ST
1SSh 0915-6334

NATIONAL INSTITUTE FOR FUSION SCIENCE

Electron Impact Excitation of Positive Ions — Partial Wave
Approach in Coulomb-Eikonal Approximation

Qian Wen-Jia, Duan Yun-Bo, Wang Rong-Long and H. Narumi
(Received — Aug. 6, 1991)

Sep. 1991

This report was prepa}ed as a preprint of work performed as a collaboration
research of the National Institute for Fusion Science (NIFS) of Japan. This document is
intended for information only and for future publication in a journal after some rearrange-
ments of its contents.

Inquiries about copyright and reproduction should be addressed to the Research

Information Center, National Institute for Fusion Science, Nagoya 464-01, Japan.

& NAGOYA, JAPAN



Electron impact excitation of positive ions — partial wave approach

in Coulomb—eikonal approximation

Qian Wen—Jia, Duar Yun—Bo®, Wang Rong~Leong and Hajime Narumi™*

The Laboratory of Atoms and Radiations, Liaoning University,
Shenyvang 110036, China

** Department of Physics, Hiroshima University, Hiroshima 730, Japan

ABSTRACT.
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tive tons is formulated firstly and is demonstrated in the 1s—2s, 2p excitations
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The eikonal approximation (EA) and cikonal related approximations have
been reasonably successful in predicting interrnediate—energy cross sections for
electron—atom (ion) scattering processes (Walters 1984). In fact, the EA is 2
kind of the distorted wave model (DW) rather than that of the potential type
one (Henry 1981, Qian er al 1989z). Great efforts have been dedicated 1o
develope the eikonal type distorted model, in which a straight path integral of
mnteraction potential appears as a phase of an exponential function. This phase
integral term can be used to describe the distortion over the continuum projec-
tile wave due to the interaction between the projectile and the bound
electrons. Because of the additivity of the phase integral with respect to various
mteractions, itis provided with a2 favorable conditions for describing the mult-
ple scattering from many electron targets in principle (Qian er af 1989b).
However, asis well known, serious difficulties in handling the calculation of
the phase integral terms have been an obstacle to extend the application of the
EA to complex atoms {(ions) and there has no alternative but to rely on analytic
target wave functions of a restricted type for the process calculations. This is
very severe drawback of EA, if not fatal, in its practical applications (Franco
1971, 1973, and Gien 1986).

But now this state of affairs has been changed. W. J. Qian and
H. Narumi have particularly paid an attention to the fact that the product of

the Coulomb interaction and its eikonal phase integral term, such as

TG ) =expl— ) di] W
i

oj



where z is parallel to incident wavevector k; and r,=|r —r |, can be ex-

pressed by some expansion similar to the famous Laplace formula
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where r, and r are the larger and the smaller of r, and r;, respectively, and
Y,, is the spherical harmonic function. Qian et al (1989) derived the following

spherical harmonic expansion for the product term mentioned above
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In Egs. (3)~(5), the A and A; are called, respectively, the multipolarity
of the bound states and that of the continuum states. In Eq. (4), ,F (a,b,c;z} is
hypergeometric function which is an absolutely convergent function of r, and
r; in the case of Re(c-a—b)>0. The usual notation for the Wigner 3—j
coefficient is used in Eq. (5). When #,—0, Eq. (3) is reduced to Eq. (2), as is ex-
pected. One can readily see that the expression of Eq. (3) together with Egs. (4),
{(5) and (6) provide an essential basis of the eikenal partial wave theory, just as
Eq. (2) does for the Born's partial wave treatment.

In fact, in our Coulomb—eikonal approximation (CE), the direct scattering
amplitude tor an electron colliding with a hydrogenic ion in initial state a and

exciting it to final state b is

. )l
70, k)= — 5 <0 ) =L, 1> )
with
)= 6, 1) (8a)
(=3 (=)
&0, 1) =0,6)F 2, 5, (sb)

where F iﬂ{Zi_, ro) and F i—)(Z P r,) are Coulomb wave functions with
i !

outgoing and ingoing boundary conditions in the field of an ion with charge

Z;=Z7 and Z;=Z7-1, respectively, and ¢,(r;) and @,(r;) are the initial and final

hydrogenic bound states.



Combining BEgs. (3) and (8) with (7), adopting an approach similar to
that of Burgess et al (1970, 1974), the excitation cross section Q for the transi-
tion between two levels n,l,—n,}, by a beam of unpolarized electrons 1s given by

the partial wave expansion
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where kj; (kP are respectively the wave and orbital angular momentum
quantum numbers of the colliding electron before (after) the collision. The

coefficients f,,  resulting from the angular integral are given as
Q
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In Eg. {10) we have chosen & representation for the overall wave function in
which the coupled angular momenta I L1LM and 1,lEM are good quantum
numbers, where L is the total angular momentum and M is its azimutha] num-

ber. By employing standard tensor operator methods (Edmonds 1957), we get
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where [[(,.7,, =)=}, + D?(2j, + 1) «-. When 5 -4, fs, s reduced to

the coefficient f, which have been evaluated by Percival (1957) for the
Born partial wave theory. The conventional symbol for the 9—j coefficient is
used here.

The values of D 1, depend only on radial functions of atomic bound elec-

iron and incident external electron, i.e,,
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where P ; and P , are the radial wavefunctions of the initial and final
Ale s

states of the atomic system, F ” (Zijrg)and F, " (Zgry) represent the spherical
Coulomb waves of the initial and final continuum states of the projectile with
Z,=7 and Z,=7-1. In the present paper we do not consider the effect of ex-
change temporarily.

The Coulomb—eikonal predictions of the integrated cross sections for 1s—
2s e~He excitation are shown in Fig. 1, plotted versus incident— electron energy
E; in eV, ranging from just above the threshold 1o 1000 eV, and compared with
other theoretical data and available experiment. Curve CE is the present CE
prediction. The conventional Coulomb—Born cross section lies above the ob-
servation curve everywhere and has a finite non—zero value at threshold al-
though there remains a discrepancy of almost a factor of two or more at
threshold between theory and experiment (Dolder er @l  1973). As is expected,

Curve PG (plane—wave Glauber) goes smoothly to zero at threshold. Whereas



the present results provide apparent improvement near threshold, exhibit better
behaviour at intermediate energy range and tend to the Coulomb—Born results
in the Timit of high incident energy. As far as we know, this work ts the first at-
tempt that the long—range interaction between the projectile and the nucleus are
taken into account properly for both incident and final channel under the
eikonal framework. In our calculations we take Z,=7, Z,= Z—1, so our theory
can be regarded as Coulomb—projected eikonal model as contrasted with
Coulomb—projected Born which was proposed by Geltman (1971) firstly. The
inclusion of the Coulomb potential is responsible for the non—zero—threshold
cross section. Furthermore, the CE approximation assumes the distortion effect
due to the charge cloud of the target ion on the basis of the CB approximation.
This phase distortion appears as an oscillating term that lead to decrease the
prediction as compared to CB, and for this reason, to improve the results at in-
termediate projectile energies (E, <3500 eV) as well as the behaviour near
thresheld significantly.

Fig. 2 shows various theoretical data of ls— 2p excitation in
¢He" collision. The long—dashed curve labeled CBI is the unitarized
Coulomb—Born approximation, neglecting exchange effect. The double
dot—dashed curve labeled PG is the Glauber prediction neglecting
Coulomb~distortion. Curve CG represents the Coulomb—modified Glauber
prediction. Both PG and CG show zero value cross section at threshold
(Thomas 1978). Our present result shows reasonable data which lies between
curves PG and CB I for the most part. Judging by appearance, the curve CB Il

without exchange provide ‘best’ agreement with experimental data



(Dashchenko et o 1974). But this is no more than a coincidence since the in-
clusion of exchange goes so far as to produce unreasonable deviation from the
expected values conversely. It was reported that the eikonal cross sections are
mcreased when the exchange amplitudes are taken into account in the case of
electron— hydrogen elastic scattering (Foster et al 1976, Onaga et al 1987).
Presumably it should be possible for CE to improve the agreement by including
the exchange effect for the case of electron impact excitation.

It is important to note that our evaluation of the cross sections are in pro-
gress through formal procedure, and the techniques involved can be applied to
many—electron atomic system easily. In conclusion, we expect that our
formalism will be able to open a good vistas of the eikonal theory. We are now
extending the present model to some fundamental ionic processes of interest

over wide range of ionic species.
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Captions

Fig. 1: Various theoretical predictions of the 1s—2s excitation cross sec-
tions (in units of 107%za}) plotted vs incident electron emergy B, in eV. Curve
CE is the present Coulomb—eikonal results; short dashed curve CBI, the
Coulomb—Born results; the long dashed CRBII, the unitarized Coulomb—Born
predictions; the dot—dashed curve CG, the Coulomb modified Glauber results
(Thomas 1978); the double dot—dashed curve PG, the Glauber results ignoring
Coulomb distortion (Narumi et al  1975); --- experimental points.

Fig. 2: Same as Fig. I, but for 1s-»2p excitation for He',
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