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Abstract.
We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is
modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation
code for calculating the thermal diffusivity in the perturbed region. The perturbed region is
assumed to be generated on and around the resonance surfaces, and is wedged in between
the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χr

in the perturbed region is represented asχr = χ
(0)
r {1 + c ⟨∥δBr∥2⟩}. Here⟨∥δBr∥2⟩1/2 is the

strength of the RMPs in the radial directions,⟨ · ⟩ means the flux surface average defined by
the unperturbed (i.e., original) magnetic field,χ(0)

r is the neoclassical thermal diffusivity, and
c is a positive coefficient. In this paper, dependence of the coefficientc on parameters of the
toroidal plasma is studied in results given by theδ f simulation code solving the drift kinetic
equation under an assumption of zero electric field. We find that the dependence ofc is given
asc ∝ ωb/νeff m in the low collisionality regimeνeff < ωb, whereνeff is the effective collision
frequency,ωb is the bounce frequency andm is the particle mass. In case ofνeff > ωb, the
thermal diffusivity χr evaluated by the simulations becomes close to the neoclassical thermal
diffusivity χ(0)

r .

PACS numbers: 52.25.Fi, 52.65.Pp

Keywords: collisional transport, thermal diffusion, resonant magnetic perturbation, toroidal
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1. Introduction

To understand fundamental properties of plasma transport in a perturbed magnetic field is
important for control of a fusion plasma by application of resonant magnetic perturbations
(RMPs). In this paper, we investigate how the radial heat transport phenomenon in an
axisymmetric toroidal plasma is modified by effect of RMPs. Presuppositions in the study are
as simplified as possible for the sake of visible prospect. 1) The plasma particles are assumed
to be confined in a tokamak field disturbed partly by the RMPs. The perturbed region is
generated on and around the resonance surfaces, and is wedged in between the regular closed
magnetic surfaces. In the perturbed region, there is no magnetic field line connected to the
divertor. Here the perturbed magnetic field is assumed to be fixed and time evolution of the
RMP field is neglected. The ratio of the gyroradiusρ to the width of the perturbed region∆RMP

is assumed to satisfyρ/∆RMP≪ 1, and thus the scales ofρ and∆RMP are well separated from
each other. 2) The Coulomb collision is assumed to be represented as the collisions between
plasma particles of the same species, where the plasma particles are monoenergetic. Then,
the species of the plasma particles is assumed to be ion. 3) Electric field, MHD activities,
neutrals, and impurities are neglected. Under the above presuppositions, in this paper, effect
of the RMPs on the radial heat transport phenomenon is investigated, and a model formula of
the radial thermal diffusivity is derived from the investigation.

Diffusion of plasma particles in coordinate space results from Coulomb collisions, which
cause small deflections of the velocity vector of a plasma particle [1]. Here the plasma
particles are assumed to be included in an axisymmetric toroidal plasma having nested flux
surfaces. After a collision time, i.e., after a plasma particle is exposed sufficiently to the
Coulomb collision, a sample path of the guiding center in the coordinate space,X(t), is given
by a diffusion process: dX(t) = u dt → V(X(t)) dt + σ(X(t)) · dW(t), as shown in [2]. Hereu is
the velocity of the guiding center,V(x) is the mean velocity at a positionx in the coordinate
space,W(t) is a Brownian motion, andt denotes time. The coordinate system is set to describe
reference surfaces which consist of the nested flux surfaces. The diffusion coefficientDi j (x) is
represented asDi j = σi

kδ
kℓσ

j
ℓ by σ = (σi

j(x)) in the equation of the random motion, where the
indexesi, j, k, ℓ indicate a component of a tensor (i.e.,i, j, k, ℓ = 1,2,3). Diffusive transport
phenomena in an axisymmetric toroidal plasma having nested flux surfaces are treated in the
neoclassical theory [1]. We can estimate the neoclassical transport coefficients by calculating
energy integral ofDi j [3, 4].

When the magnetic field, in which the plasma particles are confined, is disturbed partly
by RMPs, the neoclassical theory is no longer applicable to the transport phenomena because
the nested flux surfaces are destroyed (or ergodized) in the perturbed region. On the other
hand, it is known that the theory of field-line diffusion (hereafter, the FLD theory) [5, 6], which
is the standard theory of diffusive transport phenomena in a chaotic structure of magnetic field
lines in the collisionless limit, is not useful for explaining the heat transport phenomenon in
the perturbed region after a collision time [7, 8], where the perturbed region is supposed
to be bounded radially on both sides by the regular closed magnetic surfaces. How is the
neoclassical transport modified? What is a parameter of the toroidal plasma explaining the
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transport properties? Answering the questions is the subject of this paper. For the purpose,
based on results of drift kinetic simulations including effects of Coulomb collisions and
RMPs, the modeling of the radial heat transport is considered. Before execution of the
simulations, in order to avoid a haphazard way to approach the subject, we narrow candidates
for the key parameters explaining properties of the heat transport phenomenon.

This paper is organized as follows. The candidates for the key parameters are discussed
in section 2. In section 3, dependence of the radial thermal diffusivity on the candidates
given in section 2 is studied in results of drift-kinetic simulations, and a model formula of the
thermal diffusivity is derived. Finally, in section 4, summary and discussions are given.

2. Key parameters explaining radial heat transport

Hereafter, the original flux surfaces (i.e., the nested flux surfaces) of the unperturbed magnetic
field are used as the reference surfaces in the perturbed magnetic field. Effect of the RMPs
on guiding center motion is interpreted as noise on the motion in statistical sense. The noise
causes small and random changes of the displacement vector of a guiding center because the
magnetic field lines are disarranged by the RMPs. If the effect of the RMPs is represented as
Ñ(s) · uds by a random functioñN(s) = (Ñi

j(s)), then the guiding center motion is given by a
stochastic processXt,x(s) in the coordinate space [8]:

dXt,x(s) =
{
1+ Ñ(s)

}
· u ds

→
{
V(Xt,x(s)) + Ṽ

}
ds+

{
1+ Ñ(s)

}
· σ(Xt,x(s)) · dW(s) assν→ ∞, (1)

wheresdenotes time (s≥ t), Xt,x(s) is a sample pathX(s) satisfyingX(t) = x, ν is the collision
frequency, and̃V = Ñ · V is the perturbed mean velocity. Because, in general, magnetic field
including RMPs satisfies Maxwell’s equations, the RMP field is a smooth function oft and
x. Then, it is natural that the noise originating from the RMPs,Ñi

j(s), is continuous in times,

and that|Ñi
j(s)| is bounded. From equation (1), the contributions of the guiding centers to the

collective motion at a positionx are given as follows [8]:

V̂i = lim
ϵ→0+

1
ϵ

E
[
E
[
Xi

t,x(t + ϵ) − xi
∣∣∣∣Zt+ϵ

t

]]
= Vi(x) + lim

ϵ→0+
E
[
E
[
Ṽi

∣∣∣∣Zt+ϵ
t

]]
= Vi(x) + V j(x) lim

ϵ→0+
E
[
E
[
Ñi

j

∣∣∣∣Zt+ϵ
t

]]
, (2)

D̂i j = lim
ϵ→0+

1
ϵ

E

[
E

[{
Xi

t,x(t + ϵ) − xi
}{

X j
t,x(t + ϵ) − x j

}∣∣∣∣∣∣Zt+ϵ
t

]]
= lim
ϵ→0+

1
ϵ

E

[
E

[{
δik + Ñi

k

}
σk

k1

{
Wk1(t + ϵ) −Wk1(t)

}
×

{
δ

j
ℓ + Ñ j

ℓ

}
σℓℓ1

{
Wℓ1(t + ϵ) −Wℓ1(t)

}∣∣∣∣∣∣Zt+ϵ
t

]]
= Dkℓ(x) lim

ϵ→0+
E

[
E

[{
δik + Ñi

k

}{
δ

j
ℓ + Ñ j

ℓ

}∣∣∣∣∣∣Zt+ϵ
t

]]
, (3)
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and

lim
ϵ→0+

1
ϵ

E

[
E

[{
Xi

t,x(t + ϵ) − xi
}{

X j
t,x(t + ϵ) − x j

}
× · · · ×

{
Xk

t,x(t + ϵ) − xk
}∣∣∣∣∣∣Zt+ϵ

t

]]
= 0, (4)

where E is the expectation operator given by the stochastic process (1), the indexes
i, j, k, k1, ℓ, ℓ1 in equations (2) - (4) indicate a component of a vector/tensor (i.e.,
i, j, k, k1, ℓ, ℓ1 = 1,2,3), V̂ is the mean velocity affected by the noise, and̂Di j is the coefficient
of the diffusion matrix affected. Here limϵ→0+(1/ϵ)E[E[{Wk(t + ϵ) − Wk(t)}{Wℓ(t + ϵ) −
Wℓ(t)}|Zt+ϵ

t ]] = δkℓ. Equation (4) is the contribution of theℓ0th order moment of the
displacement, whereℓ0 ≥ 3, and is related to theℓ0th order derivatives of fluid quantities.
Theσ-algebraZt+ϵ

t is generated by the set of the sample paths{Xt,x(s); t ≤ s < t + ϵ} and
E[ · |Zt+ϵ

t ] denotes the conditional expectation with respect toZt+ϵ
t [9, 10], whereϵ is a real

number satisfyingϵ > 0. Note that limϵ→0+ E[ · |Zt+ϵ
t ] is a function ofx [9, 10], and thus

V̂i and D̂i j are functions ofx. We should give attention to the fact that the perturbed mean
velocity Ṽ cannot affect the diffusion coefficient in equation (3), i.e., the contribution of̃V
to the diffusion coefficient is estimated to beO(ϵ) → 0 asϵ → 0+ [11]. From equations
(2) - (4), we see that the collective motion of the stochastic precess (1) is interpreted as
a diffusion phenomenon because of the properties of Brownian motionW(s). If the noise
Ñ is zero-mean, i.e., limϵ→0+ E[E[Ñi

k|Zt+ϵ
t ]] = 0, then V̂(x) = V(x) in equation (2) and

D̂i j (x) = Dkℓ(x)
{
δikδ

j
ℓ + limϵ→0+ E[E[Ñi

kÑ
j
ℓ |Zt+ϵ

t ]]
}

in equation (3).
The Coulomb collision between particles of the same species is supposed in this paper,

then considering the radial thermal diffusivity affected by the RMPs is reasonable for an
understanding of fundamental properties of radial transport phenomena in the perturbed
region. For the sake of simplicity, we assume that 1) the noiseÑ = (Ñi

j) is zero-mean and

symmetric (accordingly diagonalizable), 2)V̂ = V = 0, and 3) a reference surface is labeled
by a minor radiusr of the unperturbed magnetic field configuration. From these assumptions
and equation (3), the radial diffusion coefficient of the monoenergetic particles is expected
to beD̂∗ = D∗{1 + N̂ 2}, whereN̂ is the strength of the noise in the radial directions andD∗

is interpreted as the radial diffusion coefficient of the monoenergetic particles in the case of
Ñ = 0. It is natural that the strength of the noise is proportional to the strength of the RMPs
in the radial directions. After energy integral of̂D∗ [3, 4], the radial thermal diffusivity atr is
represented as

χ̂(r) = χ(r)
{
1+ c ⟨∥δBr∥2⟩

}
, (5)

whereχ(r) is the radial thermal diffusivity without the RMPs andc is a positive coefficient.
Here⟨∥δBr∥2⟩1/2 is the strength of the RMPs atr in the radial directions and is defined clearly
later. From equations (1) - (5), we see that the effect of the RMPs on the radial heat transport
phenomenon comes down to the modification on only the radial thermal diffusivity under the
presuppositions in this paper. The radial heat transport phenomenon in the perturbed region
is one of the diffusion phenomena caused by the Coulomb collision.
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Equation (5) is confirmed in the previous simulation study of ion heat transport in a
perturbed tokamak field in the banana regime [8], but the fact remains that the coefficientc is
undefined. Considering an interpretation of equation (5), we speculate on the key parameters
explaining the coefficientc as follows.

(G1) The coefficientc is expected to be related withωb/νeff that is one of the candidates
characterizing the time scale of the transport, whereωb ∼

√
ϵt ωt is the bounce frequency in

the unperturbed (i.e., original) magnetic field,νeff ∼ ν/ϵt is the effective collision frequency,
andωt = vT/qRis the transit frequency. HerevT is the thermal velocity,ϵt is the inverse aspect
ratio, q is the safety factor, andR is the major radius. It is known that the guiding center
motion describing banana orbits is the characteristic motion most contributing to the collective
motion in collisionless tokamaks, and that the trapped orbits are typically interrupted by the
Coulomb collision in the high collisionality regimeνeff/ωb ≫ 1 [1]. The strength of the
RMPs is sufficiently small compared with the strength of the unperturbed magnetic field, e.g.,
⟨∥δBr∥2⟩1/2/|Bt0| ≲ 10−2, where|Bt0| is the strength of the unperturbed magnetic field on the
magnetic axis. Accordingly, the effect of the RMPs, which is the modification on the thermal
diffusivity characterized by banana motion in the collisionless limitνeff/ωb ≪ 1 (see equation
(5)), is expected to be wiped out by the Coulomb collision in the high collisionality regime.
Thus the coefficientc in the perturbed tokamak field should be a function ofωb/νeff satisfying
c → 0 asωb/νeff → 0, whereωb characterizes the time scale of banana motion. Note the
following: there is a possibility thatωt/ν instead ofωb/νeff is the parameter characterizing the
time scale of the transport. It is checked up by means of drift kinetic simulations in section 3.

(G2) The coefficient c is also expected to be related with the particle massm. It is
obvious that a plasma particle becomes sensitive to the field line structure as the particle mass
m decreases, because the cross-field drift velocity becomes close to zero ifm→ 0 [1]. Thus,
as the particle mass decreases, the strength of the noise affecting on the banana motion is
expected to be enhanced. Note thatωb/νeff (andωt/ν) is independent of the particle massm
because ofωb ∝ 1/

√
m andνeff ∝ 1/

√
m. Consequently, the coefficient c should be also a

function of 1/m satisfyingc→ ∞ asm→ 0. What is a parameter including the particle mass
in this case? From analogy with the conjecture (G1), one of the candidates characterizing the
space scale of the transport is the normalized width of a banana orbit∆b

√
ϵt/qR(or ∆b/qR).

(G3) Combining the conjectures mentioned above, the model formula of the radial
thermal diffusivity is hypothesized to be

χ̂(r) ∼ χ(r)
{

1+ ĉ F1

(
qR
√
ϵt ∆b

)
F2

(
ωb

νeff

)
⟨∥δBr∥2⟩
|Bt0|2

}
(6)

if the pair ofωb/νeff and∆b
√
ϵt/qR is considered, whereF1(y) and F2(y) are functions of

y and ĉ is a positive coefficient. Here⟨∥δBr∥2⟩ is normalized by|Bt0|2. If equation (6) is
the connection formula between the thermal diffusivities given by the neoclassical theory
[1] and the FLD theory [5, 6] in the collisionless limit, then it is expected by means of
dimensional analysis thatF1(qR/

√
ϵt ∆b) = (qR/

√
ϵt ∆b)2, F2(ωb/νeff) = ωb/νeff, andĉ = π.

The neoclassical thermal diffusivity in the collisionless limit isχNC
r ∼ √ϵt ∆2

bνeff and the
thermal diffusivity predicted by the FLD theory isχFLD

r = πqRvT⟨∥δBr∥2⟩/|Bt0|2.
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The following section is devoted to investigate dependence of the coefficient c in
equation (5) on parameters of the toroidal plasma by means of aδ f simulation code KEATS
[8, 12]. The conjectures (G1) - (G3) are also examined in results of theδ f simulations. The
simulations are independent of the derivation described by equations (1) - (6) because the
radial thermal diffusivity in the simulations is evaluated from the radial heat flux given by a
distribution function of guiding centers, not from the displacements of guiding centers, where
the distribution function is a solution of the drift kinetic equation. Thus the simulations are
suitable to verify equation (6).

3. Model formula of thermal diffusivity derived from simulation results

3.1. Method of estimatingχr and simulation conditions

In this section, using the drift kinetic simulation code for calculating the radial thermal
diffusivity of ion (proton) in a tokamak plasma affected by RMPs, we investigate dependence
of the coefficient c in equation (5) on parameters of the toroidal plasma. The simulation
conditions are as simplified as possible for the sake of visible prospect. In the simulations,
we neglect MHD activities, neutrals, and impurities. In general, effect of an electric field
E is important for an understanding of radial transport phenomena in the toroidal plasma.
However, in this paper, to focus on the fundamental properties of the radial heat transport
affected by the RMPs, the effect ofE is also neglected.

The radial heat flux given by a guiding center distribution function is evaluated by the
δ f simulation code KEATS that is a Monte Carlo simulation code based on the drift kinetic
equation [8, 12]. The guiding center distribution functionf = f (t, x, u) = fM + δ f evolves
with time from the Maxwell distributionfM under effects of the Coulomb collision and the
RMPs, whereδ f = 0 at t = 0. The Coulomb collision in the simulations is given, for the
sake of simplicity, by the pitch-angle scattering operator for the collisions with the Maxwell
backgroundfM, where the operator satisfies the local momentum conservation property and
the quadratic collision termC(δ f , δ f ) is neglected. The Maxwell distributionfM is assumed
to be given as a function ofr andv, i.e., fM = fM(r, v), wherer is the label of the original
flux surfaces,v = |u| is the speed of a particle, and the zero mean velocity is assumed (i.e.,
V i = Ve = V = 0). The subscript “ i ” or “ e ” means a particle species; in the notation ofXα,
whereXα is a physical quantity of the species “α ”, the subscriptα = i means ion andα = e
means electron. Hereafter, the radial thermal diffusivities in the toroidal magnetic field with
and without RMPs are notated byχr andχ(0)

r , respectively.
The toroidal magnetic configuration used in the simulations is formed by the addition

of an RMP field to a simple tokamak field having concentric circular flux surfaces. The
perturbed region is bounded radially on both sides by the regular closed magnetic surfaces,
for example, as shown in figure 1. The major radius of the magnetic axis is set toRax = 3.6 m,
the minor radius of the toroidal plasma isa = 1 m, and the strength of the magnetic field on
the magnetic axis isBax = |Bt0| = 4 T. Note that in subsection 3.3 we change the value of|Bt0|
for investigating the dependence ofc on the banana width. The temperature profile is fixed
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asTi = Te = T(r) = Tax − (Tax − Tedge)(r/a) with Tax = 1.137 keV andTedge= 0.8Tax, and
the densityni = ne = n is assumed to be a constant, wherer =

√
(R− Rax)2 + Z2 is the label

of the reference surfaces in the cylindrical coordinates (R, φ,Z). The original flux surfaces
of the circular tokamak field are used as the reference surfaces in the coordinate space. The
unperturbed magnetic fieldB0 = B0RR̂+ B0φφ̂ + B0ZẐ is given byB0R = −BaxZ/qR, B0φ =

−BaxRax/R, andB0Z = Bax(R− Rax)/qR[13], whereR̂, φ̂ andẐ are the unit vectors in theR, φ
andZ directions, respectively, andq is the safety factor given byq−1 = 0.9−0.5875(r/a)2. The
RMPs causing resonance with rational surfaces ofq = k/ℓ = 3/2,10/7,11/7, . . . are given by
a perturbation fieldδB = ∇ × (αB0). Here the functionα is used to represent the structure of
the perturbed magnetic field;α(R, φ,Z) =

∑
k,ℓ αkℓ =

∑
k,ℓ akℓ(r(R,Z)) cos{kθ(R,Z) − ℓφ + φkℓ},

whereakℓ = ckℓ exp{−(r − rkℓ)2/∆r2} having constants{ckℓ}, r = rkℓ is the rational surface
of q = k/ℓ, ∆r is a small parameter controlling the width of the perturbation, andφkℓ is a
phase. The square of the strength of the RMPs in the radial directions,⟨∥δBr∥2⟩, is given
by the averaged value of∥δBr∥2 =

∑
k,ℓ |δB(k/ℓ)

r |2 on a reference surface labeled byr, where
δB(k/ℓ)

r = ∇r · ∇ × (αkℓB0). The total magnetic field isB = B0 + δB, where the condition
|B0| ≫ |δB| is assumed. The ratio of the ion gyroradiusρi to the width of the perturbed region
∆RMP is set toρi/∆RMP ≲ 1/200 in the simulations in this paper, and thus the drift kinetic
equation solver KEATS is applicable to the simulation analysis of the radial heat transport
phenomenon, where∆RMP ∼ |∂ ln ⟨∥δBr∥2⟩1/2/∂r |−1.

The Poincaŕe plot of the magnetic field lines on a poloidal cross section in the case
of (ckℓ/a,∆r/a, φkℓ) = (6 × 10−3,5 × 10−2,0) is shown in figure 1, and the strength of the
RMPs in the radial directions is set to⟨||δBr ||2⟩1/2/|Bt0| ∼ 1/100 at the center of the ergodic
region, where the perturbed region affected by the RMPs is ergodized in this case. Hereafter
|δB(0)

r | is defined by the value of⟨∥δBr∥2⟩1/2 in the case of figure 1. Specific details of the
perturbed magnetic field and the particle motion itself are shown in the previous studies
[7, 14]. Comparisons between the results of theδ f simulation and the FLD theory are
discussed in detail in [8].

Under the conditions ofn = constant,V = 0 andE = 0, the radial thermal diffusivity of
ion is estimated by

χr = −
Qi r(r)

ni(r)∂Ti(r)/∂r
, (7)

where Qi r(r) is the radial energy flux of ion evaluated by theδ f simulation code and is
interpreted as the radial heat flux under the above conditions. In the simulations, the radial
energy flux is evaluated on a reference surface labeled byr, and is given by

Qi r(r) =

⟨
∇r ·

∫
d3v

miv2u

2
δ f

⟩
. (8)

Here · means the time-average and the averaging time is longer than the typical time scale
of δ f (both the orbit and collision times). The time-averaging is carried out after sufficient
exposure to the collisions. The average⟨ · ⟩ is defined as⟨ · ⟩ = (1/δV)

∫
δV · d

3x, whereδV is
a small volume and lies between two neighboring reference surfaces with volumesV(r) and
V(r) + δV.
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We recall the main result in the previous study on the ion heat transport [8]; the radial
thermal diffusivity χr depends on⟨∥δBr∥2⟩, not on the number of modes of RMPs, nor on
details of the magnetic field-line structure. From the simulation results shown in figure 2,
we see that the radial thermal diffusivity is represented asχr = χ

(0)
r {1 + c ⟨∥δBr∥2⟩}, which

is the same form as equation (5), and that this tendency does not change if the collision
frequencyν is changed, where the collision frequencyν is proportional to the densityn and
satisfiesν/ϵtωb = νeff/ωb ≲ 10−1 in figure 2. The radial thermal diffusivity for the limit
of ⟨∥δBr∥2⟩1/2 = 0 agrees with that given by the neoclassical theory in the banana regime
νeff/ωb < 1, i.e.,χr = χ

(0)
r ≈ χNC

i r = 1.35ϵt1/2Ti/(miΩ
2
i θτii ) ∼

√
ϵt ρ

2
i θνii [1], whereχNC

i r is the
neoclassical thermal diffusivity of ion,Ωi θ is the ion poloidal gyrofrequency,τii = νii−1 is the
ion-ion collision time, andρi θ is the ion poloidal gyroradius.

3.2. Dependence ofχr on collision frequency

As shown in figure 2, the thermal diffusivity χr also depends on the collision frequencyν.
The dependence ofχr on the collision frequency in each case of⟨∥δBr∥2⟩/|δB(0)

r |2 = 0 and 1
is shown in figure 3. The thermal diffusivity in the case of⟨∥δBr∥2⟩/|δB(0)

r |2 = 0 is explained
by the neoclassical theory [8]. In figure 3, we see that the difference between the thermal
diffusivities with and without the RMPs is negligibly small in the plateau regimeν/ϵtωb =

νeff/ωb > 1, and that one of the key parameters explaining the coefficientc is ϵtωb/ν = ωb/νeff,
rather thanωt/ν. Note that the thermal diffusivities in the plateau regime in both the cases of
⟨∥δBr∥2⟩/|δB(0)

r |2 = 0 and 1 are close to the neoclassical thermal diffusivity in the plateau
regime, where the neoclassical thermal diffusivity is given asχNC

i r = ωt i ρ
2
i (3
√
πq2/4) ≈ 0.3

m2/s in the plateau regime [1]. It is inferred from the results of{χr/χ
(0)
r }−1 that the dependence

of c on the collision frequencyν is c ∝ 1/ν, as shown in figure 4. Then, the radial thermal
diffusivity in the perturbed magnetic field is represented as

χr = χ
(0)
r

{
1+ c1

(
ωb

νeff

)
⟨∥δBr∥2⟩

}
, (9)

wherec1 is a positive coefficient: c = c1ωb/νeff.

3.3. Dependence ofχr on banana width

In the conjecture (G2) in section 2, one of the candidates characterizing the space scale
of the transport is the width of a banana orbit∆b, where the banana width is given by
∆b ∼ ρθ

√
ϵt ∝

√
m/|Bt0|. In order to investigate dependence of the coefficient c on the

particle massm, we consider artificial test particles (artificial ions) having the mass of
m = mtest = mp/10,mp/100,mp/1000 in the simulations, and estimate the radial thermal
diffusivities, wheremp is the mass of a proton and the charge number of every artificial ion is
set toZtest = 1. From the results of{χr/χ

(0)
r } − 1 under the condition of⟨∥δBr∥2⟩/|δB(0)

r |2 = 1,
it is inferred that the dependence ofc on the particle massm is c ∝ 1/m, as shown in figure 5.
Note that the parameterωb/νeff is independent ofm.
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Dependence of the coefficient c on |Bt0| is also investigated, and it is inferred that
c ∝ |Bt0|2, as shown in figure 6. Here, in all the cases in figure 6, we change only the
values of⟨∥δBr∥2⟩1/2 and|Bt0| under the condition that the ratio⟨∥δBr∥2⟩1/2/|Bt0| is fixed. From
the results in figures 5 and 6, we see that (y/z) ∝ |Bt0|2/m, wherey = {χr/χ

(0)
r } − 1 and

z= (ωb/νeff)⟨∥δBr∥2⟩/|Bt0|2.
Therefore, combining equation (9) with the above results, we have a model formula of

the radial thermal diffusivity in the perturbed region:

χr = χ
(0)
r

{
1+ c0

(
ωb|Bt0|2
νeff m

)
⟨∥δBr∥2⟩
|Bt0|2

}
, (10)

wherec0 is a positive coefficient and is independent of⟨∥δBr∥2⟩1/2, ν, m and |Bt0|. Note that
the result in figure 6 is also interpreted as the dependence ofχr on ⟨∥δBr∥2⟩ because the ratio
⟨∥δBr∥2⟩1/2/|Bt0| is fixed.

4. Summary and discussions

In order to investigate the radial thermal diffusivity of a low-collisional tokamak plasma
having a perturbed region generated on and around the resonance surfaces, we apply the drift
kinetic equation solver KEATS to the ion heat transport phenomenon in the tokamak field
disturbed partly by the resonant magnetic perturbations (RMPs). The simulation conditions
are as simplified as possible for the sake of visible prospect. 1) The perturbed region is wedged
in between the regular closed magnetic surfaces. Thus, in the region, there is no magnetic field
line connected to the divertor. 2) The Coulomb collision is assumed to be represented as the
collisions between plasma particles of the same species. 3) Electric field, MHD activities,
neutrals, and impurities are neglected. Under these conditions, we evaluate the radial thermal
diffusivity of ion from the radial heat flux given by the drift kinetic simulations, and find that
the radial thermal diffusivity is represented as

χr = χ
(0)
r

1+ c̃0

(
qRax√
ϵt ∆b

)2 (
ωb

νeff

)
⟨∥δBr∥2⟩
|Bt0|2

 . (11)

Hereχ(0)
r is the neoclassical thermal diffusivity, q is the safety factor,Rax is the major radius

of the magnetic axis,ϵt is the inverse aspect ratio,∆b ∼ ρθ
√
ϵt is the banana width,ρθ is the

poloidal gyroradius,ωb is the bounce frequency,νeff ∼ ν/ϵt is the effective collision frequency,
ν is the collision frequency,⟨∥δBr∥2⟩1/2 is the strength of the RMPs in the radial directions,
|Bt0| is the strength of the magnetic field on the magnetic axis, ˜c0 = {∆2

b |Bt0|2/q2R2
axm}c0 is

the coefficient related toc0, m is the particle mass, andc0 is a positive coefficient which is
independent of⟨∥δBr∥2⟩1/2, ν, m and |Bt0|. Note that the model formula (11) is derived from
only the results of the drift kinetic simulations.

By the simulation result (11), the conjectures (G1) - (G3) in section 3 are almost
confirmed. The coefficientc in equation (5) is given byc = (ωb/νeff m) c0. When the collision
frequency is in the collisionless limit, the thermal diffusivity in the case of⟨∥δBr∥2⟩ = 0
satisfiesχr = χ

(0)
r ≈ χNC

r ∼
√
ϵt ∆

2
bνeff. A value of the coefficient c̃0 is expected to be ˜c0 ∼ π if

the model formula (11) is connected to that predicted by the FLD theory in the collisionless



Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations10

limit. The coefficient c̃0 evaluated by the simulations is, however, as small as satisfying
0 < c̃0 ≪ π, i.e., c̃0 ∼ 10−4 under the simulation conditions of this paper. This result is
presumed to be caused from that the condition∆RMP/L ≪ 1 is satisfied in the simulations
in the cases of the perturbed magnetic field having the ergodic region, as discussed in [8],
where∆RMP is the width of the perturbed region (∆RMP/a ≲ 0.3) andL is the space scale
length characterizing the plasma confinement, e.g.,L/a ∼ vT⟨∥δBr∥2⟩1/2/ν|Bt0|a ≳ 1. The fact
remains that the coefficientc0 (or c̃0) is undefined in the present study, and dependence of the
coefficientc0 on parameters of the toroidal plasma will be a topic in the future study.

Finally, we discuss transport properties of electron in the perturbed region. The profile
of the radial thermal diffusivity in and around the ergodic region is shown in figure 7, where
the electron thermal diffusivity is estimated by the simulations with both the electron-electron
and electron-ion collisions. The thermal diffusivity of electron is larger than that in the case
of ion only in the perturbed region. As also shown in figure 7, the radial thermal diffusivity of
electron estimated by the simulations is extremely small compared with that predicted by the
FLD theory, which is the same result as that in the case of ion [8]. Dependence of the electron
thermal diffusivity on the strength of the RMPs is shown in figure 8. The radial thermal
diffusivity of electronχer depends on⟨∥δBr∥2⟩. We see that the electron thermal diffusivity is
quite sensitive to the strength of the RMPs as compared with the ion thermal diffusivity, and
that the radial thermal diffusivity of electron is also represented asχer = χ

(0)
er {1+ c ⟨∥δBr∥2⟩},

which is the same form as equation (5).
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Figure 1. Poincaŕe plot of the magnetic field lines on a poloidal cross section in the coordinate
space, where the strength of the RMPs is set to⟨∥δBr∥2⟩/|δB(0)

r |2 = 1 and the RMPs cause
resonance with the rational surfaces ofq = k/ℓ = 3/2,10/7,11/7. The ergodic region bounded
radially on both sides by the regular closed magnetic surfaces is generated betweenr/a ≈ 0.5
and 0.75, wherer =

√
(R− Rax)2 + Z2, Rax = 3.6 m anda = 1 m.

Figure 2. The radial thermal diffusivity of ion (proton) at the center of the perturbed region
depends on both the strength of the RMPs⟨∥δBr∥2⟩/|δB(0)

r |2 and the densityn; χi r in each case
of (i) n = n(0) = constant= 1 × 1019 m−3 (red squares), (ii)n = 2n(0) (yellow triangles),
(iii) n = 3n(0) (green circles) and (iv)n = 4n(0) (blue rhombuses). The regression lines are
illustrated as the black dashed lines.
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Figure 3. The radial thermal diffusivity of ion (proton) at the center of the perturbed region in
each case of⟨∥δBr∥2⟩/|δB(0)

r |2 = 1 (red squares) and 0 (blue circles) depends on the collision
frequencyν. The line ofν/ϵtωb = 1 is illustrated by the green dashed line, whereϵt is the
inverse aspect ratio andωb is the ion bounce frequency.

Figure 4. The radial thermal diffusivity of ion (proton) at the center of the ergodic
region depends on the collision frequencyν, where the strength of the RMPs is fixed as
⟨∥δBr∥2⟩/|δB(0)

r |2 = 1. The regression line is illustrated as the black dashed line. The results in
this figure are given from the data in figure 3.
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Figure 5. The radial thermal diffusivities of artificial ions at the center of the ergodic
region depends on the particle massmtest, where the strength of the RMPs is fixed as
⟨∥δBr∥2⟩/|δB(0)

r |2 = 1, the particle mass is assumed to bemtest/mp = 1,1/10,1/100,1/1000,
andmp is the mass of a proton. The regression line is illustrated as the black dashed line.

Figure 6. The radial thermal diffusivity of ion (proton) at the center of the perturbed region
depends on the strength of the magnetic field on the magnetic axis|Bt0| = Bax, where|Bt0

(0)| =
4 T is the strength of the magnetic field on the axis in figure 1. The ratio⟨∥δBr∥2⟩1/2/|Bt0|
is fixed in all the cases, where⟨∥δBr∥2⟩/|δB(0)

r |2 = 1 at |Bt0/Bt0
(0)|2 = 1. The regression

line passing (x, y) = (0,0) is illustrated as the black dashed line, wherex = |Bt0/Bt0
(0)|2 and

y = {χr/χ
(0)
r } − 1.
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Figure 7. Profiles of the radial thermal diffusivities in and around the ergodic region in figure 1,
which are given by (i) the simulation in the case of electron (red solid line), (ii) the simulation
in the case of ion (black dashed line), and (iii) the theory of field-line diffusion in the case of
electron (red dotted line). The ergodic region is generated betweenr/a ≈ 0.5 and 0.75.

Figure 8. The radial thermal diffusivities of electron (red squares) and ion (proton; blue
circles) at the center of the perturbed region. The regression lines are illustrated as the black
dashed lines.


