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Abstract

A KOND-P scheme, which is the application of the Kernel Optimum Nearly-
analytical Discretization ( KOND ) method for the construction of numerical schemes
to the parabolic type partial differential equation, is presented. Typical numerical
results are shown to clarify that the KOND-P scheme yields quite less numerical
ertor than the conventional explicit scheme by 2 - 3 orders measured by the root

mean square deviation from analytical solutions.
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§ 1. Inroduction

Various numerical algorithms for solving the three types of partial differential
problems of hyperbolic, elliptic and parabolic equations have been developed. '~V
While they yield fairly good results for many problems, more effort will be required
to attain higher accuracy and stability when we investigate further the finer structure
of the problem being studied. One of the authors has reported a thought anal-
ysis on numerical schemes and developed a new method called ”Kernel Optimum
Nearly-analytical Discretization (KOND) method” for the construction of numeri-
cal schemes.” In the thought analysis, we investigate logical structures, ideas or
thoughts used in the objects being studied, and try to find some key elements for
improvement and/or some other new thoughts which involve generality.!=**) In the
previous report,*? the 2nd order KOND-H scheme, which is one of the applications of
the KOND method to the numerical scheme for solving the hyperbolic type equation
to the 2nd derivatives, has been shown in detail. It has been demonstrated by the
numerical results of the 2nd order KOND-H scheme that the KOND-H scheme yields
fairly less diffusive error compared with other conventional schemes and has fairly
high stability.!?’ It has been also demonstrated by the numerical results that there
appears higher diffusive error and/or noise in the calculation of the higher derivatives
of the solutions. This structural property of the error would be common in all numer-
ical schemes. A brief description of another application of the KOND method to the
parabolic type equation ( called “the KOND-P scheme” ) has been also shown as a
demonstration for the wide applicability of the new method in the previous report.!?)
In this paper, we present in detail the KOND-P scheme with a treatment of the
boundary values of higher derivatives and show numerical results by the KOND-P
scheme comparing with those by the conventional explicit scheme. Numerical ex-

amples by the KOND-P scheme show quite less numerical error than those by the



conventional one by 2 - 3 orders measured by the root mean square deviation from
analytical solutions.

In §2, the KOND method deduced from the thought analysis on numerical schemes
is shown briefly. The 1st order KOND-P scheme, which is the application of the
KOND method to the numerical scheme for solving the parabolic type equation to the
1st derivatives, is presented in detail in §3 together with the treatment of the boundary
values of higher derivatives. Numerical results by the 1st order KOND-P scheme are
given in §4 together with discussion comparing with those by the conventional explicit

scheme.

§ 2. KOND Method deduced from Thought Analysis on Numerical
Schemes
We present here briefly the thought analysis on numerical schemes to lead to the
KOND method.’? In order to understand the structure of the ideas or thoughts used
for numerical schemes for simulation, we try to analyse the basic process for solving

a partial differential problem,
Lf(x) = g(x), for x=(zy,---,24) in a domain @ C R?, (1)

where L is a linear or nonlinear differential operator, f{x) is an unknown function,
and g(x) is a given function. When it is hard to solve analytically Eq.(1), we use
usually two approximate methods, i.e. one is the approximate analytic method sach
as the perturbation method and the other is the discretization of Eq.(1) to solve
the finite-difference equations. When we compare the ideas or thoughts themselves
involved in the two methods, we may find the following elements of thoughts ( we call
the idea or thought itself involved in some method, simply like as ” thought [A] ” ).

In the approximate analytic method:



[A] to find global approximate continuous solutions.

[B] to find local approximate continuous solutions.

In the discretization method:

[C] to find finite-difference equations approximately equal to source equations.

[D] to find discrete approximate solutions on grids.

Since the finite-difference equation for Eq.(1) itself has finite error compared with
the source equation, Eq.(1), we had better solve Eq.(1) directly as possible, avoiding
to use the finite-difference equation.

We now assume here that the analytic true solution f(x) of Eq.(1) is obtained.
The whole informations that give the whole property or character of Eq.(1} and its

solution are included in the following set of the analytic solution and its derivatives,

{ f(x): azf(x)) aijf(x)a e }’ (2)

where 8, f(x), 0, f(x),--- stand respectively for 3f(x)/8z,, 8*f(x)/dz;z,, and so
on. The each element of the set of Eq.(2) obeys respectively the following set of

differential equations,

{ Eq(}‘.), Eq(4)a Eq(S), U }: (3)

where Eqgs.(4), (5), - - -, are the followings;

Gl Lf(x)=g(x)}, forx=(z1, ,24), (4)

8ij[ Lf(x):g(x) ]1 for x= (El""7zd)) (5)

We call Eq.(1) "the source equation”, Eq.(4) "the first branch equations”, Eq.(5) "the

second branch equations” , and so on.
b



Mapping the set of analytic solutions, Eq.(2), onto the grid points X2 in a given
upiform or nonuniform grid G* with mesh size hy, we may obtain the following set of
{ discrete values of solutions at grid points, interpolation curves around grid points,
connection relations at neighboring grid points } which is equivalent to the set of
Eq.(2):

{ set of discrete values of solutions at grid points )

{ fm atfm at;fm }1 (6)

where the subscript n denotes here a d dimensional integer.

{ set of interpolation curves around grid points }

{ Fu(s), 8.Fa(s), 8,Fu(8), --- ), (7)

where s is defined as s = x — x%.

{ set of connection relations at neighboring grid points )

Fn(_hd) = fn—l- Fn(hd) = fn+1- (8)
8iFn(—hd) = aifn—l- aan (hd) = 8zfn--i-1~ (9)
3,_,Fn(—hd) = 3,Jf,1_1. 6,_1 Fu(hd) = 6,3fn+1. (10)

Each element of the set, Eq.(7), should be the piecewise segment of the corresponding
analytical solutions of Eq.(2). The set of { the discrete solutions. Eq.(6), the segmental
interpolation curves Eq.(7), the connection relations of Egs.(8), {9), (10), --- }is
exactly equivalent to the sei of the true solutions, Eq.(2). Using the Taylor expansion,

the elements of the set of the interpolation curves, Eq.(7), can be written as follows;



Fo(8) = fat 2.0 fasi + 3. 0yfnsis, 2+ -, (11)

3

aan(S) = 6:fn+zazjfn53+Zazgkfn315k/2+ Ty (12)
J »k

at;Fn(S) = 3z;fn+Zaz;kfn3k+Zazjklfn5k51/2+ T (13)
k ki,

We see from Eq.(6) and Eqgs.{11), (12), (13), --- that the discrete values of solu-
tion, Eq.(6), are themselves the coefficients of the interpolation curves by the Taylor
expansion and therefore induce good approximate and locally continuous solutions
around the grid points. In other words, the set of the discrete values of Eq.(6) itself
becomes one of the best discretization for the whole informations of the continuous
true solutions, Eq.(2). This corresponds analogically to the representation of a given
function by the discrete specira with use of the Fourier expansion. Since we cannot
use the infinite elements of the set of Eq.(6), we use two or three elements from the
beginning in Bq.(6), for example, f,, 8,f., 8;f,. We then lose finer informations
included in the rest infinite terms beyond the terms of 8,, fn, in this example, in the
Taylor expansions. The rest infinite terms are considered to carry the semiglobal in-
formations for the uncovered regions between the neighboring grid points that make
the interpolation curves satisly the connection relations of Egs.(8) - (10). Using re-
versely the connection relations and introducing additional Taylor coefficients, i.e.
three more additional terms for one dimensional problem in this example, we can Te-
cover approximately the lost informations in the rest infinite terms by the additional
terms. In other words, the rest infinite terms in the Taylor expansions can be folded
up approximately in the finite additional terms by using the connection relations. We

then notice that if we have a method which is nearly analytical for obtaining better



approximate solutions for the more elements of the set of Eq.(6), we would get the
more accurate and denser informations for the set of the true solution, Eq.{2}. The
accuracy of the informations for the solutions by this method is optimum at the grid
points, as is seen from the above argument, and in other words, the discretization by
this method is kernel optimum.

The thought analysis mentioned above leads to the following main set of thoughts
to be used in the method for the construction of the numerical scheme, which is the
combination of the elements of the two sets of thoughts for the approximate analytic
method { [A], [B] } and the discretization method { [C], [D] }. We call the method
"Kernel Optimum Nearly-analytical Discretization (KOND) method”.

Main set of thoughts of the KOND method,;

{{1], [1], [T}, [IV] }, (14)

where the four elements of thought are as follows,

[1] to use the source equations and their branch equations { Eq.(1), Eq.(2),
Eq.(5),--- }.

[11] to find high-order approximate analytic solutions by using some methods
such as the perturbation method, the Taylor expansion and others.

[[1] io find the set of discrete solutions { fu, &;fa, 8, fa, -+~ } that are the
coefficients of the interpolation curves { Eqs.(11), (12}, (13), --- } by the Taylor
expansions corresponding to the local continuous solutions around the gnd points.
[ The kernel optimum discretization of a function by the coefficients of the Taylor
expansion at every grid point. ]

[IV] to use the set of the connection relations { Eqs.(8), (9), (10), --- } in
order to include the semiglobal informations for the uncovered regions between the

neighboring gird points and to find the additional higher order Taylor coefficients



which represent approximately the rest of the infinite terms of the Taylor expansion.
[ Folding of rest terms of the Taylor expansion by the connection relations. ]

In the following section, we will apply the set of thoughts of the KOND method
{ [T}, (1], [I1], [IV] } to the numerical schemes for solving the partial differential

problem of parabolic equations.

§ 3. 1st Order KOND Method for Parabolic Equations ( 1st order
KOND — P Scheme )

We apply here the KOND method to the numerical scheme for solving the
parabolic type equation. For simplicity, we treat here one dimensional parabolic
equation used for diffusion equations, and develop a scheme to obtain the discrete so-
lutions to the 1st derivatives, ie. f, and 8, f,. Here, the notations such as 4,Y, 8,Y,
and 8,,Y denote dY (t,2)/0t, 8Y (t,z)/Pz , and 8?Y (¢, z)/0z? , respectively.

According to the first thought element, [I], of Eq.(14), and from Eq.(4), the
source equation and the 1st branch equation for the diffusion equation are written as

follows:

O&f = P, (15)
P = &[D(t)o.f ], (17)

where D(t,z) is a given diffusion coefficient. The m-th branch equation for

Eq.(15) is written generally as

A(Omaf) = BnaP, | (18)




where 0,,.f is an abbreviation for 8™ f/dz™.
According to the second thought element, [II], of Eq.(14}, we solve Eqgs.(15) -
(17) locally around a point of (¢4, z,). Using the Taylor expansion around the time

of 5, we write 8,,. P, as
Omz Py = 8pePt + By PiT + ... , (19)

where 7 = £ — 1y, OmePr = OpmeP(t, 2,), and 8, PF = 8,,.P(t, 2,,)). When m =
0 in Eq.(19), then Eq.(19) becomes the Taylor expansion for P itself. Using Eq.(19)
and integrating Eqs.(15) and (16} with respect to 7 over the time interval of A#, we

obtain approximate solutions for f**? and 8, f5*1 at the point of (f;11, z,,) as follows,

FE = R PEAL PR A2+ (20)

O f5 = 8,5 + 8, PEAt + 8, PF(AD? 24 ..., (21)

where f£ = f(t,,2,) and O, f% = 0, f(t, ).
We now proceed to the third thought element, [III], of Eq.(14). Using the defini-
tion of Eq.(17), P, 8,P* 0, PF and ,, P* in Eqs.(20) and (21) are given as follows,

P: = 6$D:axf: + szafo:a (22)
O, P = 8,D'8,f5 + 8,D%0,. fF + 8, DF3s, fF + DEOp. fF, (23)
8 PF = 0h. D0, f5 + 20, DE02 5 + Dis. fF, (24)

atz:P: = 81521--05;81:]“: + 62.’:Diatxf: ‘l" zatJ:Dganf: + an-Diat.’sz:

+ ath,:ang: + Diat&rf:: (25)

Using Eq.(18), we obtain 8 f¥, 8. f* and 8,3, f in Eqs.(23) and (25) in the follow-

ing forms,



O f = 0, P

n

= 0o, D8, f¥ 4 20, D80, fF + DFas, 7, (26)

6t2::f: = 62xP-::

B3 DED, 1 + 30, D%y, 5 + 30, D% s, f5 + DR, £, (27)

5t3xf: = 831P:
= 0w D0, 1 + 405, DE oo f5 + 682, D05, f5 + 40, DF0, f* + DX, fF,
(28)
Using the values at the time of #) and/or ¢;_;, we obtain the derivatives of D, for
example, ;D% = (D} — DEY)/At, 8,D% = (DE,, — D*_)/2h, and so on, where
h (=2, — z,_1 } is the mesh size. When we usc the approximate solutions for fEt
and 3, ff*! to the order of (At)? in Eqs.(20) and (21), we can determine the values of
f5*1 and 3, f¥*1 with use of Eqé.(22) - (28}, the values of D at the time of ¢, and/or
tk_1, and the values of 8., f* (m =10,1,2,3,4,3).
We proceed to the final thought element, [TV], of Eq.(14). Since we have to
determine the values of ff*' and 8. %+! from those of f* and 8,f* we need the
values of 8,..fF (m = 2,3,4,5) included in Eqs.(22) - (28). We therefore use the

following interpolation curves up to the term of s, f* of the Taylor expansion,

F(s)= [+ 0,fks + OuufE52 124 By fRs% 6

+ Ogp fRst [24 4 05, f%5° 120, (29)

aIF:(S) = azf: + aZ:rf:s + aSIf:SZ/Q_’_ 64.1:f:33/6

+ 85, fr st /24, (30)

We use following four connection relations for f¥ and 0,f* from Eqs.(8) and (9) in

order to determine the values of &, /% (m = 2,3,4,5) by f* and a.f*,




Fi(=h) = fiy, (31)

F:(h) = :+17 (32)
BIF:(—h) = Bxf-r;:—la (33)
3,_F:(h) =0, 1]:4-1? (34)

Substituting Eqs.(29) and (30} into Egs.{31) - (34), we obtain the four additional

Taylor coefficients, Ope f* (m = 2,3,4,5), which are given by f* and 8, f%, as follows,

Bazfr = 2(fEp — 25 + F )W = (8 fhay — 8o 15-1)/2A, (35)
sz fy = 15(F ks — [r-)/20° = 3(0u [y + 80ufy + Qufpy) /207, (36)
Bucfy = —12(f5y: — 2/% %f,’:.l)/h* +6(0. f¥0 — OuFh_ 1)/, (37)
Bz fy = =90(fLyy — fr1)/R° 4 30(Befiss + 40ufy + D foy) /R, (38)

Using the initial values of f,, i.e. f!, we obtain the initial values of d, f,, L.e. &.f%,

by 8:fn = (fasr — far1)/2h-
We now consider how to treat the boundary values of f* and 8, f¥. The boundary
conditions for the source equation, Eq.(15), are given usually in one of the following

two forms,

boundary condition (a) : f*¥ = const. (n=1,N), (39)

boundary condition (b) : 3.fF = const. (n=1,N), (40}



where (n =1 and n = N ) denote the boundary grids. We show here how to de-
termine the values of 8,ff (n =1, N) for the case of the boundary condition (a)
of Eq(39). [ I we use the boundary condition (b} of Eq.(40), then we exchange fF
with &, ff in the following argument. ] According to the thought elements [I11] and
[TV] of Eq.(14), the interpolation curve around the grid point z, and the connection

relations are given respectively from Egs.(29) and (30) and Eqs.(31) - (34) as follows,

FY(s) = f§ + 8. fFs + 0o f% /2 + 05, 125716

+ 8u, fFs* 124 4 85, 55120, (41)

O, F5(s) = 0, fF + 0 fEs+ Ban fEs2 /2 + B4, 557 /6

+ Bsp frst /24, (42)

F(-h) =1, (43)
Fy(h)= [z, (44)

3 F5(~h) = 0.ff, (45)
0:Fy(h) = O.f5. (46)

Since 8, ff is unknown this time in addition to O, fF (m = 2,3,4,5), we have to
remove the last term of 3, f} in Egs.(41) and (42). Substituting Eqs.(41) and (42)
without the term of 8s, f¥ into Eqs.(43) - (46), we obtain the three additional Taylor

coefficients, 3., fF (m = 2,3,4), and 8, fF, as follows,

Oufy = (Tfs —8f; — F)[20° - (015 +2 0. £3)/ A, (47)

ds.f5 = 3(fF — fE)/R® — 68,15 /h2, (48)



Bu f5 = 6(=5f5 +4f5 + f)/R* + 1200 f5 + 2 8.53) /R, (49)

0 1Y = Oufy — Onafih+ 0s [3H2(2 = i f; 17[6. (50)

Substituting Eqs.(47) - (49) into Eq.(50), we can determine the value of 8, fF
from the values of f¥ (n=1,2,3)and 8.f* (n=2,3). Using the same process
mentioned above, we can determine the value of 8, % by replacing A and the sub-
scripts { 1,2,3 } for grid points in Eqgs.(47) - (50) with —hand { N, N -1 ,N -2},
respectively.

Combining all above processes for the four elements of thoughts of the KOND
method, { [ 1], [I1], [I11], [IV]}, and for the boundary values, i.e. using Eqgs.(35)
- (38), Eqs.(22) - (28), Eqs.(20) and (21) to the order of (At)?, and also Eqs.(47) -
(50), we find the set of the discrete solutions to the Ist derivatives { fr31 g, fEr1 )
alter one time step from the state of { f¥, 8,fF }. We have shown here the 1st order
KOND-P scheme. If we use the 2nd order or higher order KOND-P scheme, we would
obtain more accurate and stable results to the higher derivatives of f in the parabolic

equations.

§ 4. Typical Numerical Results

We show here typical numerical results by the 1st order KOND-P scheme pre-
sented in the previous section. For the comparison of the numerical accuracy, we
also use the conventional explicit scheme, which is denoted by "EXPL scheme”
here after. The EXPL scheme obtained from the finite-difference equation is given
by 51 = f* + DA#(fr,, - 27F + fi)/R°. In order to test the accuracy
of the pumerical results, we calculate the following case with the analytical solu-
tion; { the diffusion coefficient D = 1, the initial profile of f (z) =sin {27z /A),

and the boundary condition {a) of f¥ = 0 (n=1,N)}. Here, A is one period



length of f(z). The analytical solution for this case is written as f(t,z) =
exp[—(27/X)*]sin{2xz/)). When we define M as the number of meshes in one
period length, A is given by A = MA, and M + 1 grid points cover one period length.
In order to measure quantitatively the numerical accuracy, we use the root mean

square deviation, ¢, from the analytical solution, which is defined by

N

o= {5 ¥ [ fuz)— PP 51)

n=1
The double precision programme is used for the following nuinerical calculations.

Figure 1 shows typical results of computation for the time evolution of ¢ in the
case of M = 20 and DAt/A? = 0.1, where two lines of ¢ by the EXPL scheme ( the
mark O ) and the KOND-P scheme ( the mark ® ) are shown in a semi-log scale.
We recognize from Fig.1 that the error of the KOND-P scheme measured by o is less
than that of the EXPL scheme by about 2 orders in this case. It is also seen from
Fig.1 that the tate of increment of ¢ in the KOND-P scheme is less than that in the
EXPL scheme.

Figure 2 shows typical results of computation to see the dependence of ¢ on the
number of meshes M in one period length in the case of DAt/h? = 0.1, where two
lines of 7 at the time of ¢ = 1.0 by the EXPL scheme ( the mark O ) and the KOND-P
scheme ( the mark B ) are shown in a semi-log scale. It is recognized from Fig.2 that
higher improvement rate of accuracy by increasing the number of meshes M can be
achieved in the KOND-P scheme than in the EXPL scheme. In the case of M = 40,
the error of the KOND-P scheme measured by o becomes less than that of the EXPL
scheme by about 3 orders, as is seen in Fig.2. The data in Fig.2 also shows that
improvement of accuracy by increasing the number of meshes saturates faster in the
EXPL scheme than in the KOND-P scheme.

It is clearly demonstrated by the numerical results in Figs. and 2 that quite

— 14—



high accuracy can be attained by the present 1st order KOND-P scheme. The local
multisubscales and delta function ( LMS-DF )} method reported in Ref.15 to improve
numerical schemes is also applicable to the present KOND-P scheme as well as to the

KOND-H scheme'? for the hyperbolic equation to attain further less numerical error.

§ 5. Discussion and Summary

We have presented the KOND-P scheme in detail and have shown the typical
numerical results by the scheme in the previous sections. We have clarified by the
numerical results that quite high accuracy can be attained by the present 1st order
KOND-P scheme. The KOND-P scheme is another example of application of the
KOND method to the parabolic type equations in addition to the example of the
KOND-H scheme for the hyperbolic ones.’® The KOND method was deduced from
the thought analysis on numerical schemes, which is presented briefly in § 2 to show
the reason why the KOND method yields the high accuracy of the numerical results.
The first two thought elements, [ I ] and [IT], inn the main set of thoughts of the KOND
method, Eq.(14), require that we should solve the given equations as analytically
as possible in order to attain higher accuracy, avoiding to use the finite-difference
equations which already contain finite errors. The third thought element, [III}, in
the KOND method reveals that the set of discrete values { f,, ,fn, Gy fa, --- }isone
of the best discretization for the continuous solutions and/or the given function, which
we have called ”the kerne! optimum discretization” of a function by the coefficients
of the Taylor expansion at every grid point. The fourth thought element, [TV], in the
KOND method clarifies the meaning of using the connection relations { Eqs.(8), (9},
(10), - -+ }, i.e. we recover approximately the lost informations included in the rest

infinite terms of the Taylor expansions by the additional Taylor coefficients,



which we have called ”Folding of rest terms of the Taylor expansion by the connection
relations”. Using the two thought elements, [III] and [IV], in the KOND method,
one of the authors ( Y. K. } proposed a method in Ref.12 for the digital signal
processing by the kernel optimum discretization for the analog signal f(¢) with very
high frequency components. The plural applications of the KOND method, like the
examples of the KOND-H scheme, the KOND-P scheme, and the method for the
digital signal processing mentioned above, are themselves demonstrations showing
the usefulness of "the thought analysis” introduced by one of the authors ( Y. K. )
to improve the objects being studied and/or to find some other new thoughts which

involve generality,'?~14)
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Figure captions

Fig.1. Typical results of computation for the time evolution of numerical error
measured by ¢ in the case of M = 20 and DAt/R? =0.1. Two lines of o by the
EXPL scheme ( the mark T ) and the KOND-P scheme ( the mark W ) are shown in

a semi-log scale.

¥ig.2. Dependence of numerical error measured by ¢ on the number of meshes
M in one period length in the case of DA¢/h? = 0.1. Two lines of o at the time of
t = 1.0 by the EXPL scheme ( the mark O ) and the KOND-P scheme ( the mark B

) are shown n a semi-log scale.
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