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ABSTRACT

Nonlinear behavior of resistive interchange modes near marginally stable states is theoreti-
cally studied under the multiple-helicity condition. Reduced fluid equations in the sheared
slab configuration are used in order to treat a local transport problem. With the use
of the invariance property of local reduced fluid model equations under a transformation
between the modes with different rational surfaces, weakly nonlinear theories for single-
helicity modes by Hamaguchi {Phys. Fluids B 1, 1416 (1989)] and Nakajima [Phys. Fluids
B 2, 1170 (1990)] are extended to the multiple-helicity case and applied to the resistive
tnterchange modes. We derive the nonlinear amplitude equations of the multiple-helicity
modes, from which the convective transport in the saturated state is obtained. It is shown
how the convective transport is enhanced by nonlinear interaction between modes with dif-
ferent rational surfaces compared with the single-helicity case. We confirm that theoretical

results are in good agreement with direct numerical simulations.
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I. INTRODUCTION

In magnetically confined plasmas inhomogeneities of magnetic fields, currents, pressure,
density and temperature cause a variety of instability to grow and have finite amplitudes
for which linear theory is no longer valid. A lot of phenomena in plasmas such as sawtooth
oscillations, disruptions in tokamaks and self-reversal of magnetic fields in RFP plasmas
ally nonlinear processes. Another important example of noniinear
phenomena is anomalous transport' which is observed in most of magnetically confine-
ment systems and is considered to be the enhancement of transport due to fluctuations
or turbulence in plasmas. Generally such nonlinear problems are complex and especially
theoretical quantitative treatment of strong nonlinear or turbulent systems is still difficult
so that complete understanding of anomalous transport as strongly nonlinear processes is
not yet achieved. However weakly nonlinear theories,? which treat nonlinear interaction of
the modes with small amplitudes, have been developed and applied successfully to some
problems of fluid mechanics and plasma physics.

Landau presented a weakly nonlinear theory based on a general model and described
bifurcation of the system from one steady state to another using his model equation called
the Landau equation.® Palm derived the Landau equation from the partial differential
equations describing the system for a problem of Bénard convection.* Malkus, Veronis and
many authors applied a weakly nonlinear theory to problems of hydrodynamic stability.?*
Also based on plasma fluid models, Hamaguchi and Nakajima developed a weakly nonlinear
theory for single-helicity modes of plasma instabilites.*"® They derived some parameter
dependence of the amplitude of the steady nonlinear solution and the convective transport
theoretically. These weakly nonlinear theories allow us quantitative and partially analytical
treatment of nonlinear behavior of the system near the marginally stable state and give
us some clues to the understanding of properties in the strongly nonlinear regime and
anomalous transport.

In this paper we will develop the weakly nonlinear theory for resistive interchange modes

with multiple-helicity. A single-helicity condition gives a two-dimensional problem in which



nonlinear interaction only among the modes localized around the same rational surface is
treated while we must consider also nonlinear interaction among the modes with different
rational surfaces in the multiple-helicity case which is essentially three-dimensional. When
we ate concerned with plasma transport in the sheared magnetic fields, it is natural to
include the contributions from all linearly unstable modes lying at different radial positions
rather than from only modes localized around a single surface and necessarily we must
consider the multiple-helicity problem. Generally multiple-helicity or three-dimensional
problems are complex although it will be shown that the weakly nonlinear theory for
the single-helicity modes is easily generalized to the multiple-helicity case by noting the
invariance property of the fluid model equations under a certain transformation of the
multiple-helicity modes. We will find that this property holds for many kinds of reduced
fluid model equations based on the local sheared slab geometry which is often assumed
for local tramsport problems. The equations governing the amplitudes of the multiple-
helicity resistive interchange modes will be derived. Due to the invariance property of the
local fluid model equations, they have symmetric solutions which are also invariant under
the transformation of the multiple-helicity modes. The symmetric solutions consist of a
virtually infinite sequence of mutiple-helicity modes with the same radial structure localized
around their own rational surfaces, which are similar to the structure of ballooning modes.®
Using these symmetric solutions is more relevant for local description of the system {which is
analogous to the eikonal representation in geometrical optics) than using bounded solutions
which vanishes at some boundaries and are confined within the finite radial region. For the
symmetric solutions, the amplitude equations reduce to the Landau equation, for which we
have a simple analytical expression of the solutions.

The resistive interchange modes are considered to be linearly unstable in the peripheral
region of stellarator /heliotron plasmas which have a magnetic hill there and therefore they
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are candidates for the cause of edge turbulence and anomalous franspor
transport in the nontinearly saturated states of multiple-helicity resistive interchange modes
near marginally stable states will be studied by using the weakly nonlinear theory and

comparison between theoretical results and those obtained by direct numerical simulation



will be shown. We will find how transport is changed by the effects of nonlinear interaction
of modes with different rational surfaces compared with the single-helicity case.

This paper is organized as follows. In Sec.Il the fluid model equations describing the
resistive interchange modes is explained. In Sec.III we find general symmetry proverties
of reduced fluid equations based on the local sheared slab configuration. In Sec.IV we
develop the weakly nonlinear theory for the multiple-helicity resistive interchange modes
and derive the equations governing the amplitudes of multiple-helicity modes. In Sec.V
symmetric solutions of the amplitude equations are given and convective transport in the
nonlineary saturated states is obtained. The effects of multiple-helicity on transport are
investigated and theoretical results are compared with numerical simulation results. Finally

conclusions and discussion are given in Sec.VI,



II. MODEL EQUATIONS

Resistive interchange modes are described by the following reduced MHD mode]®-10-12:1¢

in the electrostatic hmit, which cousists of the vorticity equation:

FmC _a__ 2 c . . 2 __BO 24 ,3p
B (87& vVi+ Boz x V¢ V) Vig= —chHQS Q—ay (1)
and the pressure convection equation:
0 o c . ¢ 00
— - — V]p=—=—F—— 2
(8t XVJ_+BOZ><V¢ )p 5.3, (2)

where ¢ is the electrostatic potential, p the pressure fluctuation, By the component of the
static magnetic field along the z-axis, p,, the average mass density, ¢ the light velocity in
the vacuum, 7 the resistivity, v the kinematic viscosity, x the pressure diffusivity, P} =
dPy/dz (< 0) the volume-averaged pressure gradient and @' = df2/dz (> 0) the average
curvature of the magnetic field line. V3 = 8} + 8 denotes the two-dimensional Laplacian.
The gradient along the the static sheared magnetic field line is given by

7 z &
Vi=—+——. 3
1= %: 1 1.8y (3)
Here By, L, pm, 1, V, X, P and ' are assumed to be constant since we treat a local
transport problem. The electrostatic approximation is used in Eqs.(1) and (2) since we

consider the low beta plasma in the peripheral region.

Choosing the units:
[t = (=P /pwm)™?  [2] = [u] = cLen'P(—pm PsQ)!/*/ Bo

[zl = L. [x] = [=]°/[t] = n(-F5)Q' LY/ B} (4)
[¢] = cn(—P)L2/Bo  [p] = cLon/2plfA (- P51/ | By

we obtain model equations in non-dimensional variables from Eqs.(1) and (2) as follows

Vi¢+(9,Vigl = —Vio—9p+xPVie (5)
dp+[¢,p] = —8,6+xVip (6)
where



The Prandtl number is defined by
B = v/x. (8)

All the nonlinear terms appear in the form of Poisson brackets:

[f, 9] = (8:1)(8y9) — (329)(8, [ ). (9)




III. SYMMETRY PROPERTY OF LOCAL SLAB
MODEL WITH CONSTANT MAGNETIC SHEAR

Here we discuss the symmetry property of the local model equations (5) and (6). The
electrostatic potential ¢ and the pressure fluctuation p are expanded into the Fourier series

with respect to y and z as

(¢(z,y,z)) _ i i PmnlZ) )exp??ri(my/Ly+”z/L’)

plz,y, 2) m==c0n==0 | Prn(Z)
w o [ :
= Y > $mn(2) ) expik(my + nAz) (10)
TR=—00 =—00 \ pmn(z)

where L, and L, are the maximum scale lengths of the fluctuations in the y and z directions, -

respectively, and we defined
k=2x/L,, A=L,[L.. (11)

The wavenumbers of the Fourier modes in the y and z directions are given by k, =
9wm[L, = mk and k., = 27n/L, = nkA, respectively, where m,n = 0,%1,42,--- are
the mode numbers. Here k = 27 /L, denotes the minimum wavenumber of the fluctuations
in the y direction.

We consider the following functional transformation T:
T,Y, 2 ToNz,y, 2z t—Ay—-Azz
o [ 4 ))_é(( Oy ))=(¢( y )) 12
p(ﬂ:, Y, Z) (Tp)(xay1 Z) p(.'E - A,y—"AZ, Z)
which is expressed in terms of the Fourier mode as
m,n T m,n m,m+tn - A
R B (O NOR B NIV L
pm,n(x) (Tp)m,n(x) pm,m-]—n(m - A)
For arbitrary functions f(z,y,z) and g{z,y, z), we have

.Tf=T0.f, any =T9,f } (14)

[rf,Tq)=Tif,9], VYTf=TVyf



Defining

() (03

~Vid— dyp+ x P Ve — [¢, V2
F[®] = ( ”¢ yPTX 19[4, Vid] (15)
—0,+ xVié —[4,]
Eqs.(5) and (6) are rewritten as
0,A® = F[?] (16)
We find from Eqs.(14) that T commutes with A and F
AT=TA, FT=TF (17)

Thus it follows that Eq.(14) is invariant with the transformation T, i.e., for an arbitrary

solution @ of Eq.(16), T® = (T'®,T'p)? is also the solution
3,A[T®] = FITS]. (18)

We should note that not only Eqgs.(5) and (6) but also other reduced fluid model equations
based on the local sheared slab geometry with constant magnetic shear are invariant under
the transformation T.

Next we define another functional transformation P :
2,4, % PRI, Y, 2
p. #(z,9, ) _ ¢z, —y, —2) (19)
p(xyy) Z) p(za =Y, —Z)
which is expressed in terms of the Fourier mode as
m,n W mm —n z - :J'L n A
o [ #male) ) qs,()): #ral2) -
PrmalT) Pm-n() p:'z,n(x)

where a superscript * denotes a complex cunjugate. Here we used the reality of the values

of the functions ¢(z, y, z) and p(z,y, z), which yields

ér*n,n(x) = Qﬁ—m,—-n(m)s p:z,n(z) = p—m,—-n(z)' (21)




Equations (5) and (6} (or Eq.{16)) are invariant with the transformation P, i.e., Eq.(16)
gives

8,A[P®] = F[P®]. (22)

1t should be remarked that this invariance under the transformation P results from the
fact that Eqs.(5) and (6) are derived from the one-fluid MHED model."®*® Therefore this
invariance is broken for the two-fluid type model equations which include the electron or ion
diamagnetic effects. From the invariance property, we can assume the solution of Egs.(5)
and (6) (or Eq.(16}) satisfying

P® =& (23)

which is valid at any time 7 if it is at the initial time £ = 0. Then the solution ® satisfying

Eq.{23) is expanded into the Fourier series as
¢(z,y,72) * { ¢on(z)sinkniz ® & | Gpa(z)sink{my + ndz)
=2 +2 - (24)
p(z,y,2) n=0 \ Pon(z)cosknAz m=1n=—00 \ Pmn(2)cosk(my + nAz)

where ¢.,,(2) and p,,,(z) are the real-valued functions which are transformed by T in the

same manner as in Eq.(13).



IV. WEAKLY NONLINEAR THEORY OF MULTIPLE-
HELICITY RESISTIVE INTERCHANGE MODES
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weakly nonlinear theory. Equations (5) and (6) have the trivial equilibrium solution ¢ =
p = 0. Solving the linearized equation gives the spectrum of the eigenvalue or the linear
growth rate « for the perturbaton which varies in the form exp ¢ and vanishes as z — oc.
When the Prandtl number P, is fixed, a critical diffusivity . exists such that all the Fourier
modes in Eq.(24) are linearly stable for ¥ > x., only one of the eigenvalues of the m = 1
modes becomes v = 0 for x = . and the system is linearly unstable for y < x.. Since
the neighborhood of the marginally stable states ¥ = x. is considered, the magnitudes
and the temporal variations of ¢(z,y, z) and p(z,y, z) are small and therefore we make the
following perturbation expansion with the parameter A

)

|
D
P N
B &>
R
+
S
[
T
3 e
e
+

F 0
E = A3_Q+A57H-;+ ......
X = Xetda+Xx+---- - (25)

Substituting Fq.(25) into Egs.(5) and (6) yields in O(})
~Vid + x.P V3 —
Lt 1 _ ||¢'1 X 1% yP1 —0. (26)
2! By —x.Vip

Equation {26) is just the linear equation for the marginally stable state. As stated above

the solutjon of Eq.(26) consists of the linear combination of the m = 1 modes

( é1 ) _ f: A ( $1(z + nA)sink{y + nAz) ) . (1)

D1 n=—oo pilz + nd)cosk(y + niz)

Here we used the fact that since the linear equation (26) is also invariant with the transfor-

mation T, we can produce the linear solutions from one set of eigenfunctions (¢;{z)sin ky,



pi(2) cos ky)T by operating T successively

" ( &1 (z) sin ky ) _ ( é1(z — nA)sin k(y — nAz)

) (n=0,%1,42,--). (28)
pi(z) cosky p1(z — nA)cosk(y — nAz)

Thus the marginally stable state is degenerate with the m=1 mode eigenfunctions (28).
Here we employ the boundary condition that ¢(z) — 0 as z — oco. The eigenfunction ¢(z)
has a peak at £ = 0 so that the m=1 modes (28) are localized around the mode rational

surfaces z = nA (n=0,£1,42,---). In Eq.(27) A, is a real-valued function of the time:
An = An(’fl, Tyt ) (29)

When the linear operator L defined by Eq.(26) acts on the {m, ) Fourier mode in Eq.(24),
it is replaced with L,,, given by

2B2(z 4+ ZA) + x P (82 — m?E?)? k
Lpw = MRz AP+ xR mE) ™ : (30}
mk — x5 — m*k?)

For arbitrary function vectors # = (uy(z),uz(z))’ and v = (v(z),2(z))?, the inner

product is defined by

(u,0) = /_ Z dz{uy(z)o1(2) + us(z)va(2)} (31)

We see from Eq.(30) that the linear operator L, is self-adjoint with respect to the inner
bracket (31), L.e.,

{t, Lyppv) = (Lypnu, v). (32)

Equation (26) is rewritien by using Eq.(30) as

. ( é1(z + nA) ) ( B2 (z + nAY + x P (02 — k)2 k ) ( $1(z + nA) )
i pi(z + nd)

k —X(0; = k%) | \ p(z +nd)
which gives the profiles of the eigenfunctions ¢;(z) and py{z), however, does not determine

i

(33)

the mode amplitude A,. For the mode number m > 2, the linear groth rates are negative

and L,,, is invertible so that L,,,u = 0 gives the trivial solution u = 0.



Equations (5) and (6) yield in O(2%)

(34)

_aﬂpl + leipl - [‘?51:}'71]

. ( 2 ) _ ( 0, V31 - i P.Vidn + [, Vi) )
P2

We expand the solution of Eq.{34) into the Fourier series as in Eq.{24)

[ 6\ of do(a)sinknaz | & & [ fpale)sivk(my +n22) }
= T2 L - ()
k P2 n=0 k Pon(2)coskniAz ) m=1n=—c0 k Prmn(z)cosk(my + nAz)

From Eqs.(34) and (35), we have for the m = 1 modes

L ( 1n(2) ) ) ( (01, 40)(22 = B9z +78) — 32 PAW(E2 — K2y (2 + ) ) |

Pin(z) —(0, An)pr(z + nA) + x140(02 — E)pi(z + nA)
(36)

The solvability condition for the m = 1 mode equation (36) is given by

<( br{z + nd) ) RS of Eq’(%)) _ (Lm ( tr(z +nd) ) | ( bia(z +nA) )) L,
p(z +nA) p1(z + nA) iz + nA)

(37)
where Egs.(32), (33) and (36) are used. Equation (37) reduces to
[ de [ d){lBbi(z +nA)P + Bz +n8) + e +nd))
+x1 4 { B 1(0F = #*)éu(z + nA) + |9epr(z + nD)f + 13 (z + nA)} ]
= 0. (38)

Since an arbitrariness remains in the perturbation method given by Eq.(25), we can impose

an additional constraint. If we assume that x; = 0 (or 8,, A4, = 0), we have
X1 =0, A, = 0. (39)

Then Eq.(36) has the same form as Eq.(33) so that the solution is given by {¢1.(z), p1.(2))T =
const. - (¢1{z + nA), pi(z + nA))”. Including this into the O(}) solution makes it possible

(@“”)=a (40)
Pln(m)

to put



For the m = 0, n = 0 mode,

Loo( boo(z) )
Poofz)

XcPraiQﬁOU(m) — 0
~X02poo(z) T2 A28 {1z + nA)pi(e +nd)} |

(41)
For the m = 0, n > 1 mode,
- ( don(c) )
pOn(I)
2 e Az + mA)m(z + maA) + d1(z + maA)pi(z + naA)}
(42)
For the m = 2 mode
Lgn ( ¢2n(m) )
PQn(z)
_ lk Z Anl An2 quﬁl (E + nlA)quﬁl(z + RZA) - ¢1 (Z‘ 4 nlA)c?i(;Sl(z: + ngA) .
2 ni+n2=n —3I¢1 (.’E + nlA)pl (.’L' + nzA) + 951 (.’t + nIA)azpl(m + ﬁzA)
(43)

For the m > 3 mode, we have L,,,, (¢:mn(:c),pmn(:c))T = 0 which gives

Prmn(2)
0. (44)
( pmn(I) )

Thus the fluctuations in O{A?) consist of the m = 0 and m = 2 modes which are obtained
from the m = 1 modes in O(}) by Eqs.(4.41)-(4.43).
We have the equations in 0(A*) from Eqgs.(5) and (6)

L ( @3 ) _ ( 8, V3¢ — x2 PV i1 + [¢1, Vidol + (62, Vidu] )

(45)
—=Bnp1+ X2Vim — (61, 12 — [¢2, 1]

Bs

If the Fourier expansion is done for (¢3,p3)7 as in Eq.(35), we obtain for the m = 1 modes
(3)
T
Llﬂ. ;:L)( )
FPin (:E)



_ ( (0 40)(02 = B)ga(z +nd) = XaP, A8 — Kb3(s +nA) + [b1, Vishn + [, Viihn
—(3,2An)p1(:z + nA) + X2An(3§ - kg)Pl(I + nA) - [¢‘1;P2]1n - [¢72, Pl]m
(46)

where (¢8)(2), p(2))7 denotes the m = 1,7 = n Fourier mode of (63, XNT and

[9?51: ViqﬁZ]]n
1 oo [+ o]
= —k* Z Z Anny Any 40y Ay 1(z + (0 — 1) A) BBy, (2 + maA)

4 ny=] na=—c0
1 &0 =]
"‘ZkQ 2 2 AninAntn An,d1(2 4 (4 n)A)EE, (2 4 nadd)

ny=1nz=-—o0

1

_Zkz Z Z Anl_“nAm_nzAm{Zazcﬁl(m + (n1 — n)A)(@ﬁ - 4:]62)Hn1_.2n2(33 + RZA)

n]=—00 R3=—00

+é1(z + (ng — n)AYES — 4k%8,)H,, o, (2 + npA)}
[¢27 V_2L¢1]1n

1 o @

= Zkz Z Z An_mAanzAm(az_ - k2)¢1(z + (?’l — nl)A)B,_Fm (.’E + ngA)
n1=1n3=—oc0

1 o0 <0

_Zkz E E An'!'nl Am +n2Anz(632: - kz)ﬁbl(I + (7’2. + nJ)A)aIFm (1: + n2A)

n1=1nz=—00

1 % o0
+Zk2 ; Z Anl—ﬂAm—nzAﬂz{z(ag - kzaz)él(m + (nl - H)A)Hm —2np (I + ?’LgA)
(8 = k) gu(z + (m — n)A)0 Hoy _an, (z + mpA)}

[¢1: pQ]ln

1 00 o
= —EkZ Z Z An—nl Am +n2Anz¢1 (l‘ -+ (n - nl)A)BxGm (.I -+ RZA)
ny=0mn3=-0a

1 =) oo
_Zkz Z Z An-{—nl An1+n2An2¢1 ($ + (n + nl)A)a:anl (:Z,‘ + Tl.gA)

ny=0ny=—o0

1 o0 [ o]
_Zk2 Z Y. An—nAni—n Any {2061 (2 + (ny — n)A), —an, (z + 124)

np=—R0 R=—0

+¢1(22 + ('Rl — n)A)&IInl_gm (SB + ngA)}

[¢2}pl]ln
1 [+ o] (s o]
= ok z E A'n—m An1+n2An2p1(z + (n - nl)A)aanl(z + nZA)

4 n1=1 ng=-co

1 [+0] =]
——k* Z Z Antry Any by AnyP1(2 + (n+ 1) A) B Fy (2 + mpA)

4 n1=1ng=—o0



1 @ o0

_Zkz 3 Y Anadaeny An{20:p1(2 + (01 — R)AYH,,, 30, (2 + naAA)

N ==—00 N3=—00

-}-pl(m + (n1 — n)A)c’?me_zm ($ + ’I"LZA)}
Here F,, G,, H, and I, are given by

. ( Fa(2) ) _ ( 861z +nl)321(2) — 41()021(z + nA)} )
Ga(x) Ox{1(z + nA)pr(z) + d1(z)pi(z + nd)}

. ( Ha(2) ) ( 0.1(x + )26 (2) — éa(z + n8)02 2) )
L(z) —0.41(z + nA)pi(z) + ha(z + nd)3p(a)

—X02Go(z) = A i(z)pi(z)}-

Il

In the same manner as in Eq.(37), the solvability condition of Eq.(46) is given by

<( hi(e +nd) ) RS of Eq.(46)> —9
pi{z + nA)

which reduces to

0A,
DO + X2D1An + Z D, —ng,n—ny An—n;-{-nzAnl Ang =0.
{97‘2 ny,my
Rewriting
M, = A,y =X By = (x—x)
yields
0A,
Dy ot + (X - Xc)DlAn + Z Dn-—nz,n-m An—n1+n2Am Anz =0
7,T
where

Do= [ dallour(e)f + K}(o) + pi(o)]
Dy = [ dalR|(& - )@ +10um (o) + Fpi(e)]

Z Dn—m A—ng An—nl +n2 Am Ang

1,12

- /_ °:° de[—¢1(z + nA[61, V2 dohin + 63, V2 b1l1a}

+pi(z + nA){[d1, Pain + (P2, P1]in }]-

(51)
(52)

(53)

Equation (50) determines the behavior of the amplitude A, in the solution of the leading

order (27) near the marginally stable state.



V. COMPARISON BETWEEN THEORY AND NU-
MERICAL SIMULATIONS OF SYMMETRIC

r S e W e

In this section the results of the weakly nonlinear theory in the previous section are
compared with those of the numerical simulations of Eqs.(5} and (6). Here we consider
the symmetric solutions which are invariant under the transformations T and P given in
Section 111

T = P& = &. (54)

Then it follows that A, = A (n = 0,41,£2,---) and Eq.(50) reduces to the following
Landau equation:

DoBA+ (x — xo)D1A+ Dy A =0 (55)

where

Dy = gk [ dlpr(e) XAl —na) + (e + n)o.pua(o)

n=0

—p1(z) i {20:9:1(z + nA) - pon(z) + ¢1(z + nA)Bop2n(z)}

N=—00

+11(2) S {pn(z — nA) — pr(z + )} Byon()

n=1

- —pi(z) i {28:p1(z + 1A} - §an(2) + pr(z + nA)D,don(z)}

n=—0co

e i {61(z = nA) — du(z + 1)} B on(z)

+1(2) 3. (20.1lo + ) -0 - (R )ounle)
+ule + nd)(E — (268,)dan(x)}
(8% — B){nlz — nd) — o(z + mA)} - Dughnc)

™8

—61(z)

1

n

{2(82 — K031 (z + nA) - 8,z (z)

+(6§ - kz)él(z +nA) - Frpan(z)}]- (56)

[]8

~¢1(z)

n

s o]



The solution of the Landau equation is easily obtained and written as

A2
AZ _ o)
1+ (A2, /A3 — 1) exp(—201) (57)

where Ap = A(t = 0) and

¢ = (Xe— x)D1/Ds (58)
A% = (xe—x)D1/Ds. (59)

Equations (51) and (52) show that Dy > 0 and D; > 0. We find from Eqs.(57) and (58)
that if x > x. then ¢ < 0 and A ~ Agexp(ot), i.e., the linear theory holds as ¢t — co for
sufficiently small A;. As will be found in the detailed calculations, Dj is positive in the
cases treated here. In the case of ¥ < x., we have ¢ > 0 and A ~ Agexp(ot) as t — —c0
for sufficiently small Ao. In this case, A — A as t — oo for arbitrary magnitudes of Ay.
The volume-averaged convective flux {pv.), in which the contributions from the m = 1

modes are dominant, is O(X?) and given by

{pvz) = _(pa ¢)
kAQ oo
= oA E / depi(z + nd)¢(z + nA)
kA
= - [ dan)ante). (60)
Equations (59) and (60) yield the volume-averaged convective flux in the stationary state
k Dy [
(oo = ~0e = X)35 7 [ dem(edala). (61)

In the right-hand side of Eq.(61), the calculation of D; is most complicated as seen in
Eq.(56). It is found from the numerical calculations that the most dominant contribution

to D5 is from the terms 1elating to the pressure gradient of the (m = 0,n = 0) mode

3»poo(z). From Eq.(41), we have

Fzpoo(z) = —Zic { _zoj: é1(z + nA)pi{z + nA) — CU} (62)

where the integral constant Cy is determined by the condition that the volume average of

dxpoo(z) vanishes and is given by

Cy :— 2 / dzgi(z + nA)py(z + nA) = / dzgy(z)py(z) (63)
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The contribution from the terms shown by Eq.(62) to )5 is represented by D(O):

DY = & / " de{—pa(2)¢1(r)Bupio(z)}

L i ! ¥ |
- (7"7")’) {'r n ‘ n
2Xc -]—OO e l n._z—oo {'bl\m The 1 + o UJ
2 oo
= 2]; [/_ dzpi{z)d:(z Z #1(z + nA)pi(z + nA) — AC’Q}
k2 [ Ad > A A : ACZ
= l/O w{ngmpl(m+n Yz +n )} - ACE
J ¥ o 2

Equation (64) shows that Dgo) is always positive and contributes to the saturation of the
fluctuations. We find that D§°) — +0 as A — +0. Thus for sufficiently small A, the
saturation mechanism due to Dg") is negligibly weak and if the other terms in D; are less
effective the saturation amplitude becomes so large that the weakly nonlinear theory itself
is supposed to give inaccurate results. When A is larger than the scale lengths of the m = 1

mode structures ¢;(z) and pi(x), Eq.(64) is approximated by

DO ~ ;X . [ /_ ‘: dz {py(2)d1(2)}? — A7 { /_ : dzpl(z)gﬁl(r)}z} (65)

Equation (65) shows that, also in this case, Dg‘” decreases and the saturation amplitiude
becomes larger as A decreases.

Figure 1 shows the time evolution of the convective flux {pv,) for y = 4.4 x 107},
P.=1,%=1and A =5 In this case the critical diffusivity for the m = 1 modes is
xe = 4.771 x 1071, Here the thoretical result (a solid curve) obtained by Egs.(57)-(60) and
the numerical result (solid circles) obtained by the simulations of Eqs.(5) aund (6) are given.
Both results are in good agreement. The units of the time ¢ and the convective flux (pv,}
are obtained from Eq.(4). In the simulations of Eqs.(5) and (6), ¢(z,y, z) and p(z, y, z) are

expanded into the Fourier modes as in Eq.(24) and we imposed the boundary conditions

m ¢pa(z)= lm pna(z)=0 for m>1 (66)

Je—c0 Jal—c0



and the symmetry constraint (54) which gives

¢m,n($) = Qsm,m-{-n(:z'_A) (67)

pm,n(m) = pm,m+n($_A) (68)

We find from Eqs.(66) and (67) that the m = 0 mode structures ¢g,(z} and po,(z) are the
periodic functions of z with the period A

¢0,n(£ + A) = ¢0,n($): Po,n(iﬂ + A) = pO,n(I)- (69)

Figures 2 show the electrostatic potential and the total pressure in the saturated state
of the multiple-helicity resistive interchange mode obtained from the numerical simulation
of Egs.(5) and (6). Here x = 44x 107", P, = 1, k =1 and A = 4. In the numerical
simulation we have included the modes with 0 < m < 5. Figure 2(a} shows the contoursr
of the electrostatic potential in the £ — y plane for z = 0. In this case the m = 1 mode
stTuctures appear dominantly, the profiles of which are shown in Fig.2(b). The m = 1 mode
structures are similar to those of the linear eigenfunctions obtained from Fq.(33) except
that the former is somewhat broader than the latter due to the higher order nonlinear
interaction. Figures 2(c) and (d) show the contours of the total pressure and the profile of
that averaged in the y direction. We see the flaitening of the pressure around the m =1
mode rational surfaces.

Figure 3 shows the dependence of the convective flux {pv,) in the saturated state on
the diffusivity y obtained from the theoretical expression Eq.(61) and the simulations of
Eqs.(5) and (6). Here P, = 1, k = 1 and A = 5. The theoretical results are in good
agreement with the simulation results. For small x the convective flux obtained from the
simulations is smaller than that obtained from the theory due to the higher order nonlinear
corrections.

Figure 4 shows the dependence of the saturated convective flux {pv,) multiplied by A
on A7l Here P, = 1, k = 1 and x = 44 x 107", As seen from Eq.(60), {pv.}A =
—2kA? [*, dzpi(2)¢1(z) denotes the convection of a single m = 1 mode integrated over

—o0 < z < oo. Since the values of & and x are fixed here, the linear mode structures



remain unchanged and therefore A~ represents the measure for the ratio of the width of
the m = 1 mode structure to the interval between the neighboring m = 1 mode rational
surfaces (or the extent to which the neighboring m = 1 modes overlap). Here the results of

d the simulations of Eqgs.(5) and {6} are shown. We find from Bq.(61)

£

that (pv,)A depends on A™! only through D; in the denominator. The dependence of D,
on A7l is also shown. As A™! is increased, D3 is monotonically decreased and therefore
{pvz)A is monotonically increased. For small A~ Dy has the form of the first degree
polynomial function of A™! as predicted from Eq.(65). The simulation results are well
described by the theoretical predictions but for larger A™" the former show the more rapid
increase of {pu,}A than the latter. Thus we see that the higher order nonlinear corrections
enhance the saturation amplitude for larger A~ while they lower that for smaller y as seen

from Fig.3.



VI. CONCLUSIONS AND DISCUSSION

In this paper we have generalized the weakly nonlinear theory for sigle-helicity modes
of Hamaguchi and Nakajima to the case of multiple-helicity modes in the local sheared
slab configuration. We have found that the model equations are invariant under the trans-
formation T defined by Eq.(12) or (13) and that this invariance property holds generally
for other local reduced fluid model equations in the slab geometry with constant magnetic
shear. From this property it follows that there exist the multiple-helicity modes which
correspond to the critical order parameter (in this paper we used the diffusivity as a or-
der parameter but other quantities such as the pressure gradient or the average magnetic
curvature can be used in the same way) or in other words that the critical order param-
eter is degenerate due to the multiple-helicity modes, which are produced by operating
T successively. Then the weakly nonlinear theory for the multiple-helicity modes is quite
naturally developed from the single-helicity case and we have obtained the governing equa-
tions (50) for the amplitudes {A,} of multiple-helicity resistive interchange modes near
marginal stability.

We have compared the thoretical results with those obtained by the numerical simulation
of the model equations for the cases of the symmetric solutions, in which all the amplitudes
A, of the dominant {m = 1) modes have the same value. We have seen that both results
are in good agreement in the parameter region near the marginal stability. The symmetry
conditions used here are suitable to the local transport problem since they are free from
boundary layers with steep pressure gradients as is seen under fixed boundary conditions,
which produce artificially distorted pressure profile inappropriate to the local model. In this
condition the weakly nonlinear behavior of the multiple-helicity modes is described by the
Landau equation {55) in the same way as in the single-helicity case. When the diffusivity
x becomes smaller than the critical value . (which depends on the minimum wavenumber
% and the Prandtl number F,), the new stationary states with convective cells bifurcates
from static equilibria. Then the convective transport or the effective pressure diffusivity

defined by x w7, = (pv.)/(—dPs(z)/dz) is proportional to (x. — x). It was also shown that



when the ratio of the interval A between the m = 1 modes to the radial width of the mode
profile decreases, the saturation amplitude per single mode becomes larger than that in
the single-helicity case and the convective transport of the multi-helicity modes is more
enhainiced than that predicted by the linear superposition of the saturated conveciion of
the single-helicity cases. Here only the symmetric solutions are examined but the nonlinear
amplitude equations (50) may have other various types of solutions and it is interesting as
a future task to investigate spatial patterns and nonliear stability of such solutions.

In the parameter range of actutual experimental devices plasmas are supposed to He in
the strong nonlinear or turbulent states, which are far from marginal stability. In order
to estimate the turbulent diffusivity xi..;, in such strong nonlinear states, the following
heuristic argument is often used. Replacing the nonlinear convection v - V; with the

turbulent diffusion —xu,:V3 in the model equations, the nonlinear growth rate vy (k,,
X i g 7. vy X

is expressed in terms of the linea growth rate y;(k,,x) as

’YNL(ky) X) = 7L(ky: x+ Xt'urb) (70)

where P, ~ 1 1s assumed. It is considered that the stationary state is realized when
Ywi(ky, x) < 0 for all wavenumbers k,. For example if we assume that yyp(k,) =
vr{ky) — Xturpk? then we have a well-known expression of the turbulent diffusivity Yy, =

(¥2/%2 Ymaz for the stationary state. From Eq.(70) we have more general expression

Xturb = [Xc(ky)]mm - X (71)

where x.(k,) is defined by the diffusivity required to linearly stabilize the mode with the
wavenumber &, i.e. y;(ky,x.) = 0. In order o obtain the turbulent diffusivity of the
resistive interchange modes Carreras et al.!® used the one-point renormalization theory
and applied essentially the same argument as above to the stationary turbulent states. Tt
is interesting that the effective diffusivity of the convection obtained in this paper by the
weakly nonlinear theory has the form similar to Eq.(71), i.e., xyr = K(x.(k) — x) where
Xelk = (ky)min) = [Xc(ky)]lmaz Bolds and the coefficient K depends on k, P, and A. This
analogy between the expressions of the nonlinear diffusivity is naturally understoed by

noting that the Landau equation (55) derived by the weakly nonlinear theory includes the



nonlinearity in the way that it is obtained from the linear equation by replacing y with
X+ xa (xa = (D3/D1)A?) and that the stationary solution is given by x + x4 = x., which
is the same logic as leading to Eq:(71).

As an example let us estimate the nonlinear thermal diffusivity for experimental plasma
of Heliotron E, of which in the peripheral region the resitive interchange modes are un-
stable and supposed {o cause the anomalous tranport. As local plasma parameters in the
peripheral region of Heliotron E we use n, = n; =5 x 10¥m™3 T, =T, = 40¢V, B = 1T,
L, = 0.6m, dQ/dr =4.5m™" and L, = |dIn P,/dr|™ = 3 x 107*m. Ther we have the col-
lisional diffusivity ¥ = 6.1 x 107*m?/s. We consider the local transport around the radial
position of 7 = 0.18m close to which there are no mode rational surfaces with low poloidal
modenumbers m, = 1,2,--- and we use %, = 5.9 x 10!m™! as the minimum wavenumber
in the poloidal direction which corresponds to the poloidal modenumber m, = 10. For
that poloidal wavenumber the critical diffusivity is x. = 0.51m?/s, the radial interval be-
tween the modes is given by A = 5 x 10~*m and the radial mode structure of the form
¢ o exp[—3{(z — 2,)/L.}?] (where z, denotes the radial position of the mode rational
surface) with I, = 6 x 107*m for which the significant effects of the reighboring mode
interaction on the convective transport appear. From Eq.(61) we obtain the nonlinear
pressure diffusivity xyz = (pv:)/(—dPs/dz) = K(x. — x) = 1.0m?/s (K = 2.0). Using
the relations 3(pv,) = —nxudT/dr and din P/dz = T/(T — 1)dInT/dz (T = %) we have
the nonlinear thermal diffusivity y; = %f—x w1 == 3.8m?/s. This gives a reasonable value of
the anomalous transport coefficient compared to the experimental values in Heliotron E**
Xezp = 1 ~ 10m?/s although more accurate estimation of anomalous transport and fluc-
tuation spectra require the theory treating strong nonlinearity and high degree of freedom
in the turbulent system. Since direct numerical simulations of three-dimensional station-
ary turbulence in experimental plasmas with such parameters as above require huge sizes
of computer memory and time, further development of nonlinear theory to complement

numerical simulation is indispensable.
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Fig.1 Time evolution of the convective flux {pvz) for x = 4.4 x 1072,
F,=1,k=1and A =5, Theoretical and numerical results are

shown by a solid curve and solid circles, respectively.
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Fig.2 The electrostatic potential and the total pressure in the satu-
rated state of the multiple-helicity resistive interchange modes
obtained from the numerical simulation. Here y = 4.4 x 1071,
FP=Lk=1and A=4.

(a) The contours of the electrostatic potential in the z —y plane

for z = 0.

(b} The m = 1 mode structures of the electrostatic potential.
(c) The contours of the total pressure.

(d) The profile of the total pressure averaged in the y direction.
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