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Abstract

A new particle method in which a numerical particle carries density of physical
quantities, is introduced and discussed in this paper. In the conventional PIC method
particles do not carry the density of physical quantities but carry the mass, momentum
and energy themselves. In order to simulate the large change in the physical quantities,
it is necessary to change the particle size. However the change in the particle size in
the conventional PIC method may lead an unphysical error as shown in Fig.1, when it
is applied inappropriately. Our particles carrying the density eliminate this unphysical
error and can represent the large change in the physical quantities: One of example
computations shows that in an adiabatic expansion the four figures of density change

can be successfully simulated.
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1. INTRODUCTION

A particle-in-cell(PIC) method has been presented by F.Hatlow [1] for a computa-
tional scheme to analyze a meteoric impact problem. In this method, physical quantities
such as a position, mass and energy, are carried by numerical "particles”. The compu-
tation is proceeded by separating the fiuid equations into two phases. In the first phase,
the fiuid equations without convection terms are solved on the grids. In the next phase,
particles are pushed and the new values of physical quantities are computed by using
the new particle position in order to include the convection effect. The PIC method
has a great advantage to deal with a convection term in a simple way, so that it has
been improved and applied to fluid simulations by many researchers [2-9]. Some of the
methods have excellent advantages. Here, we introduce some of particle methods which
are related to our work.

The full-particle method is presented by McCrory et al. [2], Leboeuf ef al. [3] and
so on. They attemped to assign more information to a particle for improving accurancy.
They assign full information such as the position, mass, momentum, and energy onto a
particle. In their method, a discontinuous pulse transpotation are accurately simulated,
but difficulties with multistreaming and numerical noise are observed. The next one is
presented by Nishiguchi and Yabe [4,5]. In their method, the mass and internal energy
are carried by a particle, and in order to eliminate the first order diffusion the velocity
is distributed inside the particle area. The particle has a compressibility in order to
describe the large change of physical quantities.

In this paper we present a new particle method in which a compressible super particle
«carries the density of mass, momentum and energy. By using this density-carrying
particle we can eliminate an unphysical error shown in Fig.1. This unphysical error may
be introduced in the conventional PIC method with a compressible super particle, when
it is applied inappropriately. In our method we can successfully simulate the lazge change
of physical quantities without the unphysical error, as is shown in Fig.2. In the section
2 we present the motivation of our work. In the section 3 we describe the computational

method for density-carrying particle method in detail. Then we demonstrate the viability



of our method in the section 4. The section 5 devotes to conclusions and discussions.

2. MOTIVATION

In the initial stage of PIC method development F.Harlow [1] presented his method
in which the fluid was represented by Lagrangian mass points, moving through compu-
tational grids. The contribution to the change in each momentum and eneigy on the
grids from the particle was considered when the particle moves across the grid boundary.
This is so called the NGP{Nearest Grid Point) method. This method is the origin of
the numerical noise. The area(or volume)-weighting method eliminates this noise suc-
cessfully. One of disadvantages in the PIC method is that a large number of particles
is required in order to describe the large change in the physical quantities. This was
improved by Nishiguchi and Yabe [4,5]. They attemped to assign the compressibility to
the particle. In their method, the particle volume is changed with the change of grid
volume in order to simulate the large change in physical quantities. Their grid boundary
can move with the arbitrary velocity. However this method may introduce an unphys-
ical error which is demonstrated in Fig.1, when the method is applied inappropriately.
Figure 1{a) shows the initial state, where the upper figure shows a particle being placed
in grids. The particle has the same size as the cell size and stays at the center of cell
which is denoted by circles. The lower figure shows the density profile, where a dotted
line means the grid boundary. In Fig.1 the fluid is static with the flat profiles of density
o and pressure, so that the density in each region has not to be changed. The density
in the cell is determined by the following expression as is usual:

T

pe= =5 (1)

where g, m; and V, denote a mass density, a contributing part of a particle mass to the
specified cell and a volume of cell, respectively. The summation is taken over particles
contributing to the cell. When the mesh size is changed artifically as is shown in Fig.1(b),
V. is changed without any change in m/ in eq(1) in Fig.1, and therefore the density is
changed unexpectedly according to the grid motion in the conventional PIC method

with a compressible particle. This is not acceptable in the computation.



In this paper we propose a new method to eliminate this unphysical error: Ir our
method a compressible particle carries the density of mass, momentum and energy. For

example, the mass density p, in a cell is computed by

Z Wy
fe= = (2)

2W,

Here W, is a particle weight contributing to the specified cell and p, the particle mass
density. Figure 2 shows our results for the same example presented in Fig.1. This
example simulation demonstrates that our method describes the physical phenomena
correctly, even when the particle size is changed with the artificial change in the mesh
size; The density is not changed in time and is not changed by the change of particle

size. We describe the detail of our method in the following section.

3. COMPUTATIONAL METHOD FOR DENSITY- CARRYING PARTICLE
METHOD

a. Compressible Fluid Fquations
In this section we present the detail about the computational method of the density-
carrying particle method. As it is well known, the equation of continuous, momentum

and energy is represented as follows:

249 (i) =0, (3
o7 = .

T+ Vo=V, (4)
dpe = 3
L4V pie =PV 7, (5)

where p, 7, P, and e denote the mass density, velocity, pressure and specific internal
energy. First, we transform the three equations as follows:

9p

at+z?\7’p+p€'-«7=0, (6)



% + VP = —19P, )

™

a—;t-e-+€:'-\_7"pe+peﬁ-17:—l°§-?7, (8)

where the second term of the left hand side in each equation shows the convection term.

In PIC method, this term is represented by the particle movement through the cell.

b. Euler phase
As the basic equations for the Euler phase, we drop each convection term in egs.(6),(7)
and (8):

b? = —pv ) {;1 (9)
8 1
% =--VP, (10)
OE .
& = —(P+EV-, (1)

where F is used instead of pe and denoted the internal-energy density. For simplicity,

we consider the one-dimensional fluid equations:

dp du
T 12
ot~ ‘oz (12)
du 10P
% por (13)
o0F Ju
S =-(P+ B, (14)

In the finite difference form, three equations become:

~ Urie1js ~ Uea
§pes = — Rt AL = “1/2/_\2 =1z (15)
o~ At PTr— P
Sucimafz = *E—C’ Ap -, (16)
. " _ una_r_
$Ees=—(P5 + B Mtz Y ). )

Figure 3 shows the space-mesh structure. The superscript shows the index for time and

nx = n + 1/2. The physical quantity attached with the subscript ¢ means its value



computed on the grid or the cell center. The mass density, pressure and internal-energy
density are defined at the cell center and the others are at the grid point. The physical
quantity with = indicates the tentative value. By attaching &, the increment in physical
quantities during the timestep At is represented. Therefore the tentative values are

obtained as follows:

'6;: = p:,i + 5Z” (18)
Uiaf2 = Uy t 5;1:,;_1/2, (19)
E = E+6E,, (20)

"+ ¥
g™ = ; . 21)

Here ¥ means the physical quantities representatively. In the Euler phase egs.(15)-(21)

are solved implicitly and iteratively.

¢. Particle-mesh interaction and particle push

In this subsection, we describe the particle-mesh interaction and particle push al-
gorithm. The increment in each physical quantity of a particle is determined by the
area-weighting method from the eqs.(15)-(17). This one-dimensional interpolation is de-
cribed schematically in Fig.4. Figure 4(a) shows the present state and Fig.4.(b) the later
state. The area are A, and B; which are obtained by the overlapped region between a
particle cloud and cell. The particle has the same size as the size of the smaller cell of

two adjacent cells overlapping the particle. Then we obtain the increment in the particle

quantities:
bpp = Alg;c,g + Azg‘i‘;c,.‘n: (22)
buy, = A;E{z’c,,_m + A;g;c,gﬂlz, (23)
b, = Alm,i + Azfﬁ,aﬂa (24)

where the quantity with the subscript p shows the particle one. The area A, and A}
mean the weights. Then we obtain new quantities of particle from egs.(22),(23) and
(24):

Py =y + 8py, (25)



(ppup)n'{r1 = {ppup)” + (‘SPP)U; + P;(éup)’ (26)
E;H = E: + 8 E,. (27)

Next the particle is pushed by the velocity Ueomvec:
Ueconvee = A'lﬁl,,-_lp + A;Ec,i+1/23 (28)

where Ugonpec 15 determined by the interpolation from the cell velocity .. We employ this
treatment in order to include a collisional fluid property and to avoid the multistreaming.
This prescription is the same as that given by Brackbill [7]. From eq.{28) we obtain the

new position of the particle:

nt+l _ n
2, = Ty + UcomvecAl. (29)

Finally, we compute the contribution from the particle to the cell. By the area-

weighting method as shown in Fig.4(b), we present the contribution of one particle to a
cell:

urtt = BUt, (30)
Uil = BUH. (31)

The physical quantities are obtained by the following expressions:

Z Bpp;+1
oot = —?i—B—', {32)
> P

> B

“Z:—ll,lz = _PZ:—B;——’ (33)
»

Y B,E

Bl = - (34)

2B
1
In these eqgs.(30)-(34) B, and B, show the contribution weights of the particle to the

cell and the summation is taken over the particles contributing to the specified cell.



d. Computation Cycle
In this subsection, we review the computation cycle. The flow chart is described in
Fig.5. We present the sequence of computational flow. The following number corre-

sponds to the number in the flow chart.

(1) We compute the increment in the physical quantities on a cell by egs.(15)-(17):

E};; i=— 2,: At uc,£+1[2A"muc,i-1/2, (15)
o~ P - P
U123 = — A;j: —‘—A'x—’—l, (16)
SE. = —(P™ + E™)A “:,:Hfz - u:,:—uz
ex = —(P2 + EZ7)AY AT ). (17)

{2) We obtain the increment in the physical quantities on a particle from a cell by the

area-weighting interpolation:

5:01: = Alg}:’:,i + A2S;c—:,i+1a (22)
Su, = A g;c,;-llz + A,2(§-7:'-’c,z'+1[2: (23)
(SEP = Alm,i + Ang’c,‘_H. (24)

The exressions for the physical quantities themselves are eqs.(25)-(27).

p;H = Py + 6Py, (25)
(:""pup)ﬂ'-'-1 = (Pp"“p)’l + (6:0?)“: + P;(‘S“p)a (26)

Ertl = BT 4 §E,. (27



(3) The particle is pushed to the new position by the velocity of eq.(28)

22t = 27 4 Ugpmyec AL (29)

(4) The new grid position is computed by an appropriate velocity ug; which can be
selected arbitrary;

zpit = ol + ug i, (35)

For example, when u,; = 0, the scheme is the Euler one, and when u,; = u.;, it Is the
Lagrange one.
(5) We compute the cell quantities based on the new particle position, the new grid

position and the new particle quantities by the area-weighting interpolation:

2 BPP;H
peit=2 (36)

€2 Z Bp 1
P

Z B;;(Ppup)nﬂ

(peue)it = 2= (37)
25
P

Z BPE:H
i L J— 38
=ty (38)
P

n (pCUC)?+1
upl ' = T (39)

where 3", means the summation over all particles contributing to the specified cell.
Since we obtain full information of cell and parficle which are necessary to update the

computation, we return to the first step.

4. NUMERICAL RESULTS AND CONSERVATION LAWS



In this section, let us introduce some simulation results by the density-carrying
particle method. First, we present a simmlation for square-pulse propagation. Figure
6(a) and (b) are the first state of a square-pulse and the state of 200 time-step later,
respectively. This simulation is performed by solving the coniinuous equation at a
constant velocity. As is well known, full-particle method is powerful to describe such a
discontinuous surface. From the results of Fig.6 our method has also this advantage.

Next, we applied our method to a shock tube simulation. Figure 7 shows the profiles
of the pressure, velocity and density, respectively. The solid line shows the analytical re-
sults and the squares show the simulational results. In our method, an artificial viscosity

is nsed in the combinational form:

g =g+ qa, (40)
where 5 P
— U i OU .
= { alpCS(%)(A'r)) if z < 0; (41)
0, otherwise.
duy2 2 e 0u g
o = { 32,0(3;) (AI) , if oz < 0 (42)
0, otherwise.

Here C; means the sound speed, and a; and a, are adjustable constants of order unity.
Figure 7 shows that the shock-tube problem is also simulated successfuly by our method.
The pressure of the lower region is setted to P = 1.0 and the higher one is P = 10.0.
We employed 80 space grids and 4 particles per one mesh at the initial time for this

simulation. The cell boundaries moved with the velocity of u,; = 21 + u§” + eie1
We also checked the conservation laws for this shock-tube simulation. In order to check

the conservation laws we employed the following formulations:

Z PC,,AVZ‘ - Mt,O

Ap = , 43
M, (43)

1
Z(Ec,z + Epc,:ui;)AI/: - Et,O

AE =
Eip ’




where

AV, = Lead1f2 ™ Tep—1f2, (45)
|
Uei = '2'(UC,=—1/2 + Ueiq1y2)- (46)

Here, M, and E,; are the initial total mass and energy, respectively. This compu-
tation results for the conservation law check are shown in Fig.8.(a)-(b). In this case the
mass-conservation error was less than 0.2% and the energy-conservation error was kept
to be less than 0.5% during the whole computation. Our method keeps the conservation
laws correctly.

In order to demonstrate a viability of our method for the simulation of the large
change in the physical quantity, we performed the one-dimensional adiabatic-expansion
simulation. In this case both boundaries of a cell move with a fixed speed to the opposite
directions with each other to expand the fluid in cell. We employ three particles per
cell initially. The pressure and density of an ideal fluid should obey the adiabatic law
as shown by the solid line in Fig.9. The simulation result is denoted by squares. We

simulate successfully the four figures of density change in our method.
5. CONCLUSIONS AND DISCUSSIONS

In the conventional particle method a particle had no compressibility so that
it was difficult to deal with the comprehensive change in the physical quantity. In
order to solve this advantage, previous researchers [4-5] have attempted to assign the
comperssibility to the particle. By this improvement we were able to simulate the
large change in the physical quantities. However we found that such the improvement
might introduce unphysical error shown in Fig.1 when it is applied inappropriately. In
this paper we presented a new method which does not introduce unphysical error. By
employing this method we simulated successfuly a square-pulse propagation, a shock-
tube problem and an adiabatic expansion. These results demonstrated the following
features of our method.

(1) Our particle method carrys the density of physical quantities and the unphysical

error was removed.



(2) Our method has also the ability to simulate a discontinuous step correctly as well
as the conventional full-particle method.

(3) The large change in the physical quantities can be simulated by the grid movement
and the compressibility of the particle.

Though we employ the low-order area-weighting method in this paper, the higher-
order one, for example, by Nishiguchi and Yabe[4-5] can be also applied. The extension

to the multi-dimensional version can be also easily attained.
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Figure captions

Fig.1.(a) Initial state of static fluid simulation by a conventional method with a
compressible particle whose size is changed with the change of cell size in order to de-
scribe the large change i physical quantities. The upper figure denotes the positions of
cell and the particle. The particle stays at the center of each circles. The dotted lines
show the cell boundaries. In the initial state the particle has the same size as the cell
size. The lower figure is the density profile of the cell. (b) TLater state of the static
fluid simulation by the conventional method. The dash-dotted lines denote the initial
cell boundaries. According to the change of the cell volume, the density of the cell is
unexpectedly changed(see eq.(1)).

Fig.2.(a) Initial state of static fluid simulation by a density-carrying particle method.
The initial state is the same as Fig.1{a). (b) Later state of the static fluid simulation
by our method. The dash-dotted lines denote the initial cell boundaries. Even though
the volume of each cell is changed by the movement of cell boundary, the density profile
is not changed successfully(see eq.(2)).

Fig.3 One-dimensional space-mesh structure. The mass, pressure and internal en-
ergy are defined at the position at x and the velocity is defined at the cell boundary.

Fig.4 One-dimensional area-weighting method for the present method. (a) A state
before the particle push and (b) after the particle push.

Fig.5 Flow chart for the Density-Carrying Particle Method.

Fig.6 Square-pulse propagation at first state. (a) Initial state and (b) the state of
200-time-step later.

Fig.7 Shock-tube simulation. The solid lines and squares denote analytical and
simulation results, respectively. The cell boundaries moved with the velocity Uy, =
Uei—1 + Ue,i + Ue it

3 -

Fig.8.(a) Time sequence of mass-conservation error and (b) of energy-conservation
error.

Fig.9 Adiabatic expansion simulation. The solid line and squares denote theoritical
and simulation results, respectively. We employed three particles per cell.
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