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A podel of Edge Localized Wodes (ELMs) in tokamaks is
presented. A limit cycle solution is found in time-dependent
Ginzburg Landau type model equation of L/H fransition, which has
a hysteresis curve between the plasma gradient and flux. The
oscillation of edge density appears near the L/H iransition
boundary. Spatial structure of the intermediate state (mesophase)
is obtained in the edge region. -Chaotic oscillation is predicted

due to random neutrals and external oscillations.
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¢l Intreduction

Edge Localized Modes { ELMs ) are known fo be regularly
cbserved phenomena characterized by the sudden drop of edge
density/temperature with the burst of the particie/heat during
the H-phase in tokamak plasmas. When the density/temperature
near the plasma edge exceeds a certain threshold value, L- to H-
mode transition takes place.l) In some restricted parameter
space of the H phase, ELM activities appearZ). The ELMs have
shown the variety of their appearance. Single giant ELY¥ takes
place in an irregular manner in timez_5), big ELMs or small ELHs
or grasgssy ELMs reveal with a periodic oscillation of H, burstsﬁ),
and sometimes their mixiure appears irregularly.2'7) Their
occurrence is up to now unpredictable in experiments. Among
pericdic oscillations of ELMs, giant-EL¥s and small-ELMs have
similar ratio between the period of the ELM and the duration of
each burst, which is of the order of 10, and the associated
energy loss ralio is also of the order of 108). In grassy-ELks,
a different kind of oscillations has been observed. The period
and the duration of the burst have similar Valuesg). The grassy
EL¥s are known to appear near the L/H transition boundary.

The comparison study with critical-g analysis due to MHD
ballooning modeB} nas been applied to explain the ELUs. However
the analysis has shown that the onset of scme ELMs occurs below
the threshold value for the s-1limit. Resistive MHD analysisg) on

surface peering mode may explain a part of ELMs, however the



assumed current/ pressure profiles are not yet experimentally
identified. Furthermore, there remains a guestion why the
structure of asscciated fluctuation/transport is insensitive to
the surface q value and current profile; the period of the Grassy
ELMs is left unsolved., A model of ELM as a cyclic oscillation
between L and H phases due to impurity accumulation has been
proposedlﬁ), Up to mow, however, the impurity accumulatiomn is
considered to be the associated phenomenag’ill

Based on the bifurcation theory on the L/H transition12-15)
we have proposed a2 new model theoryle) of grassy-EL¥s
observed in JFT-2M. The L/H transition has been observed to have
a hysteresis curve between the thermodynamlc force such as
density/temperature gradients and associated flows.l’g)
Theories!2 197 could predict the sudden L/H transition. The
radial electiric field (in other words, induced poloidal rotation)
plays a main role in theories to cause a bifurcation in the
radial flux., ZExperimental observationsIT_lg), confirmed changes
in poloidal rotation and radial electiric field associated with
L/H transition. We extend the model theory in Ref.[12-15] to
include the time dependence and spatial diffusion. The electric
field is used in analysis, but similar argument is possible im
terus of rotation. DBased on the previous models we employ the
model S-curve in phase diagram of the density gradient and the
particle flux. We neglect the effect of temperature gradienti and
consider the case of unifore femperature, since the
characteristics of ELMs discussed here is 1nsensitive to the

heating power. The periodic occurrence of the burst of the loss



flux from the plasma boundary is predicted by this model. The
period of the oscillation, the ratio between the spike widihk and
period, and the region of periodic oscillation in the parameter
space are siudied. The characteristic nature of the grassy ELKs
are confirmed by the model. The radial structure of the
transport barrier is investigated, and the important reole of the
ion viscosity (shear viscosity) is predicted. If the diffusion
Piandtl number is large, a thick traasport barrier 1s established,
which gives a better -enhancement factor for the global energy
confinement time. The change of the radial eleciric field at the
L/H transition condition is rapid compared to the plasma
parameters. Although rapid it is, there still exist a fimite
delay time in the response of the electric field and transport
coefficient. The effect of this time delay is also analysed.
The influence of the temporal variation for the source term is
analyzed. If the source term contains a random component, the
oscillation period can be chaotic. When the source includes a
oscillation component, the fregquency of which is close to the
natural oscillation period of the plasma loss, the model locking
of the oscillation to the external freguency appears. Also the
region of the oscillatory solution is expanded. This suggests an
experimental method to control an H-mode with favourable ELK
oscillations.

The construction of this article is as follows. In § 2, the
nodel of the analysis is discussed. The extension from the
previous analyses is shown. In §3, a heuristic argument is given

using a zero-dimensional model for the density evolution.



Various characteristic oscillations are found. In §4, the one-
dimensional transport eguation is solved. Temporal and spatial
evolution of the transport barrier is studied. Summary and
discussion is given in final sections. Derivation of the model
equation is presented in the Appendix A. Transient response
associated with the L/H transition is studied briefly 1n Appendix

B.



$2 The liodel

We conslder the thin layer near the plasma boundary of
tokamaks. We take the plasma with one species of ions. The
characteristic thickness of this layer is several times of the

ion poloidal gyroradius, o so that the bipolar particle fluxes,

o’
which are driven for instance by the ion loss cone12’14) and the
convective loss of drift wavelz} or the bulk ion Viscosity14),
plays an iazportant role in determining the tramsport coefficient.
The bifurcation of the radial electric field structure as well as
of the transport coefficient (ratio of the particle fluzx T to the
density gradient} has been predicted. <Critical conditioan for the
bifurcation is given in either the critical density gradient for
given collision frequency'2-13) (as is Fig.1) or in the collision
frequency for given gradient14).

e study the dynamic evolution of the density/electric field
profile and transport coefficient in this layer. TWe fake a sliab
nodel of this region, and specify the particle fiux from the core
plasma. This particle flux can be dependent on the transport
processes in the edge layer of our interest, because the partiicle
source is influenced by the outflux to the wall. (Such is often
the case in actual experiments.) However, in order tfo
investigate the intrinsic properties of the edge plasma, which by
itself generates the selfsustaining oscillations, we assume this
source flux from core to be an independent constraint, The sanme

argument applies to the plasma in the scrape-off-layer (Sol), and

we assume that the boundary condition at the plasma/Sol, interface




is also an independent constraint from the dynamic evolutionm in
the layer of our interest. We do not specify the thickness of the
layer at this moment, and look for the selfsustainiag structure

of the oscillation, which does not depend on the choice of the
thickness of the layer. This consideration is proved by the
results.

According to the previous analyses, we assume that the
transport coefficient in this layer has the nature as shown in
Fig.1 that the charge neutrality conditionlz’IB) (or 1n other
wvords the force balance equation in poloidal directionl4)) shows

the bifurcation nature when the gradient parameter
A= pprn/nl

reaches ecritical values Ay and Ag. The critical values are the

functions of relative loss cone loss rate
- 2
d = Ja/RDe/uipp

where a/R is the inverse aspect ratio, D, is the characteristic
diffusion coefficient in the L-phase (which is considered to be
anopalous, but we need not specify its characteristics here), ny
is the ion density, and vy is the iom collision frequency. ¥hen
the parameter d is small, the difference between x; and i

becomes large. Critical gradient parameters 2 and Ag come

closer if d becones smalllsx

The development of the plasma parameter is described by the



continuity equation

an 3 an
—_— = —D(Z)— (13
at ax 8x

which assumes that the particle source in the layer can be
neglected. Further assumption is that we neglect the effect of
the temperature gradient. The layer of our concern is thin so
that the slab model is used in solving the transport equation.
In order to describe the temporal and spatial development of the
radial electric field and asscciated transport coefficient, we

introduce the equation describing the radial electric field as
£ &g aEr(r,t)/at =
enje,L-vi/R7a Ty + wVECE /Bvpy) ] (2)

where ¢ 1is the perpendicular dielectric constant of the
nagnetized plasrea (ai = I+C2/VA2; v4 1s the Alfven velocity and c
is the speed of light) Jp 1s the normwalized radial current (the
amplitude of which is of the order of unity), vp; 1s the ion
thermal velocity, Bp is the poloidal magnetic field and p; is the
shear viscosity., The current Jy is not a wmonctonous function of
E. and causes the bifurcation. The explicit form of Jy depends
on the choice of the physics processes causing the bipolar

fluxes, and i1s discussed in the Appendix A. The ion shear

viscosity By dictates the spatial structure of the established



radial electric fieldze), and hence that of the tranmsport
barrier,

¥e in this article are inferested in understanding the
qualitative nature of the dynamics, so that we choose a simple
analytic form for J,. As is shown in Refs. [12-15], the explicit
forms of Jy and &) o[d] depends on the modeling of the bipolar
fluxes, but the characteristic nature of the transport, that the
particle flux can take multiple values as a function of the
gradient, are generally derived. We, therefore, discuss the
nature of the edge dynamics which 1s not constrained by the
particular choice of the physics modelling of the bipolar fluxes,
For that purpose, we choose a simple S-figure curve which is

described by the cublc equation as
Jp(Z:g) - g-ggtleL®-od], (3)

as 1s discussed 1in the Appendix A. In this symbolic

representations, Z is the aormalized radial electric field,
7 =C Erpp/Ti - ZO’ (4)

where the coanstants C and Z0 are introduced in order to take this
cubic form. [The parameter (&, 8) are introduced to simulates the
fact that, as in Fig.1, the critical point A; and iy depends on
the parazmeter d (i.e., the relative ratio of the ion loss cone
loss). The manifold Z(g) is tightly folded as in the case of

small d in Fig. 1. The sharpness at the ridge points X and Ag



can also be adjusted by parameters (a g). ] The parameter g,
which dictates the jump of the diffusion coefficient, is defined

as

g = ppn’/nu*, (5)

and g, 1s a parameter to denote the point of inflection in the
curve of T({Van/n|). The normalized collision frequency v, is the
ratic of v, to the bounce frequency of ions. The relation
between the radial electric field and transport coefficient D =
|ITn/¥n| is assumed to be a simple form as D e 7 or

D(Z) = (D

*Dpig0/2 ¢ (D )/2-tanhZ, (8)

nax pax Pmin

In the normalized form Fg.(2) reduces to

az ) a7
g —= ~(Dg/de, ™Iy (Z5e) + ) — (1
gt ax
where the coefficient & is defined as
_ 2,.2 2,08 _ 2 /n2
£ (I4v,%/c )Bp /B¢ =~ Bp /B, (8)

The parameter & indicates 2 small coefficient showing that
eq. (2) has faster time scale than Eq.(!). The parameter regime
of our interest 1s 4 ~ 0{1). The characteristic time scale in

Eq. (1) and the operator uiVZ is of the order of De/ppz in case




By and Dy have similar magnitude. Soluticns Z{g) irn L and H
phases for the point node1!2719) yere given by J.(Z;g) =0. The
curve of D(g), which is determined from the relation J.(Z,g)=0,
for the given value of g4 is shown 1n Fig.2. The large D and the
small D branches correspond to the L and H states, respectively.
The transition from L to H or H to L occurs at certain values of
¢ (A=B [L-H] or B"=4" [H-L]). The curve can be defined on each
radial point, and the radial and temporal structure Z(x,t) is

obtained in the folliowing analysis.

The relation between the parameters (&, 8) and plasma
parameters depends or the physics modelling on the radial
current. If we take the model in Ref. [18], we have an

approximate relation as

o = 3(1-d)/2(i+d), 8 = o/3 (95

and

Dyay = O Dpip 0. 05. (10)

The interpretation is possible using this approximate relation.

(8ee Appendix A.)D



83 Zero-Dinensionzl lodel

In order to have an insight of the ELM physics, we first
develop 2 model of edge plasma dynamics based on the point model
(i.e., zero-dimension in space). The model equation which
describes the temporal evolution of the edge density is discussed
in the appendix A. We ir this chapter employ the model equation

which is given as
dn/dt = 8§ - T n (10)

where 1 is the edge density, S i1s the source and T is the rate of
the loss. The loss rate 7 is the nultivalue function of n, and

is modeled as
e [d1/dtl/7p? = (n/ng-1) - (aCe/7y-1% - alv/7y-1)]. (12)

This model assumes that the higher density leads larger loss
rate, and the lcwer density gives smaller loss rate. Since we
are treating a simplified one dimensional model, smaller edge
density implies that the plasma is less collisional for a given
edge gradient. For fixed gradient, the less collisional sate is
attributed to the H-mode according to the theoretical
modelslz'lB). [The edge gradient plays the fundamental role in
determining the transport coefficient associated with H/L

iransitions. The relations with the spatial structure is

discussed in the next section.] The parameter &, which is much



smaller than 1, indicates that the time scale to recover the
charge neutrality is nmuch faster than the transport time of
density. The normalizing density and loss rate, g and 7y
correspond tc those in the typical values of L-mode. The
parameter To_l has the dimension of time. This is the
characteristic diffusion time in the layer of our interest in the

- 2
L-phase, De/Pp

For the simplicity of the argument, in the following we

normalize n, t, S and 7T as

n/n0 -1, 7Ty oot S/nOT0 » 8, and T/TO 5 T, (13
Equation (12) 1s rewritten as

e dv/dt = F(n, 1) (14-1)
with

F(n,1) =1 -1 - 8(r-1)% + alv-1). (14-2)

This sei of equations 1s used to study the dynamics
associated with L/H iransitions and spontanecus oscillation,
i.e., ELMs, in the zero-dimensional model. The form of Eq.{12-2)
is simplified compared to Eas. (3) and (6}, This simplification

does not cause qualitative difference.

$3.1 Oscillation Sclution




We first study the nonlinear oscillation in the presence of
the static source and in the limit of so time delay, i.e., & - 0.
The set equationms (11) and (14) are solved with the condition S is
constant in time.

In the zero & limit, 7 is solved as a function of n through
the relation F(n,v) =G, Multiple solution is possible for
positive values of « as is shown in Fig.3. The parameter o
dictates the range of multiple values. If & is a small positive
value, then L takes the multiple value in the narrow region of n.
If, on the other hand, « becomes large, the range of n for the

2ttltiple solution extends wider. At the bifurcation point where

n = 1, holds,

ng = 1t (2a/3)(a/38)1/8 (15)

the derivative of 7 with respect to n diverges, and the jump

between branches occurs,

Nonlinear oscillation sclution for n is obtained. Figure 4
illustrates a typical exampie for the evolution of density ang
loss flux (vn) for the parameter of ®=0.5, g=! and S=1.

Pulsative solution for 7an is obtained. Figure 5 shows the
frequency and ratio of the H-phase duration to the period, 7, as
a functicn of source S. Oscillation solution appears in a
limited range of the parameters. The value 7 is discontinuous at
the onset parameter for oscillations. The normalized frequency

of the oscillation, f, is inversely proportional to &« and can he



approxinated as

f ~ 3/5¢ (for s=1 and §=1). (16)

The boundary for the oscillation solution can be obtained

from Bgs. (11) and (14) as

8 <8 <8y (17>
where

§; = (1-/&73p)[1+(2e/3)/a/3 6], (18-1)
and

S = (1+/a/38)11-(2a/3)/a/38]. (18-2)

Below this limit Sl’ solution converges to the low flux solution,
i.e., statiomary H-phase. On the contrary., beyond the critical
value 82, the solution merges to the high flux solution, (L-
phase). In order to have the oscillation condition, in other

words to satisfy SI < 82, we have the condition for o« as

0 ¢ o < 3/48. (19D

If o is large and Eq.(19) is not satisfied, then the oscillation

solution does not exist. The high-flux branch (L-mode) directly



continues to the low-flux solution (H-pode) at a certain critical
value of 8§.

This result is interpreted as distinction the transition
nature by the plasma parameters. As is shown in Fig.1, the
difference between A; and Ay is small for large d. This case
corresponds te¢ the smaller value of &« From the dependence on «
we see that. the selfsustaining oscillation can be possible near
the L/H transition boundary for the case of larger value of 4.

On the contrary, if the parameter d becomes small, (i.e.,
nodelled by larger value of &), the L-region in parameter space
is directly connected to the H-region, without passing through

the oscillation regime (i.e,, Grassy ELM regime). In the

following of this secticn 3, we take g=1 unless specified.

§3.2 Effect of External Noise

The source term can contain noises. In actwal situations,
the particle flux from the core plasma to the surface is not
constant in time but contains noises. The density fluctuations
near boundary affects the rate of ionization as well as the
magnitude of impinging neutrals from scrape-off layer. These
time-fluctuating contribution of the particle source is modelled,

and we write

S = Sg S (20)

where SO is constant in time and S is assumed to be random. For




the simplicity, we assume that the fluctuation part is Gaussian
noise. It is characterized by the average amplitude, <82y and
the standard deviation s.

In numerical calculation, we take the assumption that the
time integral of S from t to t+At is given by the Gaussian

distribution, the average of which 1s £_ and the standard

r
deviation of unity (the suffix r denotes 'random™).

The resultant oscillation contains random component, so that
we evaluate the average frequency <f> and the standard deviation
s of oscillations. ¢ is defined as /<(T-<T>)2>/<T> where T is
the period of the oscillation. Figure 6 illustrates a typical
example. The oscililation regime in S-variable extends to lower
and higher values of 34, and ¢f> continuously reduces to zero for
SO<SI or SO>82. The effect is small for the region of Sl<80<82.
In the parameter regime where oscillation becomes possible due to
the noises, the standard deviation ¢ is a decreasing function of
{f>., Approximate relation of & = <f>_0'74 1s obfained for e=0.5
and SD(SI' Figure 7 shows a tvpical example of the oscillations.
The period of the oscillation is not constant in time.
Intermittency is seen in the appearance of the burst. It is
noted, however, the hight of the Burst is less affected and

remains 2lmost constant.
83.3 Influence of Externmal Osciliations

The fluctuation part of 8 is not necessarily noises, but can

contain dominant oscillation component. This is possible, for



instance, when the plasma is rotating and its shape is subject

to the helical deformation due to the kink/tearing mode. In this
case, the distance between the plasma surface and wall changes
oscillatory and, as & result of this, the plasma/wall interaction
periodically changes in time., causing the modulation of the
particle flux., There is other possibility that this kind of
regular temporal change is driven artificially. In order to
study the influences of low-mode-number MHD modes on the ELMs or
to investigate the method to control ELMs, the study on the
effect of external oscillation is important.

We take the model that S is given as

3 = Sg t epesin(2nft). (21D

Coefficients Sg, ep and Q are constant in tipe.

e first study the case that the external oscillation
frequency is close to the original frequency (i.e., that in the
absence of external oscillation), 2 ~ I. In this case, we find
the mode locking to the externally applied frequency. Figure 8§
shows the phase diagram in SU—sf plane. 4s s increases, the
region of oscillation solution extends to wider values of SO‘
The oscillation region is divided by three categories. One is
the "almost-unaffected region’, where the oscillation frequency
is preserved near the original oscillation frequency (the onme in
the absence of af), This region is localized to the small values
cf ep. The second is the 'locked region’, where node locking

(and harmonics as well) takes place. And the third is the




nenperiodic region.

The region, which 1s denoted as "17 in the figure, denotes
the mode locking to the applied frequency. In the periphery of
the oscillation regime, the period dcubling takes place, i.e.,
the frequency of the oscillation is one half of the zpplied ome.
One third or ome quarter harmonics is alsoc fournd. Figure 8(b)
indicates the detailed diagram. Example of time traces are shown
in Fig.9. In the case of harmonics, the hesitation is seen. For
instance, 1in the case of the double-period solutioas, the
hesitation and transition appear one by one. As in the case of
the noises, the hight of the burst is not influenced by in
comparison with the period. This is because the peak in the loss
is determined by the difference of the transport coefficient at
the transition point, which is not affected much by the external
oscillations.

Other characteristic feature is the solution with
nonperiodic burst. Ia between the "1° and "1/2° regions, there
is a regime of non-periodic oscillation. Pulses appears
continuously in time, but the distribution of the period have a
considerably large standard deviation.

e next study the case where the oscillation freguency Q is
puch smaller than the intrinsic frequency. In this case, strong
influence takes place near the oscillation boundary, SG o~ Sl’ 32'
Figure 10 indicate the standard deviation of the oscillation
frequency for the case of £,=0.05 and 3=1/2n.  Intermittent burst

of loss is observed as shown in Fig. 1il.



§3.4 Time Delav in Change of Transport Coefficient

The assumption of e=0 is idealized. The change of transport
coefficient from ome branch of solution F{n, 1)=0 ito the other one
requires a finite time. The finite time delay in the change of
transport coefficient reduces the regime of oscillation solution

We sclve Eqs. (11) and (i4) for given constant value of §.
Figure 12 illustrates the depeandence of the frequency on &. The
frequency f reduces as e increases, and the oscillation finally
stops when & reaches a critical value. Beyond this critical
value, the solution of Egs. (11) and (14) turns out to be 2 damped
oscillation, and the solution converges to the fixed point in the
twe limit. For small but finite value of e, the boundaries S1
and 32 come closer. It is alsoc noticed that the value 7, ratio
of the period of the H-phase to the oscillation period, shows
weak dependence on S.

This critical value carn be calculated by studying the
stability near the fixed point. If we write n and 7 in the

vicinity of the fixed point as

p =Y+ u (22-1)

T = Y + v, (22_2)

where (X,Y) satisfies

Y - 8§ =0 (23-1)



FCX,Y) = 0. (23-2)
Linearizing Egs. (11} and (14) in the small u and v limit, we have
du/dt -X -Y u
- (24)

dv/dt 1/e (oat3-3Y)/e v

The eigen values A of the matrix i1a the right hand side of Eq. (24)

is given as

A= [(wt3-3Y)/£1/2 + /?(u+3-3¥)/s+¥]2 -4%/¢ (25)
This result gives that the fixed point is stable if
e > (e43)/Y-3, X > Y(wt3-3Y) (28)

is satisfied. If the fixed point is siable, oscillations decays
in time, and converges to the fixed point. Substituting w=0.5
and S=1 (X¥=Y=1), we have £>0.5 for the stability near the fixed
point, confirming the disappearance of the oscillation solution
in Figure 12. Oscillatory soluticn is obtained for &<0.5.

Figure 13 illusfrates the trajectories near the boundary £=0.3 in

the case of o=0.5 and S=1.



84 Transport Hodel for ELls

¥e develop the one dimensional transport model for the ELK
oscillations. The temporal evolution, which was obtained by the
heuristic argument in 82 are confirmed. In the one dimensional
analysis, we can clarify the spatial structure associated with

the periodic transitions beiween H and L- phases.

§4 ! Model Equations

Model equations consist of the radial transport eguation of

the density n with the effective diffusivity D, and the diffusion

equation of the normalized radial electric field (or poloidal
rotation )} Z with the viscous diffusivity u. The effective
diffusivity D, which is a function of Z, can have multiple
values. The basis of this model equation is-discussed in the
appendix. Diffusion Equations contain a nonlinear force with

respect to the density gradient aad are given as

an 8 on
— = D — (27)
at ax 8x
aZ 327

e — = -N(Z;g) + p—, (28)
at ax2
N(Z.g) = g-gq+[pZ°-02], (29)

and




D(Z) = (D, t0pip)/2 * (DypyDpig)/2-tanhi (30)

In writing explicit forms of N and D, we normalize as
X/Pp = X, D/DO -3 D, d]-li/DU < M, tDo/sz - t, and rpp/DOIlO ~ I'.

The normalizing density g is chogen so as to satisfy g0=1 and ¢

= 3n_2(dn/dx). fe use the relation
e - d(e/oy)? (31)

noting v,<<c. The normalizing parameter Dy is the typical value
of the diffusion coefficient in the L-phase. The coefficient g
is the diffusion Prandtl number Py dictating the profilezl).
Parameters gy, o 8, Diax’ Pmin and u are treated as constant.
Equation (28) is a kind of time dependent Ginzburg-landau
equation or the one which is used to analyse the reaction
diffusion system ir chemical reactions. The system contaims so-
called slow manifold structure due to the assumption with respect

to the time scales.

§4 9 Periodic formation of the Transport Barrier (e=0 case)

We first take the condition that e=0 (i.e., 3Z/at = 0) to

solve the temporal evolution of the density.



The region of our irterest is a slab near the plasma edge,
-L<x<0. As the boundary condition at the plasma edge (x=0), we

impose the constraint that

(n'/n)anb = const., {at x=0) (32)

is used. In the following we mainly discuss the case of a=1 and
b=0. This simplified form is approximately reproduce the two-

dimensional analysis in the scrape-off layer plasmazz). For the
boundary condition at the core side (x=-L), we give the particle

flux as

r-ror... (at x=-L) (33)

Solving Eqgs, (28) and (29) we find the state with the periodic
oscillaticns of the edge density a, and the loss flux oyt 1D the
restricted parameter space between the L and H phases. (Fout is
defined as the particle flux at x=0.) In Fig.14 (a), (b) and (c),

show the temporal evolutior of the edge density and T which

out’
corresponds to the origin of the Hm burst in experiments. The
parameters are; g0=1, a=0.2, p=0.2, Dmax:3’ Dmin=0.01, p=1,

r, = -n/n’ (at the edge) (34

is chosen as 1.25, and Fin = 3.
The existence of intermediate state of L and H phases is

seen in the radial siructure of the density and the effective

we




diffusion coefficient. Im Fig.14 (d) and (e}, itheir radial
structures are shown at the time of good confinement and the poor
confinement. The temporal-spatial developments of the density
and diffusion coefficient are shown by the bird s eye view in
Fig. 14 (f) and (g).

These oscillating solutions are possible in the intermediate
state between L and H phases, and are attributed to ELMy-H mode.
The time averaged density is somewhatf between the one in L phase
and the H s. Figure 15 illustrates the frequency and the average
ratio of H-phase period (7-value) as a function of T; . The
result is similar to those in a simple zero-dimensional analysis.

Figure 16 shows the phase diagram in Tin—r plane. Three regions

n
are identified; H-region, L-region and ELY¥ region.

The parameter region in which the EL¥y-H mode appear is

found to be
Dy/gy < TynTol < Dy/ey. (85)
where
g,= 2,-28(a/38)%72, (36-1)
gy 2028/ 38)°/ 2, (36-2)
D, =D(Z=/e/38), (38-3)
and



Dy=D(Z=-/a/38). (36-4)

In this parameter regime, the cross point of the curve of
hysteresis and the g value at the edge becomes unstable and the
solution of the limit cyclie on g and D space (see Fig.2) appears.

Vhen rin becomes large so as to satisfy
r. r. 25 Dy/e (37)
in‘n M =N

we find the stationary L state: and the H state with large

density gradient is found in the parameter region
r. r.2 <D /g (38)
in ' m n’eg-

Therefore the ELM¥y-H state found here is the mesophase of L and d

phases, If the condition

holds, no oscillation is allowed. In such a case, direct
transition form L to H phase (or vice versa) when I'., changes.
This result confirms those 1n the zero-dimensional
modelling. As is shown in Fig.1, the differeace between Ay and
A9 is small for large d. The selfsustaining oscillation can be
possible near the L/H transition boundary for the case of larger

value of d. In addition to it, the transport analysis yields the




new constraints on the gradient near edge. The sharpness of the
edge gradient at the plasma/Sol interface affects the appearance
of the ELV¥s. On the contrary, if the parameter d becomes small,
(i.e., modelled by larger value of o), the L-regionm in parameter
space is directly connected to the H-region, and even the
overlapping of them occurs. The transition between H and L phase
takes place without passing the oscillation regime (i.e., Grassy

ELM regime).

$4 3 Structure of Transport Barrier

Transport barrier is formed in a phase of density rise,
Smooth change of D is formed due to the viscosity p20). The

ihickness of the barrier, A, is estimated as

A~ /2Bn/u (40)

in the small p limit. Numerical calculation gives Amn0'44, as
shown in Fig.17. confirming this analysis. (This numerical
result is obtained in the situaticns where L satisfies L>>4, so
that A is not limited by the computation region.) In this
region, -A<x<0, there exists the poloidal rotation. The radial
width A is different from the width of the density inversion
region,

We study the parameter dependence of the period z of the
oscillation. Results are i1llustrated in Fig. 17(b) and 18.The

numerical computation gives



-1
7 = CarnADu , (41)

where C is a numerical coefficient of the order of unity. A4s is
shown in Eq. {32), T, is bounded in 2 narrow region to realize the
oscillation. If the ratio rnz/DM and other parameters are fixed,

we have

G. % (42-1)

?."XDH
in a wide range of parameters. On the other hand, if the ratio

l"inrn2 and other parameters are fixed, we have

-0.5 .
Toc I'ln . (42 2)

Figure 18 shows that the oscillation is generated by the periodic
establishment and decay of the transport barrier, the thickpess of
which is determined by the viscosity. If the layer of the
analysis L is much longer thanm A, L does not effect the
oscillation frequeacy. The transport in the layer of L does not
give the characteristic time scale. This provide the basis, a
posterifori, that the specific assumption for the core plasma is
not necessary in developing the modelling of ELMs of our interest.

The ratio of the time interval of good confinement Ty to T,
n=fH/r, represents how the mesostate is close to the H-mode. (Iz
the H-mede, 7=1, and %=0 for the L-mode). TIn the region of

Eq. (32), % takes intermediate values between one and zero. 7 is



2

a decreasing function of rinrn ,

and 1s discontinuous ati the
boundaries Dm/gm and Du/gﬁ. For oscillating solutions. W takes
largest value
- 2_

M= Mgy 2t Typrp D /gy (48)
Tnax increases and approaches {o unity if Dm becomnes closer to
Dmin' This is confirmed by reducing o as keeping the ratio as/s
constant (i.e., reducing DIn to D

by taking w=0.2 and s=a3, n can be greater than 0.95, 1i.e., the

nin by fixing gm). For instance,

period is 20 times longer than the pulse width. (See Fig.19.)

$44 4 Bffect of Time Delav in the EBesponse of D

The finite time delay in the response of diffusivity im
jumping at the critical value of g gives rise to the damped
oscillation and reduces the range of the stationary oscillation
regime.

Example is showa in Fig.20 wiih various values of & and
other parameters are unchanged. As ¢ increases, the change of
the flux becomes diffused. This is the same as in the simple
argument of the zero-dimensional wmodel.

In obtaining the spatial structure of n and D, we see that
the qualitative character, such as the thickness of the transport
barrier, does not change compared to the case of the zero ¢
limit.

For the parameter of our interest, & is of the order of



(P/Pp)z. i.e. order 1/1006. Therefore, the analysis with e£=0

provides a sufficiently good approximate solutions.



$5 Suppary and Discussion

In summary, the theoretical model of ELMs are developed by
extending the bifurcation model for H/L transition to the time-
dependent diffusive media near tokamak surface. Time-dependent
Ginzburg-Landau model eguation with spatial diffusion is applied.
A periodic solution of the plasma density and outflux is found
recovering the sequence of the burst of plasmza loss.

The transition has the nature that the tramsport
coefficient changes very rapidly at the critical condition for
plasma parameters. This nature leads a sharp rise of the loss
flux in each period of oscillations. The loss rate then reduces
slowly, with the time scale of L-mode transport, according to the
gradual change of the edge plasma parameters. As the plasma
parameter changes far enough to encounter the tramsitiom condition
to the good confinement states. This wmodel reproduces the
oscillations in which the decay time of the loss and period are
comparable. The region in which this nonlinear oscillation
cccurs is identified in the parameter space; oscillations appear
near the H/L mode boundary. These features are consistent with
experimental observations of the Grassy ELMHs. In addition fo
them, this model also predicis that, at the end of the each
burst, the sudden reduction of loss occurs. This awaits an
experimental confirmation, which would be possible by careful
study on the energy deposition ontc the divertor plate with high
time resclution. (The observation on the H,/D, line would not

be suitable for this examination, because this intensity may be



prolonged by the recycling .)

The mesophase is found near the plasma boundary. The width
of the tramsport barrier was found to be proportional to JPD.

The fregquency of the sequential burst of losses is characterized
by the time pPZ/DO and the numerical coefficient characterizing
the nonlinear potential., Also the parameter dependences of the
period and "H-ness” 7 are studied.

This study shows the important role of the diffusion Prandtl
number in determining the temporal/spatial structure of the
transport barrier. When the thickness of the transport barrier
is larger, the better enhancement in the global energy
confinement time is expected23). The viscosity near the plasma
edge requires future analysis in order to provide more dependable
picture of the ELMs.

The occurrence of the periodic transitions between H and L
states are anticipated in the presence of impuritiele). It is
shown that the periodic oscillation is possible even in the
absence of impurities. The inclusion of impurities would gives
rise a further variety in the oscillation phenomena in ELWs.

This reguires a further research. The analysis in this article
1s developed using a simplified analytic form of the transport
coefficient. If one employs more exact form of D[g] as is
preseated in Appendix, absolute values may change (e.g. for the
frequency, 7-value and so on.) However, the qualitative nature
of the nonlinear oscillation and parameter dependences such as on
the viscosity or times scales does not alter

The present analysis on the zppearance of the self sustained



oscillation clarifies the exvected parameter region for the
continuous small EL¥s. The importance of the parameter d =
De/vippz is found. If we employ the model in Ref.[18] for the
radial current, then the condition for the eoscillation, DH/gH >

Dn/gm, is rewritten as (using the relation between & 8 and d),

d > 0.22.
¥e have

0.2 < d <1 (Grassy ELMs)
0 < d < 0.2 (hard L/H transition).

If this parameter d is large, then the difference between iy and
Ag is small., In such a situation, the selfsusfaining oscillation
can be possible near the L/H transition boundary. In addition to
it, the transport analysis yields the new constraints on the
gradient near edge. The sharpness of the edge gradient at the
plaspa/SoL interface affects the appearance of the ELMs.

Noticing the parameter dependence of d, we see that d increases
if the edge diffusivity D, increases and other parameters are not
changed. This would be one of the origin of the expansion of the
Grassy ELM regime under the Ergodic Magnetic Limiter. The proper
range of enhancement of the electron loss in the L-phase is

helpful in achieving the BLUs in wider plasma parameters. Omn

the contrary, if the parameter d becomes samall, (i.e., modelled



by larger value of &), the L-region in parameter space is
directly connected to the H-region, and even the overlapping of
them occurs. The transition between H and L phase takes place
without passing the oscilliation regime (i.e., Grassy EL¥ regime).
The transition to the H-mode in this occasion is often triggered
by heat pulses. V¥e simulate the transient phencmena in Appendix
B.

The roles of fluctuations in the source flux or external
oscillations are also studied. It is found that they cause the

chaotic oscillaticns of o and T They also extend the region

out-
of ELMs to the wider segment in the parameter space. It is also
noted that the hight of the burst in loss is not affected much by
the introduction of the temporal variation of the sources., The
period is much more influenced. This nature can be compared to
the experimental cbservations. In the case that the external
oscillation amplitude is large enough, the oscillations, the
frequency of which is locked to the external one, appears in the
wide parameter ramge. This would provide an experimental method
to control the ELMs with favourable frequency (such as grassy
ELKs) under more general situations, not necessarily in the
vicinity of the L/H boundaries. The urgency to control ELMs is
now widely recognized. One candidate for the state with good
confinement, which is free from impurity accumulation and does
not yield a serious condition on the wall erosion, is an H-mode
with grassy ELMs. More theoretical and experimental research

would be requested to realize a dependable controlling method.
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Appendiz A: Hodel Eguation

In this appendix, we discuss the model forms of the
transport equation associated with the L/H transitions. The
present models on the L/H transition take into account the
bifurcation of the radial electric field (and associated poloidal
rotation). The radial current near plasma boundary can be

written as

Jp = Ty = Jorpit * Jeonv oy T Jox (A1)

where terms in the right hand side correspond to the currents
driven by the ion orbit loss, convective loss of drift waves, the
bulk ion viscosity, and the charge exchange loss, respectively.
(The suffix b indicates that the process is strong near plasma
boundary.) In order to study the radial profile of the radial
electric field, the shear viscosity is also important, and we

write

'}I' - ‘]b + JV (52)

where JV is the radial current driven by the shear viscosity,
The temporal equation dictating the radial electric fieid is

given as

e, eq dB /dt = - ], (43)




Using the E. and Er’ dependences of Jb' the theoretical
nodelling has been developed. First brief review is made. The
relation Jy = 0 was used as the basic equation to obtain the
multiple states associated with the L and H modes in a stationary
state. It has been found that the equation J,=0 gives nultiple
solutions, which allows the bifurcation, and that traasport
coefficient is the decreasing function of the electric field
inhomogeneity. When the radial electiric field piles up near tihe
boundary, the anomalous diffusion and the loss cone loss as well
as the bulk viscosity are reduced. The particle flux I'. and the
transport coefficient D, which is defined by -T/Va 1s calculated
as a function of the gradient near the plasma boundary. Figure
41 illusirates T and D as a functior of A=-pan. The solution of
the radial electric field is zlso obtained for the three branches
of the function YT(x), i.e., L-branch (large flux) H-branch {(small
flux) and intermediate (unstable) branch. The coefficient D is
an increasing function of the radial electric field. The
dependence of the critical gradient i, on the plasma parameter

has been studied. A rough estimate of the criterion is given as

for usual parameters. (d=Ja/RDe/uipp2_)
In order to have a physics insight of the dynamic problem,
which is the subject of this article, we here use a simplified

functional dependence for the curve of D(A). The nodel form for



D(A) is given by the implicit function
DEZ) = (DpaetPpig)/2 + (Dpag Dpig)/2etanhz (A5)
and Z is a solution of the nonlinear equation N(Z:g)=0 with
N(Z.g) = g-gq+laZ°-al]. (48)

and

g = da. (A7)

In this syambolic representations, Z is the normalized radial

electric field,

where the constants C and ZO are introduced in order to take the
form Eq. (A5). (C and Zy are of the order of unity.) The real
form D(x) is not exactly expressed by the cubic polynomial, but
this simplification can keep the qualitative nature of the
response function of T(x) and would be more suitable to study the
physics of the dynamic processes.

The nonlinear Equation N(Z;g)=0 is derived from the relation
Jy = 0 in the stationary limit. As was discussed, Jorvit: Jeony

and Ibv have nonlinear dependence on Er’ giving rise to the

nature of the bifurcations in T(Ai). For instance, Jorbit ig



approxigately given as

Jorpit = LCpnjviep/va/R] expl-7%). (49)

(CF is a constant of the order of unity.) From this

consideration, we model

Iy = I Ty(Zie), (410)
T, - N(Zig) (A1)

and the normalizing coefficient Jl‘ which has the dinension of

the current is given as

J; - CFniuipP/JETE ~ nv, (T/erB) (A12)

except a numerical coefficient of the order of unity. The shear

viscosity current is writfen as

‘]V =V [eppni/VTi]”iV(Er/Bp)’ (A13)

where By is the ion viscosity. Form these modellings on the

shape of the current, we rewrite Eq.(A3) as

S\
=

LA 5 2
g — = -(D_/de_ °) ], (Z;8) t g,
at ¢ P D ! 3x

|

(A14)

[l



where the coefficient & is given as
e = (l4v,%/c2)8,2/82 o 3 2/32 (415)
The density develops according to the continuity egquation as
dn/dt = VD[Z;g]ivn (4186)

For usual plasma parameters, we have £ is of the order of 1/100.
The relation between the plasma parameters and model
coefficients (o, &8, Dmax, Dmin) can be made if the physics model

on the radial current is chosen. As an example, we study the

case in the model of Ref.[13]. In this model, relations

Ao 174, (A17-1)

and

Xg = const (A17-2)

holds as a rough estimate. At the transition point, A and Ao,
the flux T is a weak function of d. ¥e therefore have the

estimations

il

gy = 2/(1+d), (418-1)

]
il

p = d/(1+d) (A18-2)




and

Dpay = & (A18-1)

=
1]

aig = 0.05. (A19-2)

There is a free parameter in the relation betweer (& 8) and d.

One candidate 1is

a0 = 3(1-d)/2(1+d) (A20-1)
and

g = (1-d)/2(1+d). (A20-2)
If one uses the other model for J . parameters (e, B, Dyay and
Dmin) have other dependence on plasma parameters.

Much simplified analysis is performed by making the zero
dimensional model. If one integrates Eq.(A16) within a thin

laver near the edge, -L<x<0 (x is the distance from the edge), we

have

du/dt = T, /L + DVa/L (421)

where the over bar denotes the spatial average, and rin is the

flux at the location x=-L. The loss time T and the source term S



are introduced as

-DVa/L, (422-1)

_%
[}
1t

$ = Ty, /L. (A22-2)

By this notations, we have a2 model equations for ithe zero-

dimensional analysis as

dn/dt = 8§ -Tn (A23)

where T has the same characteristics of the nmultiple states as

the transport coefficient D,



Appendiz B: Tramsieni Process st the L/H-Transitien

This formulation of the transport property near the plasma
edge can be applied to the transient processes at the L/H
transition. The zero-dimensional model is used to show an
example of the transitionm triggered by the short pulse, In
experiments, at the plasma parameters which is close to the L/H
transition boundary, the transition is often observed to be
triggered by a short pulse such as the heat pulse by the sawtooth
crash. VWhen the plasma parameter is not close enough to the
boundary, such pulses cam cause the short H-mode. These
phenomena are simulated.

Zero-dimensional model is soived for the parameier of a=1.5.
In this case, the difference between n., and L) is large, so
that the region of H-phase directly connects to the regionm of L-
phase as a parameter of S. ¥We choose two neighbouring values of
§: 0.5 and 0.51. For the case of 8=0.5, two stable states (one
is with large v and the other is with small 1) exists. ¥e take a

simple exanple of favourable pulse that

SO t<10 or t>106.5

S = (B1)
Sp/2 10<t<10.5 .

Figure B1 illustrates the results of 80:0.75 (a) and 0.765 (b2.
(Parameter & is taken to be 1/20, a=1.5, B=2.0.) In the case of

Fig.B1(2), the short pulse kick the plasma into the state of H,



and the plasma remains in the H-state after the pulse goes away
and the flux comes back to the criginal value. On the contrary,
1f the parameter is a little bit away from the tramsition point,
in the case of 80=0.765, the pulse gives rise to the short period
of H-states, but the states collapse and back to the L-state after
the pulse passes away. The short H-phase, which ends with one
burst of loss, is caused by the short pulsative change in the

flux from the core plasma. The duration time of the short H-
phase is much longer than the pulse width. It is determined by
the cycle time of the trajectory in Fig.Bi(b).

This result explains the effect of heat pulses near the L/H
transition. As the parameter approaches ito the transition point,
according to the ASDEX or JFT-2M reports, short H-phases appear
associated with the heat pulses, and finally the heat pulse

causes the iransition to the stationary H-phase.
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Fisure Capiions

Fig.1}

Fig.?2

Fig.3

Fig. 4

Fig.5h

Normalized particle flux T as a function of the
gradient parameter A for various values of d. The
pomentur loss by neutral particles is not taken into

account. {Quoted from Ref.[ls} with corrections).

Nodel of effective diffusivity D (i.e., ratio of the
particle flux to the density gradient) as a function of
gradient parameter g. See text for the definition and

normalization. (e=l, B=i, D D

pax=3" Jain~0-1 gg=1).
¥odel of the loss rate as a function of density in the
zero-dimensional model (solid line; «=0.5, B=1.0).
Dotted linme indicates the line of constant loss
(example of vm=1). At critical values of S,

transitions occurs.

Example of the time trace of the density (a) and loss
(b) (zero-dimensional model). Parameters are S=1.90 and
a=0.5 (B=1, €=0). Normalized values are plotted,
Periodic oscillations are recovered, which are
characterized by the sharp burst of the loss. <{(c)

shows the trajectory {(m, 7Tn).

Osci'lation frequency f as a function of §, (a), and



Fig. 6

Fig. 7

the rate of H-phase to the period 7, (b) zre shown,
Parameters are o=0.5 g=1, and &=0. Discontinuous

change appears at S1 (~ 0.87) and 82 (~ 1.21).

Average oscillation frequency <f> and standard
deviation ¢ in the presence of noises. Noise amplitude
is chosen as £,=0.05. Other parameters are a=0.5 g=1
and e=0. Frequency in the absence of the noise is also
plotted (dotted-dashed line), showing that the effect

is spall for the parameter 81<S<82.

Typical example of the time trace in the presence of

the noise. (SO=O.61, e,=0.05, «=(.5, g-1).

Phase diagram in the presence of the external
oscillation in the source is ploitted on the plane of DC
corponent SU and oscillation amplitude eg. Fregquency
of the external oscillation is fixed %o be D=1. and
(e=0.5, g=1). Mode locking is found in the wide
parameter regime., Locking to the subharmonics is also
found. Numbers j/k (such as 1, 1/2, 1/3, 2/3, 8/4 «<«+)
indicates that the mode locking with j/k harmonics to
the external frequency occurs in this region. Expanded
dizgram is givem in (b). Original oscillation prevails
in the dotted region. In shaded area, random

oscillation takes place.




Fig. 9 Typical time traces for the mode-locked oscillatioms. Mode
locking to the fundamental oscillation (a) and to
subharmonics (b: 2/3 period, c¢: 1/2 period and d: 1/3
period). Paranmeters are £.=0.25, {-1, e=0.5, =1, and

S3=0.65 (a), 0.8l (b), 0.55 (c) and 0.505 (d).

Fig. 10 Effect of the low fregquency external oscillation.
Standard deviation of the oscillation period is plotted
for the parameters of af=0.05, =1/9nm and (e=0.5,

B=1).

Fig.11 Example of the time trace in the presence of low
frequency external oscillations. £,=0.03, Q=1/2m,
=0.5 and g=1. Intermittency of the bursts is
observed. Sy is 0.71 (a), 0.65 (b), 0.88 (c), 0.64 (d),

and 0.625 (e), respectively.

Fig.12 Oscillation freguency as a function of time delay e.
Parameters are S=1, «=0.5, and g=1. Persistent

oscillation is not possible for £>0.5.

Fig. 13 Trajectories near the stability boundary for S=1 and
(e¢=0.5, g=1). The stability criteria for the fixed
point is €=0.5. (a), {(b) and (c) shows cases of e=0.4,
0.5 and 0.6, respectively. In (a), limit cycle is
seen. In (c), orbits converge to the fixed point. (b)

corresponds to the marginal stability.



Fig. 14

Fig. 15

Fig. 16

Fig. 17

Temporal evolution of fhe edge density g {(a) and

outflux Fout (b). Parameiers are p=1, T 3, rn=l.25,

in

= B= 0.2, D =3, and D

Dax 2in=0-0L. Trajectory in (ns-

[,,t) space is given in (c). Spatial profiles of
density (d) and diffusivity (e). Time slice is denoted
by arrows in (a). Solid and dashed lines show before
the burst and end of the burst, respectively. Bird s
eye view for the developments of the demsity and

diffusivity are shown in (e} and (f).

Dependence of the frequency and 'H-ness’ parameter 7,
as a function of the source fluxes. rn=1.25, Fin=3 and

other parameters are standard as in Fig. 2.

Region of the oscillation solution. Parameter space
(Dyay T in(a) and D, -r_ in (b)) is divided into H-
phase, L-phase and Elmy phase. ELMy region appears
between those for H-phase and L-phase. At large «-
values, the H-regime directly connects to the L-reginme.

Parameters are as in Fig. 2.

The u-dependences ¢f the thickness of the transport
barrier (a) and fthe oscillation period (b). w=8=0.2,

and other parameters are standard values as in Fig. 14.

Dependence as A = 50-43 and 7 e p0-44 is

found, confirming the analytic estimates




Fig. 18 Gscillation period as a function of the layer width L.
Fhen the length L of the caiculation is much longer
than the width of the transporf barrier A, the
oscillation frequency is not influenced by L. (Other

parameters are standard as in Fig.14.)

Fig.18§ Example of sharp loss pulses, for which the pulse width
is less than 1/10 of the oscillation period.
Parameiers are a=0.2, B=m8, r,=0.45 near the boundary
between H and ELMy states. (Other parameter si same as

in Fig.14.)

Fig. 20 Temporal evolution of the loss flux in case the delay
time is lomg (e>0). Case of e=0.1 (a) is compared to
the case of =0 (b) and 0.5 (c}. If & is finite, the
oscillation frequency becomes small, and the pulse of
the loss is less sharp. In the case of (c), the final

solution converges to the L-state.

Fig. Al Relation between the flux, transport coefficienti and
radial electric field as a function of the normalized

gradient at edge. (See. Ref.[15].)
Fig. Bl Tepporal change of edge density and flux associated

with the short pulsative reduction of source flux 1n the

period of 10<t<10.5. Parameters are a=1.5, 8=2.0,



e=1/20 and $4=0.75 (2) and 0.785 (b). 5=543/2 in that
short period, ard is SO elsewhere. The transitior to
the H-node is triggered in (a), but the state returns
back tc the L-mode in (b). The duration of the short H-

phase in (b) is much longer than the pulse width,
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