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Abstract

t=1y

Stochastizaticn of field lines, resulting from the inter-

=1

action of the fundamental u/n=1/1 helical mode with other period-
icities, plays an important role in sawtooth oscillatiocns. The
time scale for the stochastic temperature diffusion is shown to
be sufficiently fast to account for the fast sawtcoth crash. The
enhanced electron and ion viscosity, arising from the stochastic
field lines, are calculated. The enhanced electron viscosity
always leads to an initial increase in the growth rate of the
mode, the "magnetic trigger”. The enhanced ion viscosity can
uitimately lead to mode stabilization before a complete tempera-
ture redistribution or flux reconnection has occurred. & dynami-
cal model is introduced to calculate the path of the sawtooth
oscillationm through a parameter space of shear and applitude of
the helical perturbation, including a stochastic trigger to an
enhanced growth rate, stabilization by ion viscosity, and a
prescription for fliux reconnection at the end of the growth
phase.

Our model predicts that four types of the sawtooth oscilla-
tions are possible even for a plasma with monofonic q(r) profile.
There are two types of rearrangement of the magnetic configura-
tion: a partial-magnetic reconnection, in which the safety factor
on axis q(0) value oscillates around 0.7 with 69(0) =~ 0.05: and 2
full magnetic reconnection, for which q{0) oscillates between i
and about 0.8. In a partial reconmection the temperature flat-

tening is rapid and can be either limited to ar annulus near the



g=1 rational surface ., which then gradually propagates to the
axis, or the temperature on axis T,(0) can rapidly decay, when
the stochastic region invades the geometrical axis. With a full
ragnetic reconnection, Te(O) collapses rapidly when stochasticity
is present or slowly without stochasticity. The main features of
the model are compared with experimental observations. In parti-
cular, they may explain the sudden growth of the helical pertur-
bation, the "magnetic trigger”, the fast time scale of the tem-
perature collapse, a partial temperature collapse, and the per-

sistence of an m/n=1/1 island throughout the sawtooth cycle.



8] Introduction

A tokamak is subject to resistive instabilities on rational
surfaces. If the rotational transform ¢=1/gq=1 within the plasma,
then the central core is subject to large amplitude relaxation of
the central temperature, known as sawtooth oscillations.[1-3]
These oscillations play an i1mportant role 1n limiting the core
temperature and therefore cconsiderables attention has been given
to understanding their mechanism.

The sawtooth oscillations are characterized by a relatively
slow build-up of temperature on the axis{ msec time scale )
followed by a fast temperature crash ( <l00usec ) within the q=!
radius. Before the crash a temperature flattening around the g=1
surface occurs with m/n=1/1 helical symmetry ( the magnetic
island ). Depending on the state of the plasma, a decaying
helical perturbation can somiimes be seen after the crash.

Both the Iinmear and the nonlinear growth of the instability,
[4-7] and the time needed to build up the core temperature after
a crash, have been calculated.[8-10] One explanation of the
sawtooth is that there is a full collapse of both the current and
the temperature, due to a growing magnetic island which recon-
nects all of the core flux.[11] Experimental results, however,
have given rise to serious objections to this picture., A general
objection is that the reconnection mechanisz is tco slow to
account for the crash phase[2]. This discrepancy has becowme more
pronounced as machines have increased in size. [12] 4 secend

objection 1s that a complete reconnection 1s not always observed.




An early soft X-ray tomographic measurement on the TFR tokamak
indicated that the m/n=1/1 island did nct grow to encompass a
large fraction of the central core region and the island also
persisted after the crash, implying that the reconnection was not
complete. {3] Thirdly., the experiments have cbserved a sudden
acceleration of the growth of the helical deformation, the
"magnetic trigger”. which remains umexplained.

Complicated dynamics can often be observed, associated with
sawteeth. Recently, particularly associated with the large
devices JET and TFTR, these phenomena have aroused new interest.
[13,14] Tor example, the m/n=1/1 island can sometimes be seen to
decay after the crash, indicating that a coamplete reconnection
has not occurred. This phenomencn is not always seen ( but
neither is the precurser oscillation ) allowing various interpre-
tations. The crash phase in JET has shown slow partial crashes,
fast partial crashes and complete crashes., The growth of the
island sometimes appears fto increase rapidly, Jjust before a fast
crash occurs.[18]) In TFTR, a similar sawtooth structure,called a
*compound sawtooth”, was observed.[14] None of these phenomena
are easily explained within the simple reconmnection picture.

Various explanations have been advanced to explain the fast
crash. One explanation is that the mode is ideal, rather than
resistive.[15] This could only occur. however, 1f the g-values

within the gq=1 surface remain very close to unity.

An alternative picture of the crash can be drawn by using

the concept of intrinsic stochasticity driven by the strong inter-



action of "overlapping” island chains with different helicity.
[16-21] The interaction of neighboring islands to produce
stochasticity leading to major disruptions, has been examined by
a number of authors, including numerical studies.[8,18] It has
also been pointed out that the current sheet formed at an island
separatrix should give rise to turbulent diffusion.[8] This is
related to the mechanism for generating stochastic field liges by
the interaction of higher-order islands. Such interactions are
always present, as stochasticity is known to be a generic proper-
ty near island separatrices. The appearance of stochasticity was
also examined for a general field perturbation applicable to
tearing modes. [20,21]

Physically, second-order islands are formed by beating the
pcloidal variation of the equilibrium m/nr=1/0 with the harmonics
of the slow variation of the field line as it encircles m/n=1/1]
helical island. Since the second-order islands grow expomential-
ly with respect to the main island size, this leads to a stochas-
ticization time( disruptive time ) that is short compared to the
island formation time.[21] Electron temperature can rapidly
diffuse across this stochastic region to flatten the temperature
distribution about the g=1 surface, As we shall see, the pres-
ence of stochasticity also allows an increase in the growth rate
of the mode. The stochasticity arisiang from the second order
island overlap is shear-dependent, which depends on g(0). If q(0)
falls much below 1, large-scale stochasticity becomes important,
while if g(0)=l, the stochasticity is much less important.

Because alternative mechanisms for the crash are strongly




dependent on the shear and consequently q(0), measurements of
this quantity have been very important for distinguishing between
the alternatives. Recently, measurements of the time variation
of q(0) on TEXTOR have beern made by Faraday rotation experi-
ments. [22] The result shows that q(0) remains well below I,
varying between about 0.8 after the crash ito about 0.7 just
before the next crash. Measurements of q(0) on JET{28] and
TEXT[24] give similar results. The value of g(0)=0.7 is consis-
tent with a strongly stochastic crash phase,'lending credence to
this explanation.

A temperature crash resulting from stochastization of field
lines also leaves open the possibility of partial reconnection,
since the temperature flattening is decoupled from the current
flattening. Numerical codes, with g considerably below 1 at the
time of temperazture crash, have indicated that the field lines
are stochastic during the final stage of the mode growth.[25,26]
However they have also indicated complete reconnection, and have
thus not explained the existence of partial reconnections and
postcursor oscillations.

In this paper we shall first review, in Sec.2, the basis for
the creation of stochastic field lines. The timescale for the
stochastic teuperature diffusior will be determined and compared
to the time scale for the redistribution of current. We shall
show that, depending primarily on the shear but also on other
machine parameters, the temperature redistribution and the flux
reconnection can either be partial or complete., The enhancement

of electron and ion viscosity, arising from the stochastic field



lines, will be determined. The enhanced electron viscosity
always leads to ar initial increase in the growth rate of the
mode, increasing the reconnection speed at the X-point. The
enhanced ion viscosity may ultimately lead to the mode stabiliza-
tion before a complete temperature redistribution or flux recon-
nection has occurred,

In Section 3 a dynamical model is introduced to calculate
the path of the sawtooth oscillation through a parameter space of
shear and amplitude of the helical perturbation. The model dis-
tinguishes between the different cases of temperature flattening
and of magnetic field reccnnection, such that the each trajectory
can be separately explored. The stochastic trigger to the en-
hanced growth rate and the stabilization by ion viscosity are
also included in the model. ¥e also compare the results to
experimental observations, showing that many of the interesting
phenomena observed in experiments fall within the range of con-
segquences of our model, In particular., the fast crash anrd the
distinction between full and partial temperature collapse as well
as the fast magnetic trigger will be related to experiments.

Finally, in Sec.4 we summarize our results and discuss their
implications. We relate our work to other models and compare to
computer simulations. A prescription for more detailed numerical

analysis will be given.



§2 Sawtooth Physics

2-1 The Island Formation and Thickness of Stochastic Layers

H#e employ a Hamiltonian formalism to describe the behavior
of magnetic field lines. In a tokamak configuration shown in
Fig.1, the toroidal coordinate ¢ plays the role of time in the
usual dynamical system. When the equilibrium magnretic field
forms a closed flux surface, the periodic motion of the unpertur-
bed field line is conveniently described in terms of the action-
angle variables, J and 8. The action ] labels the flux surface

and the change of the angle 8 of the unperturbed field line 1is

given by
de  dig(])
—= = «(]). (2-1)
de dJ

The action-derivative of the unperturbed Hamiltonian HO yields
the rotational transform ¢, VWe note that, in the case of a
circular cross section, J = r2/2 and 2= RBr/rB¢.

In the presence of a perturbing field, the Hamiltonian of

the field line takes the form

BT, 8,0) = Ho(I) + TA, (/2T/Ry) IKle1(msido-ine oy,

where the summation over k is the expansion of the toroidal



correction and m and n are the poloidal and toroidal mode number
of the perturbation. Since the eguations for the magnetic field

line have the following fornm:

dJ afl
do a0
(2-3)
de all
PP

the amplitude of the pertfurbation Amnk i1s related to the radial

magnetic field Br 28

rR0 Brmn

_— (2-4)
1(n+k)B¢0

Bpnk =

We shall assume that the primary island amplitude is deter-

mined by the lowest order perturbation term m=n=1. We transform

to new variables in a rotating ccordinate system, J. 8, and

expand around the resonsnt magnetic surface jo, where z(J0)=1:

A =J-Jy €T = 1) (2-5)

giving the Hamiltonian for the perturbation:




de|  (a))?

-

+ Allcosa

ath_; 2
Thay,
T N
boTa (/R (Klei(atk)B-itark-n)e (2-6)

where we have added the #1 terms {(assumed equal to obfain a
pendulum in lowest order) and evaluated the perturbation at T6
_.2
*I’I/Z.

Averagirg over the fast variable ¢, we obtalin the pendulunm

Hamiltonian characterizing m/n=1!/1 island
2 Fa¥
KO = G(A])®/2 + Fcoss (2-1)
where F = All and G = -de¢/dJ. Substituting for All from (2-4)

and using a parabolic approximation for ¢, F and G are written

in terms of the fields as

and

(4]
I

2(2(0)-1)/r% = 2s/r? (2-9)

Here En is the normalized perturbation field and s =¢{0)-1 is the

normalized shear. The amplitude of the i1sland and the frequqncy



at the fixed pvoint are givern by
ALy = 200/6)1/2 - (8B /s)1/2 (2-10)

and

wg = (PO - (2B s)!1/2 (2-11)

To obtain the thickness of the stochastic layver, we trans-
form to nmew action-angle variables, [ and & , in the pendulum
Hawriltonian frame, to exhibit the second order islands. Retain-

ing the rapidly varying terms, we have a Hamiltonian of the form

(T, 8,6 ) = Ky(I)

b T (r /Ry K lpy o188 ECarkon)e (2-12)

where VJl are the coefficients of the Fourier expansion of
ei(kﬂj)/§ with respect to §. Harmonic terms resonate with the
nonlinear motion of frequency w(I) = d{y/dl, if fetntk-p=0 is
satisfied and the second-order islands are formed on the resonant
action surfaces. The thickness of the stochastic layer around
the main island separatrix can be estimated by the overlap condi-

tion of the second-order islands, Since w(I)<<! when the sto-

chastic layer first appears, we only consider the harmonic terms



with m+k-n =x1. Since r/RO<< 1, we lock at small k. For harmo-
nics with g =1 helical symmetry, m=n=1 fcr which k =%1.
Considering this mode only, we czn derive the cverlap condi-
tion for iwo second-order islands chainsf21]. In the spirit of
our approximate calculation, we use a simple form obtained from

the separatrix mapping approximation[27]. The result is

¥ 1/9 i 14
8] . = 2(—) exp(- ———=
¢ (rc)3/? 9¢Fg)L/2

) (2-13)

where 6JS is the half-thickness of the separatrix layer which is
approximately equal inside and outside of the separatrix. The
edge of the regular region, outside and inside of the separatrix

are then calculated from

alq = Ay * 8l (2-14)
with the + and - signs indicating the outside and inside edges,
respectively. This result can also be easily transformed to
physical space, using

- _ 1/2 -

r —rl(l A]T/]O) (2-13)

and Arp=r-r). The result in (2-15) is plotted in Fig.2(a). FWe

see that a thick stochastic layer forms when 2(0) =(FG)‘1/2 =6.

A more accurate calculation of the second-order islands, includ-



ing the full elliptic integral representations of the harmonic
amplitudes was done and compared to a numerical calculation with
the same assumed harmonic field[21}. The result indicated that a
significant layer of stochasticity already appears at the island

edge for
100y = (Fey 12 2 7. (2-16)

Fe also see from Fig.2(a) that the center of the island is not
stochastic even when the stochasticity has reached the axis.

¥e note that the thickness of the stochastic laver near the
f-point is greatly enhanced. \Using the form in (2-7) for an
initial condition outside the separatrix at the edge of the
stochastic layer, taken at AJM T 8]g where 6J4 is the thickness
of the stochastic layer as a obtained from (2-13), the thickness

of the stochastic layer near the ¥-point is calculated from
667,2/2 + T - 6(AJy+sT )%/2 - F (2-17)
giving to first order
8, =~ (ajysl0!1/2 (2-18)
which is the geometric mean between 2 (relatively) thin separat-
rix layer and the large amplitude of the primary island,

Finally, we derive the condition for which a sizeable

Stochastic layer appears before the primary island touches the




magnetic axis. From(2-19)., the condition Aly = JD can be

expressed as
47/6 = ]2, (2-19)

Combining (2-19) and (2-16), we obtain a condition for a thick

stochastic layer to form before the island fills the core
GJOR(O)/Z z I, 8C0) 7. (2-20)

In the case of a parabolic rotational-transform profile with T

=a/2. this condition can be rewritten as [21]
q(0)/(1-9(0)) = 2(0)/2 : (2-21)

Taking 08(0)=7, the condition (2-21) yields q(0)

IIA

0.8. The

significance of this result is that for q{0) < 0.8 we would

expect a temperature crash to occur before a full flux reconnec-
tior has occurred. It does not however, tell whether or not the
end state is fully reconnected, which depends on self-consistent

conditions. We discuss these conditions in the following subsec-

tions,



2-2 Stochasticity Enhanced Transport Coefficients and Associated

Time scales

In this subsection., we explore various enhanced transport
coefficients in the presence of stochasticity. The eguations of

Visco-resistive MHD are the following:

au
- 2
— + u+Vu = JxB - Vp + n.¥%u,
at (2-22)
7.3
_ = uxB - ) - ¥xa¥x
at (2-23)
ap
— + uVp = - I'pVeu ¢ (a:,,/Bz)(B-V)Zp
at
+ Vel ¥o) + (T-1)9J2, (2-24)
B = V¥xA and ] = VxB. (2-25)

In this section J is the current density, not the action. Equa-
tion (2-22) is the force equation, (2-23) is Ohm's law, (2-24)
gives energy transport and (2-25) is the low fregquency part of

Maxwell s equations. Here, p. 1s the ion viscosity, 7 1s the

1




resistivity A is the electron viscosity { current viscosity ), T
is the ratio of specific heats, and kp and K| are the paraliel
and perpendicular thermal conductivities, respectively. Normally
these equations are solved numerically ( or in some small signal
analytic approximation ) using the classical transport coeffi-
cients arising from binary collisions [5-8.10.25,26]. T¥When this
is done, the ion viscosity By is unipportant, except for numeri-
cal stability, the electron viscosity i 1s unimportant compared
to the resistivity %, and the traasverse heat conductivitiy
only serves to establish the equilibrium pressure distribution on
a slow time scale. 0Once stochasticity appears on a large scale,
however, the terms underlined can be greatly enhanced. [28,28]
This can lead to much faster relaxations than are classically
obtained.

Let us consider the transport quantities in the presence of
stochasticity, and the associated time scales on which processes
can occur. The coefficients, &, A and u; are derived in Appendix
1, and are examined here, along with the associated time scales
for heat tramsport, current diffusion, reconnection, and the

n/n=1/1 visco-resistive MHD mode growth.

Ik The fastest time scale is for heat to diffuse, which 1s

given directly in terms of the time for electrons to diffuse along

with the fleld lines, giving (from Appendix 1)

g,= (3/Vmdnvy Dy (2-26)



where Ve is the electron thermal velocity and, for fully devel-

oped stochasticity,
by -(sr)?/2nR, (2-27)

the quasilinear magnetic field line diffusion in which the field
lines step a2 random distance sr in going once around the torus.
The density n is a dimensional scale factor for (2-24). The tipe

for diffusing across a distance Ar is then
T, = (Ar)Z/DMvTe = (Ar/ﬁr)zrtr (2-28)

where 7, =2nk/vy,. The time, given in (2-28) is very fast, as it
is related to an electron transif{ time 7. by a factor that is in
the range of 20-50. For the plasma parameters of JET ( R =3m,

Ty =% ke¥ ) we have Typ = 0.6 wsec and 7, ~ 10-25 psec, readily

accounting for 7 = [80psec.

crash

A : Stochastic flux lines and rapid heat loss dces not imply
rapid diffusion of the current. The inductance of the current
channel prevents a rapid macroscopic rearrangement of the flux.
The long-time scale on which this occurs can also be calculated.

From Appendix ! we have the electron viscosity

/T Gl
A= —2}10 _Z_VTGDM . (2'29)
“p




¥e find a2 new factor of the square of the collisionless skin
depth ﬁS=c/mp multiplying the coefficient in a terz in (2-23)
which is fourth derivative of the spatial variation., The result

is a time scale for current flattening over radial extent Ar,

T, = (Ar/ﬁs)z(ﬁr/&r)zrtr (2-30)

- 2
= (Ar/ﬁs) T,

The collisionless skin depth is of the order of 10_4m for the
higher density tokamaks ( 101973 = n, = 1020378 3y For JET
parameters with Ar~0.Im, we find TA=1OU-200msec. From experi-
mental data, we see that this time scale is too long for any sig-
nificant current flattening during the crash. It can, however,
be an important mechanism on the sawtooth time scale, since only
a small reordering of current is required to return the current
distribution to an initial state.

There is, however, a faster time scale on which the currents
can be rearranged, which is by magnetic flux reconnection. Based
on the Sweet-Parker reconnection model, Kadomtsev[11] has esti-
mated the reconnection speed by requiring the flow of the bulk
reconnecting flux to just balance the Alfven flow into the bre

c
separatrix current channel, 1i.e.

rl/rI'EC = 6FEC/rAh (2“31)



where r 1s the radius of the q=1 surface{ ¥-point ) and Trac is

the reconnection time, rlfvr. Here

TAh =r1/VAh:
_ k4
Vap T BT /mgming

where Vih is the Aifven velocity associated with the helical
magnetic field, B*=(1-q(r))Be and K0 is the free space permi-
tivity. The reconnection speed limits the large amplitude growth

of helical deformation of the magnetic axis & such that,

where & 1s the deformation of the magnetic axis.
¥e can extend this argument keeping the electron viscosity

term A in the estimation of 8. The parallel component of

ec-

Ohe' s law is rewritten as
£ +vrB* = WJ—AVZJ (2-32)

Estimating J=B*/(u05rec) and VzIz-J/ﬁre% with the approximation of

EmvrB*, we cbtain the scaling for the rearrangement of the heli-

cal flux B¥
6 B 7B * AB¥
ree . + (2-33)
Tah Bobrec Bpbrac




Eliminating 5% from {(2-33) we find that the reconnection layer

scales as
5 2 al(nzy, /a4 (T S g )24 AT s fug 172 (2-34)
rec “ENATan/ Ry Ah7 ¥ Ah’ Mg -
The assoclated reconnection time Trac is then given from (2-31)
by

Trec = Foant [0y )1/ neyy ) eargy fag 1712 (2-35)

In the absence of stochasticity, when A 1s small, the recon-

nection width scales as

booe = (nzyp/ug)t/2, (2-36)

In the case in which the mode is sufficiently large that the
current layer is covered with stochastic filed lines, then the

term in A dominates over the one 1n % and 1s estlmated as

A r
—Lyie

4
Al Vih

i1 3r1(

rec (2-37)

Substituting (2-37) in (2-31) the reconneciion time due to ele-

ctron viscosity 1s then



Trec ™ (rl/ﬁs)ljz(rfoh3)l/4’

where we have substituted for 7, from (2-30). Since the A depen-

J1/4

K
dence is weak, , the rapid growth of the magnetic axis de-
formation is possible even when the mode growth is limited by the
reconnecticn speed, as also described in [30. For JET paranme-
ters a reconnection time scale Trae = 20-30usec is found, which
is a quite similar value tc the energy diffusion ( Torash ) time.
Although this is a lower bound on the time scale for an actual
reconnection, since we expect the current laver o become non-

uniform when e >6 it indicates that stochasticity can be =2

c’ s’

dominant mechanism in the reconnection process

ny oo For a fast recomrection to occur after stochasticity has
set in. it is necessary that the mode continue to grow. A stabi-
lizing force on the mode growth is the ion viscosity, which is
also strongly enhanced due to the stochasticity. In Appeadix 1,

we calculate Hy to be
#y = (vpy /7Dy (2-38)

such that we can define 2 relaxation time under the action of ion

viscosity given by

Tl-li = (Ar/ﬁr)z(SvTe/vTi)z’tr . (2-389)




¥e can compare the contribution from the ion viscosity,
which tends to damp ithe mode, with the contribution from the
electron viscosity which enhances the mode growth. To do this we
perform a linearized analysis of the mode growth, using the
stochasticity enhanced fransport coefficients. The result for
the mode growth rate is derived in Appendix 2 and given in (AZ2-
11). Using (2-2%) and (2-30) to relate A to T, and (2-38) and (2-

39) to relate By to T (A2-11) can be rewritten in the form

ui’

T A T
1z, = 5(2es)/ 3 (178 51/ 8(g.6)2/5 35 hy oy

Ta Ta rpi

where s is the normalized shear parameter ¢(0)-1 and e=r,/R.
Noting the power of » ( 1.e. 7,/7, ) in the first and second terms
on the right hand side, we see that , when the stochasticity
switches on and A is small, the first term dominates over the
second term and accelerates the mode growth. If the siochastic
transport coefficient Dy becomes larger, however, the second term
can exceed the first one thus stabilizing the mode. This stabi-

lization can occur before the flux reconnection is complete.

2-3 Parameter Space of Kode Dynamics

To make these competing effects on the mode growth and decay



more transparent, we construct the following diagram in the En
and s parameter space, where gn is the normalized perturbafion
strength. From the viewpoint of magretic topology, using the

equation in (2-18), we have the condition that the island sepa-

ratrix touches the axis

1}

88, /s = 1. (2-41)

If we include the thickness of the stochastic layer outside of
the island from (2-13). we obtair the condition for the outermost

stochastic field line to touch the axis, that is [arqg]=r,

4m -n
exp(- ——————— 31 = | . (2-42)

(8B,/)1/20 1+ ———— =
. (25,5)3/2 2028 s)1/2

In Fig.3., lines of (2-41) and (2-42) are plotted as solid
lines denoted by (1) and (2), respectively. The region of the
parameter space between them corresponds to values for which the
stochasticity has reached the axis but the island separatrix has
net. Schematic drawings of the magnetic field perturbation are
shown in Fig.4. VWhen the perturbation grows until line (2) is
reached, the central temperature crash ( T-crash ) is expected
with a time scale of T,.. If the perturbation grows further until

the line (1) is reached, that indicates the completion of the

magnetic reconnection. On the same diagram, we draw the dashed




line for w(0) = /28,5 = 1/12 ( denoted by (3) for which the
stochastic layer at the separatrix calculated from (2-18) is
equal to the resistive current layer calculated from (2-36).

¥hen the perturbation becomes large enough to creoss line (3), the
mode is accelerated due to the stochasticity enhanced reconnec-
tion rate. The upper dashed line, denoted by (4), is that for
which the mode becomes stable due to the stochasticity enhanced
viscosity, Tz, =0 in (2-40).

Depending on the position of this upper dashed line {4} with
respect to the lower solid line (2}, two distinct types of behav-
ior can be observed. Consider the case shown in Fig.3 for which
the dashed curve (4) lies mainly above the solid curve (2).

Then, provided the shear i1s sufficiently large that the two solid
curves (1) and (2) are well separated, one would expect a com-
plete temperature crash before reaching the stability boundary of
the saturated state (4). Depending on where {4) lies with re-
spect to (1), the magnetic reconnection may be either incomplete,
when (4) is well below (1) or complete, when (4) lies close to
(1).

In the opposite case, in which curve (4) lies below curve
(2), the mode would expect to saturate before the stochastic
region reached the axis, and neither the temperature crash nor
the reconnection would be complete. The stability boundary
condition (2-37) shifts upward in Fig.3 for smaller machine size
R. for lower density and weakly for higher electron temperature.

If the shear is small, then the path of the growing insta-

bility can take the island width to the axis ( curve (1) ),



without crossing the lowest dashed line(3), such that the stocha-
sticity is negligible. In this case, one might expect a slow

complete reconnection.

2-4 Rearrangement of the Magnetic Flux Surface

The process of rearrangement of magnetic flux surface is not
fully analyzed in this paper. A crude estimation of the shear
after the rearrangement of ragnetic field can be done for the
foliowing limiting cases.

1) The helical flux ir the hot helix is assumed to be unchang-
ed, which is set equal to that within the g=1 surface of a new
state. The helical flux in the hot part is estimated by the
difference in the fluxes between the value at the Y-point and

that at the magnetic axis,

| . T
Qh(r,9~¢)ﬁ§h(axis) = ;5err[z(r} -1l o+ 2B (—)cos(e-4) (2-43)
1

2] rl

which on integration for 6-¢ = m ( the {-point ) gives

-~

g, ({-point) - & (axis) =~ Le0) qq 1374 - 2B (2-44)

n-

The renewed g=! surface of radius r contains the flux



By =[2(0),,,-11/4. (9-45)
Bquating (2-44) and (2-45) we obtain,

H0) ey = t(0)g1g - 8B (2-46)

This probably gives an underestimate of ¢(0) since the cold

new
helical flux may contribute to the central helical flux of the
new state, i.e., there is a reverse reconnection through the
stochastic layer as the core relaxes back toward the axis

2) The local pitch ratio near the magnetic axis is assumed

be unchanged when the shift of magretic axis is reset. Due to

to

the perturbation ﬁ;, the magnetic axis of the het core shifts by

an amount

= [28,/(000),14-1) 01, (2-47)
The new rotational transform around the magnetic axis,

alm sax® - 20e(0),, 1] (2-482)

where the normalized distance between the gecmetrical axis and

the magnetic axis is x=E/r1, giving

ale /ax? < 201-3Ce/r D2I00C0) 147110, (2-48b)



When the curvature is Kept unchanged we equate {2-4%a) and (2-

48b) to obtain
((0) oyt =[1-3(&/r;)210eC0) 14 110, (2-49)

In the cases of incomplete reconnection a finite size island
regains on the g=1 surface, with an initial flattening of the gq
in the neighborhood of that surface. Because we believe the
reverse reconnection process to be important we use (2-4%) to
reset ¢(0) in our dynamical calculation.

For the cases in which there is a complete recomnection, the
rearrangement of the magnetic flux surface leads tc g on the axis
being close to unity with a weak shear in the new symmetric

equilibrium, [31]

H0) gy - 1 = €8 (2-50)

In this case the island would grow from a quite small value.



$¢3 The Dynamical Hodel and Example

-1 Dvnamical Model

Based on the physics modelling in section 2, we develop a
dynamical model of the sawtooth oscillations. We choose two
variables, the amplitude of the m/n=1/1 mode magnetic
perturbation and the magnetic shear at the rational surface. We
express the stochasticity as a function of these two variables
and follow the temporal evolution. The dynamical egquations are

that for the growth of the helical magnetic perturbation and that

for the change of magnetic shear.

Helical Magnetic Perturbation

The o/n=1/1 component of the magnetic perturbation grows

with the growih rate T as
dB /dt - 1B, (3-1)

where we use two forms for the mode growth rate. If the

stochastic layer thickness at the ¥-point i1s thinner than that of

the current layer at the I-point, we take

r a1 gs2/8 (3-2)

which is the conventional growth rate of the resistive kink

mode,TrO . S'1/3/rAp, where § = Zr/rAp and 7. = por%/n[4]. If



the stochastic layer thickness at the x-point 1s wider than that
of the current layer at x-point,_the growth rate 1s given by the

stochastically enhanced growth rate

T = Tg. (3-3)

¥e use the expression for the growth rate 1. ia the presence of

s

the stochastic current viscosity and ion viscosity from (A2-11),

which we repeat here

R A R . _ A R
TS(—) — 5(288)4/5[ ,_11/5 _ 5_1/3(238)2/3'()([ _:[3/5
VA BoT] V4 ol V4

(8-4)
where
2
2V o
a - —2(2e ) (3-5)
TIVTe C

is the key scaling factor between the electron zand ion terms. Ve
can include the transition from weak to fully develcped stochas-

ticity by writing A 1n the form

A K ~9
Bolp Y4




where

(3-7)

and DM/DQL is the ratio of the magnetic diffusivity normalized to
its gquasilipear estimation. By using this notation and the ratio
between By and A {(Eqs.(A1-10,11)} , the linear growth rate T

for the case of stochastic magnetic field, 1s expressed as

R oo D
r ) - 5(253)4/5ré/553/5[—§—]1/5

Vi )

, " D -
- 57 1/3 y2/513/558/5 ¥ 4373

oL,

a{2es {(3-8)

A simplified model for the magnetic diffusion coefficient

is employed, following the standard mapping form [27]
Dy/Doy = mial(B,/B,-1)3, 11. (3-9)
The denominator BC 1s the critical amplitude for the onset of

stochasticity. We choose this critical value by the rule that

the thickness of the stochastic layer at the X-point 1s equal to



that of the current layer,
ﬁX[BC,S] = § (8-10)

where 6. is the current layer thickaness associated with the
resistive mode growth., GEquation {(3-10) determines B, as a

furction of s and 6r/r1_ As discussed 1n Sec.2. the condition
£ = |2 (3-11)

is an approximate relation to calculate BC, where 1/8 is the
rotational transform around the O-point of the magnetic island.
At the onset of stochasticity, the current layer thickness is

obtained from Eg.(2-38)
6r/r1 = (Wfﬁh/ﬂor%)l/z (3‘12)

This value is of the order of 10 2, and using Egs. (2-13), (2-18)

and (3-10), we obtaiﬁ an approximate numerical relation
B, ~0.03/s. (3-13)

As 1s seen from Eqs. (2-13) and (2-18), the layer thickness 6, has
an exponential dependence on 1/J§ns, so that the dependence of
BC on ﬁr/r1 is only logarithmic. The dependence of the constant

0.03 on the plasma parameters is neglected for simplicity.



Change of Shear

The change of the shear, during most ©f the growth phase of
the magnetic perturbation, is determined by the current peaking
resulting from the higher conductivity at the axis. This resis-
tive process has been discussed in the literature [8-10]. When
one takes into account the radial inhomogeneity of resistivity
due to the neoclassical effect. the deominant term in the g-pro-

file change is given as [10]
q(0;t) = 1 - 2/8(t/z Hl/* (3-14)

where the time t is measured from the time of a complete recon-

nection. This equation can be rewritten as
ds/dt = (422)/(rr33) (3-15)

by using the parabolic approximation for the ¢-profile, which can
be integrated for an arbitrary initial value of s.

When stochasticity is present, the current diffusivity a
becomes fhe dominant mechanism for changiang the shear parameter.
Combining Ampere’'s law 8B/at =- VxE with the Chm’s law with
current diffusiorn, E, = -AVZJZ, we have an equation for the

quantity ¢=Bs/r as
ap/at = -(a/ug)V(re) (3-186)

Taylor-expanding 4 in the vicinity of r=r, as



¢ = dp (£ ) orereeeees (3-17)
we have
ad/at = 3ar P0 & ¢ (r 2720 v eeee] (3-18)

where the suffix | indicates the value at r=rj. This relation

gives
a0j/at =-9a/(ugr{dle +(x/20e) " o0 1. (3-19)

From the relation s=(r1/2)(da/dr) and the parabolic

approximation of ¢ with constant Bt’ we have
as/at - (fl/rl)s = -9(Ar1_4)s . (3-20)

Summing up the resistive contribution (3-15) and that by the

current diffusivity (3-20). we have
ds/dt = p/s? - 1, (3-21)
where
p = 4&2/rr (3-22a)

and



T, = 9a/(agri) - fy/ry (3-22b)

¥e assume }l/rl is spall and neglect it for the calculation.
During the sawtocth ramp, but before there is significant
stochasticity, onrly the P/s8 term is present, increasing the
shear, After the onset of stochasticity. the tern TS 1s
dominant, but the time-scale for decreasing the shear is long
compared to the mode growth time. After the mode is stabilized
by ien viscosity, this term becomes important for decreasing the
shear. Because the return path through the parameter space is

not precisely known, we use the alternative picture for resetting

the shear, as described in Sec. 2.

Post Crash: Partial Masmnetic Reconnection

If the mode growth stops at finite amplitude without full
magnetic recomnnection, the helical structure remains for a much
longer t{ime than the stochastically enhanced growth time.
Although 1t is difficult to quantify the mode evolution after a
partial reconnection, we can qualitatively identify three stages
after the temperature crash and mode stabilization. Ian the first
phase, the stochastic diffusion tends to poloidally syametrize
the helical current in the stochastic portion of the island.

This corresponds to the postcursor decay. In the second phase,
the mode begins to grow from a finite amplitude island but with a
locally flattened g-profile around the g=1 surface. In the third

phase, the mode grows with the classical reconnection time const-



ant (if the amplitude is large enough to be in the classical
reconnection phase, i1f not with the linear growth rate) until the
cordition for stochastic mode acceleration 1s again established.
Estimating the decay time for the first phase

Tiecay ° pGArX4/A (3-23)
where Arx‘is the thickness of the diffused layer around the
rational surface, we have Tdecay = 23ms for the parameters of JET
(ar = 5cnm, c/mpe=0.080m and Ati.?xlﬂfio). This is comparable to
the decay time of the postcursor as cbserved in JET. For the
second phase, we take Trrl/VAp =10 %, from Ref.[32], which gives
4 ms for one e-folding growth (VA:SXIOGE/S, R=3r). For a partial
reconnection we assume that the initial perturbation to start the
sawtooth is }3ni=10_3 (island size is about one temth of rl)
This value is consistent with observations that a helical struc-
ture can remain during the entire sawtooth period as is clearly
seen in the phenomenon of the "snake”[33]. 1In this case, 10ms is

—~

necessary to reach B =.0l, which 1s characteristic threshold
value for the stochasticity. The Sweet-Parker reconnection tinme
is about 3ms which is approximately equal to one e-folding tirme
at the reduced growth rate. Summing up these time constants, the
total time of these three processes would be about the 40ms
observed experimentally. About half of the time is mode decay
and about half mode growth, allowing only a few e-foldings fronm

an initial significant amplitude island. ¥For our simplified

nodel we adjust the growth rate 7. to achieve an appropriate



match to the ramp time, and explore the effect on the dynamics of
variations in the growth time. We do not directly follow the
decay process of this helical structure during the first phase
but inciude this period in our adjusted growth rate.

As the model for the shear of new symmetric state after the
partial magnetic collapse, we choose the second model in §2.4 for
the first step of the analysis. Assuming a parabolic current

distribution, the shear is obtained from Egq.(2-49) zas
s(rew) - (1 - 3(28,/8)%1s (3-24)

if the mode stabilization occurs before the magnetic axis and X-
point merge. In addition to setting the shear parameter to the

new value we choose a reduced amplitude for the um/n=1/1 magnetic
perturbation En=B

ni- as described above. We follow the develop-

ment of (Bn, s) using these initial vazlues.

Post Crash: Full Maenetic Reconnection

If the mode growth continues until the magnetic axis and the
x-point merge, then we assume that the full recomnection of the

Kadomtsev model occurs, with

s{new) = &2, (3-25)

In this case, the remaining ampl:tude of the helical perturbation
would be very small as was shown in many numerical simulations

[25,28]. ©W®e choose Bni of the order of 10 °™ in this situation.



which is adjusted to give a reasonable oscilliation of ¢{0), with
the mode growth rate taken to be the combination of the linear

and recoanection values.

3.2 Examples of dvpamical oscillastions

¥e show typical examples of the temporal evolution following
the model equations (3-1) and (3-21) with the corditions (3-24),
[lor (3-25)] ard the appropriate By;- We find four types of
sawtooth oscillations, depending on the parameters. The four

types are tabulated in Table 1. Tyvpes [I? to [IV]I are as follows.

[I] The first type is characterized by rapid growth after
stochasticity sets in followed by the stabilization of the magne-
tic perturbation before the stochasticity reaches the magnetic
axis. The temperature crash is not complete and an m/n=1/1

island persists.

[II] The second type is associated with the propagation of
the stochastic layer fo the axis, but the mode is stabilized
before the full magnetic reconnection occurs. The central temp-

erature is flattened, but a m/n=i/! island persists.

[III] The third type includes a full magnetic reconnection.
Stochasticity develops before the complete magnetic recoanection

cccurs, leading to an enhanced growth rate.

[IV] The fourth type is free from stochasticity and includes



the complete wagnetic reconnectiion. In type tIV], the mode
growth is slow during the entire reconnection such that am exp-

erimental distinction can be made from case [III7,

Figure 5 is an example of case [I]. We choose the typical
parameters of a JET Ohmic plasmal34]: R = 3nm, By = 3.45T, T, (0D -
4keV, T;(0) = 3keV, n, (0) - 6.5%x10' 9/, deuterium ions, and g =
0.1. These parameters correspond to « = 18§00, Iy = 7x10_5, and
T, V,/R ~167. We choose the normalized linear growth rate in the
non-stochastic region as Trg = IO-S/TA- A reduced growth rate
has been used to account for the reduction of the linear growth
rate due to the local flattening of the g-profile, and the delay
in the growth due to the decay phase after the collapse. ¥We also
take B ; = 1073, noting the fact that the island width of the
order of 0.1r1 seems persistent during the whole sawtcoih period
with a partial magnetic collapse.

The development of the shear and magnetic perturbation is
shown. The g value on axis oscillates around 0.7. The initial
value solution of (gn,s) merges to a periodic oscilliation. An
expanded time scale is also shown at the onset of the rapid
growth in (c). The growth rate changes substantially on a time
scale less than 1007,. Figure 5(d) also illustrates the develop-
pent of the stochastic region in the radial direction at the
onset of the rapid magnetic growth. The mode saturates before
the stochastic layer touches the geometrica! axis. The typical
value of the change of the shear parameter (or equivalently,

¢{0)) by the magnetic rearrangement is of the order of 0.05. The



decay phase of the perturbation is not modeled in time; the
successive calculations are made by the initialization rule of (3-
24). This holds for Figs.6 to 8 alsoc.

The second example in Fig. 6 is for case [II]. TWe choose a
slightly lower demnsity, ne(O) - 4x10'%/2%  Other parameters are
the same as 1in Fig. 5. The periodic change of s and B, 1s shown.
The dynamics is alsc characterized by a sudden change of the
growth rate of the mode, and by a fractiomal reduction of shear
after the crash. The expanded time scale near the stochastic
trigger is also shown in (c) and (d). The stochasticity region
reaches the geometric center before the rode amplitude stops
growing., In this case the full collapse of electron temperature
would be observed, A similar value for the change of ¢(0) at the
crash is obtained compared to the first case (~0.07 in this
case).

The change from type [I] to type [II] by decreasing the
density 1s understood by studying the marginal stability condi-

tion, v, >~ 0. This can be written, in the quasilimear limit,

s
DM/DQL“_“I, as
3/2
PATE C bid v .
0. 117(2es) 2/8 (A hy ()" 8/5—L8)2/55L/5 L (5.95)
RVTe (:Jprl VA

Expressing R, n T., Bt in m, 1020/m3, keV and Tesla,

e’ e

respeciively, we have




F4/5 2/5,.-4/55-6/5, -4/3; -1/532/5 .
B;/Y = 0.033s° 7e Ry ngg™ °Tyoy ' 7BT (3-27)

for D plasea (TizTe)‘ The condition that the stochastic layer

o~
reach the axis can be obtained, approximately, from Fig.3 as Bn
~ 0.033. Combining these relations we have fthe condition that

the stabilization takes place before the stochastic layer reaches

the axis (i.e., partial temperature collapse) as

2/5_.-4/55-6/5_ -4/5 -1/972/5 _
2s £ Rm n20 Tkev DBT <1 (3 28)

An equality on the right gives the crossing of curves {(2) and (4)
in the parameter space of Fig. 3. The higher density case fends
to show a partial temperature collapse (curve (4) lying below
curve(2) compared to the low density case (curve (4) lying above
curve(2)), assuming that the other parameters are egual

The third example is shown in Fig.7. cerresponding to case
[ITI]. We take the same parameters as in Fig.§, except that B ;
= 1079 and T.o = 5x10"%4.  The mode reaches a full magnetic recon-
nection. The maximum ¢{0) during the period is close to 1.2, and
stochasticity appears during the growing phase of the magnetic
perturbation.

The fourth example is shown in Fig.8 for the case of [IV].
The parameters are the same as in Fig.b, excepl that Bni=10_5 and

Tr0=2X10_3. Since the maximum value of 2(0) is 1l.14 in this



case, the stochasticity does not play an i1mportant role in this
situation. Comparing type [IV] to type [{III7, in which the full
magnetic reconnection occurs involving the magnetic field
stochasticity, the path in parameter space does not show a
qualitative difference. The sawtooth crash time, however, will
be much shorter in type [IIT] than in type "IVI. The trigger of
the magnetic perturbation is also seen in type (III] but not for
type [IVI.

The parameter dependence for the appearance of type [II1]
and [IV] can be understood by the commetition between the resis-
tive growth and resistive increment of the shear. If we use

Eg.(3-21) and the resistive forn TrrA=32/3Sv1/3 [47, we have the

relation between Bn and s after the crash as

By = By exp((3/56)e 252/3514/8) (3-29)

-~

From Fig.3, we sece that stochasticity does not appear 1if Bn,
given Bq.(3-29), is larger thanm 0.062 at s=0.16, i.e., if the mode
reaches the axis before the current layer becomes stochastic,

This hkolds, if the condition

1.ox10 e 282/3 5 1n(0. 0278 ) (3-30)
is satisfied. An increase in magnetic Reynolds number § thesn
takes the trajectory from case [III] to case {[IV].

To visualize the processes discussed above, we sketch possi-

ble paths for sawtooth oscillations in the parameter space of



Fig.8 in Fig. 8. Four curves are drawn, labeled by I through IV,
corresponding to the four cases. Curves [I2-{III] have three
parts labelled by A, B, and C. 0On A the node grows slowly with
the resistance being classical. The increasing shear, due to the
classical transport also occurs on a slow time scale. On B the
electiron viscosity arising the stochasticity is felt, leading to
explosive growth of the perturbation followed by saturation due
to the enhanced viscosity. On C the saturated mode partially
decays and flux redistribution leads to a state at the initial
lower value of shear from which the process repeats itself.
Curve [IV] has basically two parts labelled i and C'. The mode
applitude grows until the ¥-point and the original magnetic axis
merge and disappear. On €', the magnetic flux redistribution
leads to a topologically new symmetric state, from which the

process repeats itself.



§4 Conclusions and DPiscussions

In this paper we have demonstrated that stecchastization of
field lines, resulting from the interaction of the fundamental
m/n=1/1 helical mode with other periodicities, plays ar important
role in sawtooth oscillations. The time scale for the stochastic
tepperature diffusion has been determined. It was shown to be
sufficiently fast to account for the fast sawtooth crash, and is
generally shorter than the time scales for the redistribution of
current. The enhancement c¢f the electron and ion viscosity,
arising from the stochastic field lines, has been calculated, The
enhanced electron viscosity always leads to an initial increase
in the growth rate of the mode; the enhanced ion viscesity can
ultimately lead to mode stabilization before a complete tempera-
ture redistribution or flux reconnection has occurred.

A dynamical model has been introduced to calculate the path
of the sawtooth oscillation through a parameter space of shear
and amplitude of the helical perturbation. The stochastic trig-
ger to the enhanced growth rate and the stabilization by the ion
viscosity are also included in the model. A reasonable prescrip-
tion for the flux reconnection at the end ¢of the growth phase
allows us to determine the initial q-value for the successive
sawtooth ramps.

Types of Sawtooth Oscillation Jur model predicts that four
types of the sawtooth oscillations are possible even for 2 plasma
with 2 monotonic q{r) profile. It is found that the collapse of

the central electron temperature does not necessarily mean that a



full reconnection of the magnetic flux occurs.

There are two types of rearrangement of the magnetic
configuration, namely:

(E-1) In the case of partial-magnetic reconnection, the q(0)
values oscillates around 0.7, and the oscillation ampliitude 1is
small (an example in Sec.3 gives 6q(8) ~ 0.05).

(¥-2) In the case of full magnetic reconnection, the minimunm
q(0) value is close to unity. QRoughly speaking, q(0) oscillates
in the range of 1 and (say) 0.8.

The temperature on the axis can show three classes, namely:

(T-1) Temperature on the axis T_ (0) does not show a sudden
collapse. Rapid temperature rearrangement is limited fo an
annulus near the gq=1 rational surface, which then gradually
propagates to the axis.

(T-2) T,(0) is subject to rapid decay, when the stochastic
region invades the geometrical axis, before the magnetic island
reaches the axis. (The magnetic perturbation either saturates
after the stochastic region touches the geometrical axis, or
grows to a full reconnection. )

(T-3) T,(0) collepses because there is a full magretic
reconnection, butf the collapse 1s slow without stochasticity.

Time Scales In our dynamic model of the sawtooth cycles,
there are four typical phencmena that occurs during a2 cycle, each
with 2 time scale for the change of zagnetic field: (1) the slow
mode growth below the stochastic criterion; (2) the switch on of
the stochasticity and rapid growth of the magnetic perturbation;

{(3) the reconnection process; and (4) the decay of the helical



structure after the mode stops growing.

The first grocess is no different from conventional models.
The second process results in a sudder growth of the helical
perturbation, which may be assoclated with the experimentally
cbserved "magnetic trigger?” When the parameter (En,s) reaches
the stochasticity onset criterion, the enhancement of the growth
rate is very large, and the enhanced stochasticity and current
diffusivity further accelerate the growth rate of the
perturbation. The change of the growth rate occurs within 100TA.
We note that the rapid change in growth rate is characteristic of
the case of (M-1) and the part of (M-2) in which magnetic
stochasticity plays an essential role {(i.e., type [III]). This
mode] also predicts that the stochasticity does not affect the
growth rate for the situation of (K-2) if ¢{(0) 1s always close to
unity. The wmagnetic trigger would not be observed in experiments
if the full magnetic reconpection occurs without stochasticity.

The time scale of the temperature collapse, caused by the
heat transport across stochastic field lines, has been compared
to experimental observations on various machines., and shown fo be
consistent with those observations. As discussed above, this
temperature collapse can be either partial or total, and is not
necessarlly accompanied by a total field liae reconnection.

Stochasticity also can greatly enhance the reconnection
process, through the electron viscosity term. The process is the
large amplitude phase of the enhanced growth. This fast recon-
nection a2llows the hot core to shift on the same time scale as

the temperature crash, as observed experimentally. The distinc-




tion between the flattening of the temperature by stochastic
diffusion and by fast stochasticityv-induced reconnection is
therefore noi determined¢ by the timescale zlone.

Experimental observations could include various combinations
of the oscillations discussed above; i.e, Type [I] (M-1,T-1),
Type [I1] (¥-1,T-2), Type [III] (M-2,T-2), and Type [IV] (M-2,T-
3). To classify the sawtooth experiments, the temperature crash
and magnetic rearrangement must be separately observed. In the
case of a partial reconnection, the flattening of the temperature
and ¢(0) below unity after the collapse are observed at the same
time. The situation, in which the island stops growing but the
stochasticity reaches the axis., occurs more easily for the strong
shear case, 1.e., low g profiles. The case where T,(0) has a
partial collapse before a full collapse, sometimes called as
"compound sawtooth”{14], can occur with a monctonically de-
creasing q, ¢(0) remaining below unity.

The lack of correspondence between the numerical codes with
q{0) considerably below one [25,263, which show complete recon-
necticns, and experimental observatioans [13]., have lead to con-
sideration of more complicated g-profiles{3i]. In particular,
the existence of a persistent g=1 island in JET, but with large
excursions in radius during the sawtooth (the “snake”)[33]1, has
lead to consideration of 2 g-profile that is flattened near the
g=1 surface [22]. WNumerical calculations indicate that such
profiles are consistent with 2 partial reconnection [22,35].
However, the recovery phase of the sawtooih (the ramp)} 1s not

self-consistent in the calculation, ¥ithin the context of our



theoretical picture more complicated g-profiles are certainly
possible., While they are not necessary to qualitatively explain
many of the observations, they may be necessary fo explain the
motion of the "snake”.

Although the effect of field fluctuations in modifying the
transport coefficients has long been known, it is only recently
that the effect has been used in toroidal codes[30]. It is clear
from our study that it is most impeortant fo do so. This will
ultimately allow for the treatment of the decay phase of islands
after an incomplete reconnection, and can also bear on the time
evolution of the shape of the g-profile. An important diagnostic
for such codes would be the shapes of the hot and cecld regions.
Recent developments in the experimental observations have made
possible the determination of the shapes of these regions. For
example, a Kadomtsev type reconnection, which has not been
thought to predict the 'hot crescent’, was found to lead to a
situation in which the hot core is distorted intc 2 crescent when
more elaborate computations were made(26]. 4 simillar full
computation could defermine the shape of the cross sections of
the hot and cold regions including the stochasticity.

It has recently been suggested that inertial effects can
play a role in a fast reconnection [38]. If stochasticity 1is
present, then additional inertial effects are not necessary to
explain the observation. Inertial effects might be distinguished
by the time scale of a low shear reconnection for which stochas-
ticity is not important.

The analysis of the stabilization by the icn viscosity is



based on a perturbation treatment., More thorough study is neces-
sary to investigate gquantitatively the reduction of the growth
rate in the large viscosity cases. This would improve approxi-
mate stability criterion (8-27). The final decay phase of the
helical configuraticn is not completely analyzed in this paper.
¥hen the mode i1s marginally stable, the temporal change is much
slower than the characteristic mcde growth rate. Experimental
observations on the decay of the postcursor have reported that
the postcursor damps with the time scale of a few (or few tens)
of milliseconds. When the linear mode growth is greatly reduced,
the nonlinear coupling to higher m-nmodes may take away mode
energy. The higher m-modes are more ecasily damped by the ion

viscosity. These problems await future analysis.
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Apoendix Al Transport coefficient in the presence of magnetic

stochasticity

e briefly outline the derivation of the electron thermal
diffusivity, current resistivity and ion viscosity in the pre-
sence of magnetic stochasticity. The electron thermal diffusi-
vity and the current viscosity have been discussed in literature.
e follow the argument by Boozer for this problem [28].

The kinetic equation for electrons ir the presence of magne-

tic stochasticity can be written as

af q a af
— + veVE 4 —(E+vxB).V f == (l|v [Dy)— + C(D)
at B ax 7 ax

(A1-1)

where C is a collision operator and Dy indicates the diffusivity
of the magnetic field line 1n the presence of stochasticity.

We assume that f 1s close to Maxwellian and is estimated by
the shifted Maxwellian distribution. In order to obtain the

electron thermal diffusivity, we calculate

a .l 5 af
——[J—mv ]W |DM——d3V]. (A1-2)
ax "2 / ax

Writing this tern as (a/ax)EnxeaT/&x] (where x is the direction of

the gradient of the distribution, the z-axis is taken in the



direction of the ensemble-averaged magnetic field), and

evaluating the integral, we have [29]

Ie = <3/E)VTGDH . (A1-3)

The equation for the current diffusivity I1s obtained by

setting af/av -(mvH/T)f in Eq.(4d1-1), multiplying by qV”/lvq]

.

and integrating over the velocity space, This gives the

necessary electric field to balance the curreat viscosity as [29]

2 Syy/1 - _p. 2 _
£, [Ca? v, 11yadvrT - —y (41-1a)

or

(A1-4b)

Dropping the inertia terms, the parallel component in Chon' s law

can be written

_ 2
E,+ (VXB)Z = 7”2_ AVED, (A1-5)

where 7 1s the classical resistivity, and A is to bhe determpined

from (Al-4). Evaluating the integrals in Al-47297,



/mooc?
A= —HG "“Z—VTEDM . (A1-8)
2 5

The ion shear viscosity can be obtained in a similar manner,
Operating on Eg. (Al-1) with the integral mivydgv, we have the

equation of the motion in the y-direction as

g a afg
nj —oVy + mynveWWy + qn{E+vxB), =——Jmivy(IVH|DMm—d v

1
ot J 2x ax

(AL-T)
where Vy is the fiuid velocity in the y-direction and the

collisional drag force by electrons has been negiected.

Evaluating the velocity integral we have
3. _ -
[aivylv, Catsa00a®y = sin; Crg; //RIDyCaY /50, (41-8)
The viscous force i1s given as
Fy = (a/ax)mini(vTi/JE)DM(aVy/ax). (41-9)

¥riting the viscous force as

Fy=Vaynjug Vi, (A1-10)



we have

}li = (VTi/ﬁ)DH‘

(A1-11)

Comparing Egs. (A1-3) and (A1-6), we have the relation

r ¢l
A, = —un—
© 8 Omg

Comparing Eq. (A1-3) and (Al-11) we have

Ri/xe = VTi/SVTE'

(A1-12)

(A1-13)



Aopendix A2 Growth rate of magnefic perturbafion in the presence

of stochastic plasma transoort

The linear growth rate of the m/n=1/1 mode has been exten-
sively discussed in the literature, Following the argument of
Aydemir [30]}, in which the current diffusivity a is included, we
evaluate the linear growth rate, in the presence of additional
ion viscosity uj. The linear mode growth rate is derived by the

linearlized reduced set of equations as [30]

23 ~ ~

— + V] = Ve (42-1)
at

2% " -

— + VU= 7] - av%]

at (A2-2)

where the quantities ﬁ and 3 indicates the stream function and
parallel current of the m/n=1/1 component, f=v2$ and %évzﬁ_

Fe study the effect of the i1on viscosity in a perturbative
manner. ¥e employ an order-of-magnitude estimate to evaluate the
ion viscosity damping term in Egq.{(42-1). The stream function
and vorticity 5‘change rapidly near the mode rational surface.
The characteristic scale length of this change, w, which 1s much

shorter than the minor radius of the rational surface, is derived



in Ref.[30]. Using this value we estimate the right hand side

of Eq.(A2-1) as
2% =2
u-ved = -uii/w . (A2-3)

The eigenmode analysis gives the rewritten form of (42-1), in the

absence of the ion viscosity, as [30]
ag/at - TOS =0 (A2-4)

Adding the ion viscosity damping perturbatively, this relation

becomes
as/at - 785 = -pii/wz, (A2-3)
such that the new growth rafe is

Ty = Ty - pi/wz. (42-8)

The mode growth rate T and the thickness w were derived, where

the m/n=1/1 MHD mode is stable, as[30]

R A R
To(—) = 5(2es)*/S— —31/5 (42-7)

and




R,
— - @es) M3 VB /8 (42-8)

Substituting Eqs. (42-7) and (A2-8) intc Eq. (A2-6), we have

B A R
Tg 7T - 5'1/3—%(233)2/5[———— ——1_2/5 (A2-9)
2 Bgfp Yy

where the suffix s indicates the enhancement by the magnefic

stochasticity. If we use the relation that

2
2VT1 .mp

ui/]._ = (AZ'IO)

2
T!.'VTe QOC

in (A2-9), and substituting for T from (A2-7), we have

R A R A R
TS(—) - 5(283)4/5[—4—]1/5 , 5_1/3(258)2/5-0([ _]3/5

V4 0T YA Borl V4
(A2-11)

where the dimensionless coefficient &« is given as



(42-12)

Noting the powers of A in-the first and second ferms in the right
bhand side, we see that, when the stochasticity switches on and 2
is small, the first term dominates over the second term and
accelerates the mode growth, If the stochastic transport
coefficient becomes larger, however, the second term can exceed
the first one, thus stabilizing the mode

We note here that the expression Ecq.(A2-11) is derived with
the assumpiion that the ion viscosity is treated as a2
perturbation. The determination of the condition for zero growth
rate from Eq.(A2-11) will include some numerical uncertainty.
The purpose of the analysis here is not an exact calculation of
the growth rate, but to indicate that the stochastic i1on

viscosity can stabilize the mode.
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Figure Captions

Fig. 1 ¥odel Tokamak Geometry. Coordinates and the location of
the mode rational surface (g=1) are shown in (a). Magnetic
island and the stochasticity region (hatched region) are
illustrated in (b). Ar, 8, and &, indicate the width of the

maln magnetic island, the thickness of the stochastic layer

near the O-pcint, and that near the X-point, respectively.

Fig.2 Overlapping of secondary magnetic island around the
n/n=1/1 fundamental island as a function of the normalized
magnetic perturbation amplitude, gﬁ, at the pcloidal angle
(a) of the 0-point and (b) ¥-point. {s=0.8). Hatched
region indicates the stochasticity layer. Main magnetic
island separatrix is shown by the dctted line in (a).

Fig.3 Domains of stochasticity and reconnection on the s-§;
plane. The upper solid line (1) shows the condition for
full reconnection, i.e. the magnetic island reaches the
geometrical axis. The lower solid line (2) indicates the
condition that the stochastic layer reaches the geometrical
axis. The lower dashed line (3) indicates the boundary,
above which stochasticity enhances the mode growth. The
upper dashed line (4) shows the criterion for mode

stabilization by lon viscosity.

Fig.4 Typical examples of the magnetic configurations. Symbols



4, B and € correspond to those in Fig. 3. The dashed lines
are the boundaries of the stochastic regions, and the solid

lines the separatrices,

Fig.5 Example of the temporal evolution for case [I], partial
magnetic recornnection and partial temperature crash,
Development of s and ﬁ; are shown in (a) and (b). The decay
phase, shown by a dotted line, does not include a time scale.
An expanded time scale is shown in (c¢) for the magnetic
perturbation and im {(d) for the radial location of
stochasticity boundary (at O-point, see Fig.2(a)) near the
crash time. Parameters are: &=0.1, «=i800, FG=7x10_5,

_1n-3 _1n-1 _yn-3
TrO—IU , p=10 and Bni—lo .

Fig. 6 Example of the temporal evolution for case [II], partial
magnetic reconnection and central temperature crash.
Development of s and ﬁ; are shown in (a) and (b). The
evolution of the magnetic perturbation and stochastic layer
are shown in (c) and (d) with an expanded times scale, mnear
the collapse time, It is seen that the stochastic region
reaches the geometrical axis. Parameters are the same as

in Fig.5 except F0=8.95x10'5 and «=1130.

Fig. 7 Example of the temporal evsoslution for case [III], full
nagnetic reconnection and central temperature crash; the
stochasticity enhances the mode growth. Development of s

~
and B are shown in (a) and (b). Expanded time scale is



"shown in (¢) and (&) near the crash time. Parameters are

the same as in Fig.8§ except Tr0:5X1074 and Bni=10'5.

Fig.8 Example of the temporal evolution for case {IV], full
magnetic reconnection and central temperature crash: the

stochasticity does not enhance the mode grcwth. Parameters

are the same as 1in Fig.5 except Tr0=2X10_3 and Bni=10‘5.

Fig. 9 Schematic examples of the trajectories of the dynamical
evelution. The four cases [I] to [IV] are illusirated. 1In
case [I], the slow evolution first follows A, the rapid
growth follows B; relaxation closes the cycle on C. In
case [[1]1, the stochastic region touches the geometrical
axis and the central temperature crashes before the mode
stops growing. In case {[TII], there is a full collapse
after the triggering of the fast growth, without mode
stabilization. In case [IVI], stochasticity does not

play an important role.




Table 1

The classification of the sawtooth oscillations.

Magnetic Fiel

d Stochasticity

Taportant Not
Hagnetic
Collapse
Partial Full
Temperature
Collapse
Partial I - .
Full II 111 IV i
5 |
i |
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