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Abstract

Ice pellet injection experiments were carried out in the
JIPP T-IIU tckamak in order to study thermal (cooling) transport
just after injection. The cut-off problem of ECE signals due to
the rise in density has been resolved by careful measurements of
temperature profile at a high time resolution (At=2ms) during its
decay phase. The phenomenon of ultra-fast cooling (so-called
pre-cooling) has been identified using the two different methods
of ECE and soft X-ray(SXR) measurements. In the outer regicn
(r>ripny) ©f the plasma the cooling propagation velocity is
comparable to or slightly greater than the pellet velocity, while
in the central region (r<rjpy) the propagation velocity is
significantly greater than the pellet velocity. Ice pellet were
injected into various kinds of JIPP T-IIU plasmas, the current
and sawtooth phase of which had different wvalues, including a no-
sawtooth plasma. The existence of the sawtooth oscillation and
arrival of a pellet near the inversion radius rijpy of the
sawtooth oscillations have turned out to be necessary conditions
for the pre-cooling, and even just after the sawtooth crash the
pre—-cooling may start around the g=1 surface, not at the plasma
center. Simultaneous measurements of electron temperature and
density profiles indicate that the central temperature always
decreases before the central density increases. Some anomalous
transport might be induced by pellet injection at the central

region.

Keywords ; JIPP T-IIU tokamak, ice pellet injection, cocling

transport, sawtooth oscillation, ¢=1 surface



1. Introduction

Ice pellet injection is indispensable for fueling magnetic
fusion reactors. Many important characteristics of plasmas have
been observed with pellet injection experiments. In Alcator-C
(GREENWALD et al., 1984) the global energy confinement time of a
pellet-fueled Chmic plasma increased with increasing electron
density in the high-density range. In JT-60 (KAMADA et
al.,1989), the enhanced energy confinement was observed when a
pellet reached inside the g=1 surface. Improved confinement
modes have been observed in Doublet-III (SENGCKU et al., 1985)
and ASDEX plasmas (KAUFMANN et al., 1988). Associated with the
peaked density profile due to pellet fueling are the temporal
behavior Jjust after the pellet injection, which has given
fruitful informations about particle transport, and the particle
diffusion coefficient and inward pinch velocity, which have been
analyzed in some devices [ASDEX (VLASES et al.,1987), TFTR (HULSE
et al.,1987) and JIPP T-IIU (KAWAHATA et al., 198%a)]. Related
to the MHD activity are snake oscillations at the g=1 surface,
which have been observed in JET plasmas (WELLER et al., 1987).
Ice pellet injection is also useful as a plasma diagnostics,
e.g., the safety factor has been measured in TEXT (DURST et
al.,1988).

The so-called pre-ccoling phenomenon (ultra-fast propagation
of the cooling front) is another interesting characteristic of
torus plasmas, where the speed of propagation of the cooling
front due to pellet injection is much faster than the speed of

the injected pellet, as observed in ASDEX (VLASES et al., 1983),



Alcator-C (GREENWALD et al., 1985), TFR (EQUIPE TFR, 1985, 1987),
JET (CHEETHAM et al., 1987), and Doublet-III (SCHISSEL et al.,
1987) . In TFR, the speed ¢f propagation of the cooling front
increases monotonically from the edge of the plasma to the g=1
surface and increases drastically inside the g=1 surface. In
JET, outside the sawtooth inversion radius there is no evidence
cf the cooling front propagating faster than the pellet speed,
but the electron temperature over the whole central region
decreases immediately when the pellet reaches the sawtooth
inversion radius. However, it has been considered that rtrhe
results from the ECE diagnostics might not be real phenomena
because of the cut-off problem of ECE signals due to the quick
incréase in density.

The pre-cooling phenomenon has also been observed in JIPP T-
IIU plasmas (SAKAMOTO et al., 1990). In order to study phenomenon
in more detail, and especially to examine the cut-off problem,
time- and space-resolved diagnostics (ECE, soft X-ray and
interferometer) were utilized and time evolutions of both the
electron temperature and density profiles were simultaneously
measured. In particular, the cut-off of ECE signals due to a
large increase in density with pellet injection has been
carefully avoided by measuring the electron temperature profile
over the whole region of the plasma column and by comparing this
with the soft X-ray signals. This paper presents our experimental
studies on the pre-coocling phenomenon with ice pellet injection,
and particularly the correlation with sawtocoth activity. 1In
addition, simultaneous measurements of electron temperature and
density profiles have made it possible to suggest the mechanism

behind the fast cooling phenomenon.
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The experimental set-up and diagnostics system for this
study are presented in Section 2. In Section 3, the experimental
results are described and discussed,and the conclusions are

given in Section 4.

2. Experimental Set-up and Diagnostics

In the JIPP T-IIU tokamak (R/a=0.91m/0.23m, circular cross-
section, B;=3T), ice pellet injection experiments were carried
out with gas-gun-type single-pellet injectors, the pellet size of
which is 1.4mmd x 1.4mmL or 1.0mm® x 1.0mmL. The velocity of
the pellet is in the range of 400-900 m/s, which is routinely
measired by a time-of-flight technique with two optical sets.

The layout of the device and diagnostics system is shown in
Fig.l. The electron temperature was measured by electron
cyclotron emission (ECE) signals with a 10-channel grating
polychromator (KAWAHATA et al., 1988), the temporal and spatial
resolutions of which are At=2ms and Ar=2cm, respectively. The
electron density prefile was measured with a 6-channel far-
infrared ( HCN laser ; A=337Um ) interferometer ( At=200ms ,
Ar=2cm ) (KAWAHATA et al., 198%) . Soft X-ray emission from the
plasma was measured with an 8 channel detector array of Si
surface-barrier diodes ( At=2ms, Ar=1.5cm }, with an energy range
0.8-20keV. The trajectories of the pellets were observed

tangentially with a CCD camera, as shown in Fig.l.



3. Experimental Results and Discussion

The time evolution of typical plasma parameters with ice
pellet injection is shown in Fig.2. The plasma current was 210
kA, the line- averaged electron density N, was 5.6x1019 m‘3, and
the central electron temperature To{0) was 1.1 keV for the target
plasma. Just after pellet injection, the density increased to ng
= 9.3x101%173 and the electron temperature decreased to 0.57 keV.
The 1loop voltage had a positive spike due to the decrease in
temperature, while the plasma current was kept constant. The
decay in the density once raised by pellet injection was
remarkably slower than the recovery in the electron temperature.
The energy stored in the plasma gradually increased with a time
constant of about 15 ms, and this is almost consistent with the

density and temperature behaviors.

3-1. Pre-cooling phencmenon

Figure 3 shows the time evolution of the electron
temperature measured by the ECE system at 10 different major
radii at ice pellet injection. The major radius Ry of the center
of the plasma was about 88.0 cm, and the ECE signals covered
almost the whole region of the plasma column (i.e., -0.5 < r/a <
0.92, r=R-Rgy). Since the inversion radius rjpy of the sawtooth
oscillations was about 6 cm, the major radii 84.3, 88.3 and 92.2
cm were inside ripy. In this discharge, the pellet injected from
the outer midplane is proved to have penetrated up to R=91.5 cm
by measurement from a CCD camera,

In the case of pellet-injected plasmas, it 1s always
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important to examine the validity of the ECE signals due to the
cut-off problem caused by the sharp rise in density. Although
the pellet was injected from the low-field side, the signals from
the high-field side begin to decrease almost simultaneously with
those from the low-field side, as shown in Fig.3. Hence the
experimentally~observed profile of the electron temperature
decays almost symmetrically, as expected from the fast relaxation
along the magnetic field lines (Tge~10ms). This symmetrical
decay of the temperature profile indicates that the ECE signals
are free from the cut-off problem caused by the rise in density.
If there is a cut-off layer in a plasma, it should result in a
big dip in the measured "temperature profile” of the low-field
side and thus the profile should become asymmetrical, as pointed
out by CAMPRELL and EBERHAGEN (1984). Actually, such a dip in
the "temperature profile” on the low-field side was also measured
when a large pellet was injected into a high-density plasma.

The cooling front (the start of the temperature drop at each
radius) is indicated by arrows in Fig.3. The start of the drop
in temperature has been defined as a 20 % decrease of the
temperature change AT, due to pellet injection, in order to
remove the ambiguity caused by the fluctuation of the signals.
Figure 4 represents the position of the cooling front, denoted by
arrows in Fig.3, as a function of its arrival time. The position
of the sawtcoth inversion and the ablation region (penetration
depth) as measured by a CCD camera are also shown in the figure.
In this case, the pellet was injected inside the sawtooth
inversion radius. It has been found that the propagation

velocity of the cooling front is not constant in the plasma
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column. In the outer region of the plasma column, the cooling
front penetrates into the plasma with a moderate and constant
speed. The upper solid line in Fig.4 was drawn by the least-
squares method of four points for major radil larger than 95 cm.
The velocity obtained from the gradient of the solid line is 6$0
m/s, which is comparable with the velocity of the pellet. The
lower line was drawn to be symmetrical to the upper line with
respect to the plasma center. The observational data from the
high-field side (R<82c¢m} roughly coincide with the lower line,
and this implies that the cooling front propagates concentrically
from the edge to the central region of the plasma, accompanied by
quick relaxation along the magnetic surface, The propagation
velocities of the cooling front in the outer region in all cases
are in the range of about 700-1600m/s, which is comparable to or
slightly faster than the pellet velccities (400-900m/s). Since
the propagation velocity is systematically larger within a factor
of one to two than the injected pellet speed, some pre-cooling
mechanism might exist even in the outer region.

On the other hand, the propagation velocity in the central
region is significantly faster than the pellet velocity. Roughly
speaking, this pre-cooling speed is one or more orders of
magnitude faster than the pellet speed, although the scattering
of the data is large.

This feature has also been supported by chord-integrated
soft X-ray measurements. As shown in Fig.5, the SXR signals have
decayed due to pellet injection. The time at which each soft X-
ray signal starts to decay 1is shown by crosses in Fig.4. This

indicates the existence of fast-cooling phenomenon, as do the ECE
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measurements.

The intensity o©f the soft X-rays is a function of the
electron temperature, density and impurity concentration. When
soft X-rays are dominated by Bremsstrahlung without significant
change in the impurity concentration, the change in the SXR
signal AI is approximately related to the temperature and density

changes, ATg and An., by the following equation:
AL/I ~ (1/2+4€{/THAT /T, + 2Ane/ne, (1)

where €7 1s the lower limit (€1~800eV) of the energy range for
SXR measurements. In the outer region of the plasma colunn,
where the electron temperature is lower than 2€,/3, i.e. r/a>0.5,
the value of AI / I is more sensitive to AT, rather than Ang.
The decrease 1in the SXR signals at the dominant ablaticn
region(r/a~0.5), where (AT./To| = |An./ngl, may be explained by
equation (1}. We should take into consideration that the
remarkable decrease in the SXR signals was observed at the
central region of the plasma, where the rate of change AI/I is
more sensitive to An, rather than AT.. This implies that the
density at the central region did not increase just as the
cooling front arrived at the center, which implies pre-cooling.
This 1is confirmed by direct measurements of density and

temperature profiles, which are presented in section 3-3.

3-2. Correlation between pre-cooling and sawtooth activity

Figure 4 shows that pre-cooling starts near the region of
sawtooth inversion. As described in the Intreduction, a strong

correlation of the cooling propagation speed with the sawtooth
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inversion radius has been observed in TFR and JET. In order to
examine the relation between the sawtooth oscillation and pre-
cocling, pellets were injected into various kinds of JIPP T-IIU
plasmas, 1i.e. with different values of current and sawtooth
rhase.

The propagation of the cooling front is shown in Fig.6 in
the same way as in Fig.4, where an ice pellet was injected into
an Ohmically- heated plasma without sawtooth activity {a no-
sawtooth plasma), where the plasma current was about 100 kA. The
two solid lines in this figure were drawn by the least-squares
method. It is found that the cooling front propagates from the
edge to the center of the plasma with constant speed and the pre-
cooling never occurred. This implies that the existence of the
sawtocoth oscillation is a necessary condition for pre-cooling.

Next, we examined pellet injection in the case where the
pellet never reached the sawtooth inversion radius. Figure 7
shows the temporal behavior of ECE signals when the regicn of
sawtooth inversion was around R=95cm and the pellet penetrated to
R=100cm. We can see no drastic change in the ECE signals around
the central region of the plasma column, although the cooling
propagation velocity throughout the ablation region is comparable
to the pellet velcocity. Therefore, these data tell us that for
pre-cooling it is necessary for the pellet to reach the sawtooth
inversion radius.

The correlation between pre-ccoling and sawtooth oscillation
was examined in more detall. Pellets were injected into plasmas
with various plasma currents. Figure 8 shows the dependence of

the position rpre (minor radius at the start of pre-cooling) on



the sawtooth inversion radius rjpy. The position rppre is defined
by the intersection of the extrapclation lines of the ECE
signals inside and outside rjny, as shown by the sketch in Fig.8.
The solid line shows rpre = ripy and it is found that rpre is
almost always less than rijpy. This indicates that pre-cooling
had started to occur inside the sawtooth inversion radius.

The dependence of the pre-coecling characteristics on the
sawtooth phase ( 0% and 100% mean Ijust after and before the
sawtooth collapse, respectively) is shown in Fig.3, where rpre
has been normalized by rjpy. A standard sawtooth model predicts
that just after the sawtooth crash (i.e. the case of 0% phase),
the value of g at the plasma center is almost unity. Thus, the
model suggests that pre-cooling should start at the plasma
center, 1f it is assumed to have a strong correlation with the
g=1 surface. This , however, contradicts the results given in
Fig.9, where the normalized radius rpre has a weak dependence on
the sawtooth phase and clearly has an off-set at phase 0%,
although the scattering of the data is large. Another
possibility that could explain these data is that the central
value of q, g{0}, is kept sufficiently below unity even Jjust
after the sawtooth crash, as observed experimentally in TEXTOR
(SOLTWISCH , 1986) and TEXT (WEST et al., 1987). According to
this model, the explanation may be that pre-cooling starts Just
at this g=1 surface far from the plasma center, but inside the

standard sawtooth inversion radius.



3-3. Simultanecus measurements of density and temperature

profiles

In this section, we discuss the mechanism of the pre-
cooling. As previously stated, the time-evolution of SXR signals
suggests that the central density never increased at the pre-
cooling phase. This is because the SXR signals from the central
region quickly decayed just after pellet injection, even though
the signals should be more sensitive to the change in density
than the change in temperature. We measured the density profile
with a 6-channel interferometer to examine the change of central
density Jjust after injection. Figure 10(a) shows the density
profiles just before and after injection. The pellet was ablated
mainly at r=a/2 and the profile had become hollow. The error of
the <central density measurement i1is estimated to be
Ang (0) /ng (0)=5%. The penetration depth as measured by a CCD
camera was about 18 cm, which means that the pellet reached
around r=5 cm. This is consistent with the change in the density
profile. The temperature profiles of the plasma corresponding to
this are shown in Fig.10(b). It i1s found that just after
injection the central temperature had already decreased, although
the central density had not yet changed, as suggested by the SXR
data.

Next, we discuss the stored energy at pellet injection.
Figure 10(c} shows the pressure profiles calculated with measured
density and temperature profiles. The decrease (-AW) and
increase (AW') of the stored energies in the central and outer

regions due to pre-cooling were calculated from Fig.10(c).



Although the difference between the pressures in the outer region
before and after injection is within the error of the
measurements, these two values are comparable with each other
within an error of 10 %; that is, |AW-AW'[/AW~0.1. (here, AW~60J
and this value is about 1.6 % of the total energy of the plasma.)
Consequently, this may mean that the stored energy lost from the
central region has been transferred to the outer region due to
pre-cooling.

The mechanism behind the pre-cooling phenomenon seems
difficult to predict theoretically. An explanation by GARBET et
al.(1989) might be one possible candidate. Present experimental
data show that the propagation time inside the sawtooth inversion
radius is estimated to be a few tens of a microsecond or less and
the central density never increased. In addition, a strong
correlation with the sawtooth activity has been observed.
Therefore, we can say that some MHD instability might play an

important role in the pre-cooling phenomenon.

4. Conclusions

In the JIPP T-IIU tokamak, ice pellet injection experiments
were carried out in order to study the thermal (cocoling)
transport in the torus plasma. The main results are summarized
as follows.

{a) The phenomencn of fast cooling has been identified by
two different and independent measurements, ECE and SXR.
In the outer region(r>riyhy) the cooling propagation

velocity is comparable to or slightly faster than the



pellet velocity, while in the central region (r<rinpvy)
the propagation velocity is significantly faster than
the pellet vwvelocity. This is represented as ‘"pre-
cooling”.

(b} Ice pellets were injected inte various kinds of JIPP T-
IIU plasmas, having different values of current,
including a no-sawtooth plasma. As & result, it was
found that the existence of the sawtooth oscillation and
the arrival of a pellet near the sawtooth inversion
radius are necessary conditions for pre—cooling.

(c) Pellet injection into plasmas whose sawtcoth phases are
different from each other indicates that there is not a
strong correlation between the phase and the minor
radius of the start of pre-cooling, and this relation
has an off-set at the phase of 0%. This might give some
information about the mechanism of sawtooth cscillation.

(d) The central temperature decreased even though the
central density never increased during the pre-cooling

phase.
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Fig. 1 Experimental arrangement of the JIPP T-ITU tokamak.
The pellet injector and typical diagnostics are presented.
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