) has very small
magnitude in Pfirsh-Schléter regime which may be realized near the outermost magnetic
surface. In the plateau regime which may be realized both near the magnetic axis and in
the periphery of the plasma, or whole region except for near the outermost surface,

< Gps >y has a considerable small magnitude. < Ggg >y in the 1/v collisonality regime
widely changes according to the magnetic field structure by the magnetic axis shift and
the toroidally-averaged magnetic surface shaping, i.e., the ellipticity. ** Therefore, this
geometrical factor mainly makes differences between axisymmetric and non-axisymmetric
toroidal systems.

In the situation considered where there are no other external sources and losses
without the momentum conservation, for example, the charge exchange loss, the self
adjointness and the momentum conservation of the Coulomb collision operator give
common properties to the multispecies plasma in spite of the geometrical effects of the
magnetic field. The parallel particle flow due to the radial electric field is independent of
the particle species and the parallel heat flux is independent of the radial electric field.
Consequently, the charge neuirality guarantees the neoclassical current ( the bootstrap
curent ) be independent of the radial electric field. Quantitative changes, however, appear
in the neoclassical current mainly through the geometrical factor. 1"~!® The magnitude
of the bootstrap current, which is proportional to the flux-surface-averaged geometrical
factor, changes considerably in the non-axisymmetric toroidal systems. Moreover, the
poleidal and toroidal rotations change both qualitatively and quantitatively. In

axisymmetric toroidal systems, the poleidal rotation in the multispecies plasma is
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independent of the radial electric field. ?° In non-axisymmetric systems, however, the
poloidal rotation has the radial electric field dependence. The smaller the geometrical
factor becomes, the larger the effects of the radial electric field does. Hence, for the
non—axisym.metric magnetic field configuration where the geometrical factor is small, the
ion parallel flow almost disappears and ion rotation is described in ferms of the
perpendicular flow, i.e., the usual diamagnetic and E x B drifts, if the interaction
between thermal ions and fast ions is negligible ( v, € | @; | where v, and &, are the
critical and fast ions velocity, respectively ). This is true for electrons if there are no fast
ions and the external inductive electric field. These results contrast with the fact that the
ion parallel flow streams to cancel the ion poloidal flow in axisymmetric toroidal systems.
This is the manifestation whether the toroidal momentum conservation exists or not. It is
found out from the analysis of a simple electron-ion plasma that in non-axisymmetric
toroidal systems with sufficiently small geometric factor the poloidal rotation is larger
than the toroidal rotation and that for similar plasma parameters the toroidal rotation in
the axisymmetric toroidal system is larger than the poloidal rotation in the
non-axisymmetric toroidal systems.

The numerical calculation is now in progress taking the high charge number
impurities into consideration under the condition v, ~ | % | where v, and ; are the
critical and the fast ion velocities, respectively. This treatment is very important because

the plasma rotation is measured using impurity emmision line.
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