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Abstract

A new anomalous transport model for resisistive interchange turbulence is derived from
statistical analysis applying two-scale direct-interaction approximation to resistive magne-
tohydrodynamic equations with a gravity term. Our model is similar to the K-¢ model
for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are ex-
pressed in terms of by the turbulent kinetic energy K and its dissipation rate € while K and
¢ are determined by transport equations. This anomalous transport model can describe
some nonlocal effects such as those from boundary conditions which cannot be treated by
conventional models based on the transport coefficients represented by locally determined

plasma parameters.
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§1. INTRODUCTION

Conventional treatments for anomalous transport’? have been based on the local trans-
port coefficients (1) or x) which are expressed as functions of local plasma parameters such
as local density n, temperature T, magnetic field B and a number of gradient scale length
Ln, Ly, Lg,---:

Dorx=F(n,T,B,L,, Lz,L,,-).

These treatments assume that the mixing length ! and the time scale 7 of the turbulence
responsible for the anomalous transport are determined by the local plasma parameters.
However it is possible that the turbulence structure has nonlocal nature and the validity of
the expression for the local transport coefficients as given above is limited. For example, the
conventional transport models did not treat the radial propagation of turbulence energy?
which can bring about fluctuations and the resultant anomalous transport even in the
hinearly stable regions.

Here we present a K-¢ type model for the analysis of anomalous transport in the resistive
intechange turbulence. A K-¢ model was originally proposed for modeling the turbulent
(or eddy) viscosity of the large Reynolds number turbulent shear flow?) and its theoretical
formulation was advanced by Yoshizawa using two-scale direct-interaction approximation
(TSDIA).>~" TSDIA is based on Kraichnan’s direct-interaction approximation (DIA)S®
and the two-scale expansion technique'® utilizing the fact that the characteristic scale of
the turbulent fluctuations is much smaller than that of the mean fields. In the K-¢ model
the turbulent kinetic energy K = 1(v?) and its viscous dissipation rate ¢ characterize the
local turbulence spectral structure and their temporal and spatial variations are governed
by transport equations. The turbulent transport coefficient is given by D ~ K2 /e, which
has some nonlocal properties not included in the conventional expressions since the mixing
length [ ~ K3/2[e, the turbulent time scale 7 ~ K/e and the turbulent transport coefficient
D ~ B[ ~ K?[e are determined not locally but globally by the solution of K-¢ transport
equations.

The resistive interchange turbulence is driven by the density or pressure gradient com-




bined with the gravity force (which may be produced by the magnetic curvature} and has
been extensively studied as a cause of anomalous transport in the peripheral region of stel-
larator plasmas.’’™'® In this article we derive the K-¢ anomalous transport model for the
resistive interchange turbulence by applying TSDIA to the resistive magnetohydrodynamic
(MHD) equations with a gravity term. The governing equations of the resistive interchange
turbulence have a similar structure to those of the thermally-driven turbulence'® in which
the temperature gradient and the buoyancy force play roles of the density gradient and the
gravity force in the former. Then, in our starting equations, the velocity field couples to the
magnetic field as well as to the density field through the gravity term. It is considerably
difficult to treat these couplings directly so that we solve them perturbatively by using
another expansion parameter.

This paper is organized as follows. In §2 the fundamental equations describing the
resistive interchange turbulence are explained. In §3 TSDIA is applied to the fundamen-
tal equations given in §2 and the turbulent transport ccefficients are represented by the
wavenumber spectra of the response and correlation functions. In §4 the turbulent dif-
fusivities are rewrtten in terms of K and ¢ by using the inertial-range theory for the
lowest-order turbulent fields. The transport equations for K and ¢ are described in §5.

Finally, discussions are given in §6.



§2.  Fundamental Equations

Here we employ the following magnetohydrodynamical {MHD) equations in order to

describe the resistive interchange turbulence :

G 1 '
(—+v-V)v=Vp*+ B'VB+£-9+VV2‘D (2.1)
ot 47 po Po
ﬁ-# Vip=S 2.2
a )T (2:2)
2 ¢n
- . B—=2RHB- A v
(c’%_H’ V) V‘u+4ﬂ_VB (2.3)

where © denotes the plasma flow velocity, B the magnetic field, p the mass density, g the
acceleration due to gravity, v the kinematic viscosity, 7 the resistivity, ¢ the light velocity in
the vacuum and p* = (p+ B*/87) /py the sum of the kinematic pressure p and the magnetic
pressure B°/8r divided by the averaged mass py = {p). In the above equations (2.1)-(2.3)

we used the solenoidal condition for B and »
V-B =0, V-o=0 (2.4)

in which the latter represents the incompressibility. In the momentum balance equation
(2.1), the spatial and temporal variation of the mass density p are neglected except in the
acceleration term pg according to the Boussinesq approximation. The source term S is
included in the density equation (2.2).

The turbulent quantities are divided into the average and fluctuating parts as

2=V +3, V=(n) (2.5)
B=B,+b, B,=(B) (2.6)
p=p+p  po={p) (2.7)
pr=F+p P=(p") (2.8)

where (-) denotes the ensemble average.



From eqgs.(2.1)-(2.8), we obtain the following equations for the average and turbulent

parts of energy

8

( +V- v) ng2+ 1}32+p0¢>)
v.

[~0PV + V- Bo) By + (—pol58) + -(B8)) - ¥

2 4r
+(po(5%) = {B8)) - YV + —((55) - (58)) : VBo

ave ave c\? [0BzoB: .
+5@9'“<wm>‘(:ﬁ;) <5‘£‘5§3>“<P">'9 (2.9)

4oL ((B5) — (58)) - Bo — 0,(75) +5vv2 4 (2] gwﬂ

+V- V) (%po(ﬁz) + %(52))

L 00li?8) — {0'%) ~ (53 + (5 -B)Bo+ (5 D))
+§v<a2>+(£;) v )}

+(rol9) + = (BB)) - TV + (58 - (B5)) - VB

)91 ( 555~ (4%)217(%%) 210

where we assumed g to be expressed in terms of a time-independent potential &, as g =

(5
V-

~V®,. Here we treated u = por and 1 as constants and the density source term S as
a non-random quantity. In eqs.(2.9) and (2.10), terms in the form of V . [--.] represent
transport of energy. We can see that the production of the turbulent energy due to the
gradients of the mean velocity and magnetic field are transferred from the mean part of
energy since the corresponding turbulent energy production terms appear in eqs.(2.9) and
(2.10) with opposite signs. The turbulent energy production due to the gravity, which is
essential to the resistive interchange turbulence, also comes from the loss of the mean part
of energy as can be seen from the signs of (5%)-g in eqns.(2.9) and (2.10}. In addition to the
energy supply due to the transport through the plasma boundary surface, the mean energy

are produced by the density source term S®, which represents the supply of particles with



gravity potential. Both the mean and turbulent energy equations {2.9) and (2.10) contain
the viscous and Ohmic dissipation terms, which are proportional to p and 7, respectively.

In the following sections, we assume that V' = {9} = 0 since it makes the resistive
interchange turbulence problem simpler by eliminating the turbulent energy production

due to the gradient of the mean velocity.



§3.  Formulation

When V = 0, the equation for %, b, 7 and § are obtained from eqs.(2.1}-(2.4) as

0 1

— % — B.,-Vb+5-VB
&‘D 4ﬂ'p0( 0 Vb+b \Y 0)
- Ty T oae\ . oo P oy
+V (v‘o 47rpobb (vv)+4ﬂp0(bb)) = Vp+p0_q+1/V o (3.1)
O4_B,-v6+%-VB +v—(ﬁ5—$ﬁ—(s§)+($ﬁ)):fﬁv2§ (3.2)
ot ° o 47 '
d . sx s -
prid V- (g% — (p9)) = —% - Vp,. (3.3)

Vp=-VV: (1”71"7 - 17:_,;055 — (98) + 47;0 (135)) + 27%0\7130 : Vb + j—o Vi (34)
In egs.(3.1) and {3.4), po and g are treated as constants according to the Boussinesq
approximation.

Here we apply TSDIA® to eqs.(3.1)-(3.4). A random field f{z,t) such as v, B, p and p

is written as

f@,0)=F(X,7)+ [z, X;t,T), F=(f) (35)

where X = 6 and T = 6t represent weak spatial and temporal dependence of the mean
field and & the small expansion parameter. The fluctuation part f is Fourier transformed

with respective to 2 as
Fla Xit,T) = [ lof(l, X;8,T) explik - 2) (36)

where X is treated as a parameter. Then we expand f(k;t) = f(k, X;¢,T) in powers of

§ as
Fl;t) = fo(k;t) + S fik; 1) + 8 falst) + -+ . (3.7)

Applying these procedures to v, B, p and p and substituting eq.(3.6) into eqs.(3.1)-(3.3)
yield O(6°) equations

(0, + vE?Yug (k) + M3 (k) 3 [us (p)vs(g) — (4mp0) b5 ()b (9)]
= i(4mpo) Tk Bibs (k) + D*(k)(g* /oo)po(k)  (3.8)



(0 + (Pn/am)E*)bg (k) + iM 5" b(k)z (%5 (P)to(q) — v (p)b3(g)] = ik*Bivg (k) (3.9)
depolle) + ik° E % (P)po(g) =0 (3.10)

po(k) = —(k*K*/K*) 3_[v5 (v (@) — (4mpo) 5 (@)85(@)] — (9° /o) (K° /k2)po (k) (3.11)

and O{§') equations

(0 + vk® oy (k) + 2iM5* (k) i[vé(p)vi’(q) — (47p0) 05 (P) b1 ()]
= i(4mpo) " k" Bybi (k) + D°*(k)(g*/po) or(k) + 20K ME™ (k)(g°/ p0) D po (k)
+(4mpo) ™ [D"‘"(k)(@bB Yoo (k) + B 0,55 (k)] — (8r — 2ivk°d,)vS (k)
+ M (e Z B [vi(p ~ (47po) " b2 ()5 (q)] (3.12)
(0 + (Pn/Am)EP)b5 (k) + M50 (R) i[vﬁ(p)b?(m — u(p)bi(a) + i (p)bs (@) — vi(p)ts(g)]
= ik* Boug(k) — (3, B3)vi(k) + B2 vo( )

—(Br — 2i(c*n/4m)k*,)b3 (R Z 0[5 (P)t5 (g) — w3 (p)b3(g)]  (3.13)

Oepr () + ik® D [0 (P)or(q) + v1(P)po(@)] = —(Bapo)vi (k) — Drpolk) — Z Oa[v5 (P)ro(q)]
(3.14)
pik) = —20k°k°/k) 3 [o5(p)vh() — (4mp0) ' 85(D)0N(@)] — (9°/ o) (k* /7)o )
~2i(c? n/47r)(k°/k2)(353“)5“(k) — k72 D*(R) (g% / 90) Buo k)
+2i M5 (k) Z O3 (P)vo(a) — (47p0) B (R)EG ()] (3.15)
where 8, = 8/dt, O = 8/0T, 8, = 8/0X* and
> = /dap] d’gé(k —p - q) (3.16)
MEP(R) = %[kﬁD‘”(k) + B D (k)] (3.17)
MP(R) = %[kﬁé‘” _ k76%) (3.18)
D*R(k) = 6°F — kokF 22 (3.19)



DP(k) = 6°F — 2k°kP K? (3.20)
MEPe(R) = —5°P870 4 (kP [K2)67° + 2(kok8 [E%)6PT — 2(R*kPR7ES [kY)  (3.21)
M2 (R) = (Ro/ED6PY — (B*kPEY [k, (3.22)

It is very difficult to solve eqs.{3.8)—(3.15) directly since the velocity, magnetic field and
density fluctuations couple each other. Then in order to treat the resistive interchange
turbulence analytically, we introduce another expansion parameter A into eqs.(3.8)—{(3.15)
as

n— A1y, g — Ag”. (3.23)

These orderings are equivalent to those given in refs.15 and 16. The first one in eq.(3.23) is
introduced because we consider the peripheral plasma region where the resistivity is large

and the anomalous transport are dominant. We expand each term of eq.(3.7) as

H

folke; ) foolk; ) + Afoa (s t) + X foa(Res t) +
filk;t) = fiolk;t) + Afn(k;t) + A fia(le; ) + - - (3.24)

and substitute them into eqs.(3.8)—(3.15). From (3.9) and (3.13) we have

bo(R;t) = bip(ke;t) = 0 (3.25)
b51(ke;t) = i4m/c*n) (k" By /k™)ugo(k; 1). (326)

The relation given in eq.(3.26) corresponds to the electrostatic approximation used for the

resistive interchange modes.’~!® The equations for vg, and pyy are given from egs.(3.8)

and (3.10) as
(8, + vE?)uS, () + i M3 (ke Z%o p)el,(g) =0 (3.27)

Bipoo(k) + ik° Z v5o(P) poc(g) = 0. (3.28)

These equations have the same form as those for the velocity and the passive scalar in
homogeneous turbulence, respectively, except the implicit dependence on X and T'. From

eqs.{3.8), (3.10), (3.12) and (3.14), we obtain

t »~ ab
wlkt) =~ BS/? [t F kst t)oby(iity)



t A ad
+(9a/.00)/_ da G (k;t, t1)poo(k;ts) {3.29)
F .
pm(k;t) = “ikaZ/_ dthp(kGtytl)”gl(l’;tl)ﬂoo(q;fl)
: bpb 2A ' i 2 2ac
= (ik"/poc’n)(k° B} /k) Z[_ dtlf_ dba Gk t, 6 (D5, 12)uS(D; t2) poo(g; 1)

A # . b
—i(gb/ﬂo)kaz:/_ df1/_ di2Go(R;t,£1)G (R;ty, ta)poo(D; t2)poo{g; 1) (3.30)

¢ s aa .
v (k;t) = —/ dt F (ks t,11) (87 — 21wk 8y ) vl (R t1)
bed “NE mad b
+MP k) Y [_ dt T st 1) Bue (5 12)0d, (€ )] (3.31)
s )
po(k;t) = —’ikaZ/_ dt1G (R ¢, £1)uT (05 t1)poo(g; 1)

t ~ t N
—(6ap0)j; dfle(k;t,tl)?}go(k; tl) —-/_ dﬁle(k;t,tl)aT,Ogg(k;tl)
A .
_ZL dt; G (ks £, £1) Oa[vhe(P3 1) poo(g; 11))] (3.32)

where we have used the response functions F° Qﬁ(k; t,t), éaﬂ(k; t,#) and G, (k; 1, 1) defined
by

bﬂ(

Fa¥
(8, + vAR) F ™l 1, ) + 20 M2 (k) vl (ps ) F 7 (g:4,1") = 5°85(t — ¢1) (3.33)

A
(3 + ukz)@aﬁ (R;t,t") + 20 M3 (k) Y vGy(p; t)ébﬁ {(g;t,t) = D*B{k)s(t — ) (3.34)

Fa¥
8GRy, ') + ik 3wl (25 8)G (g5 8, 1) = 6(t — 1), (3.35)

Using eqgs.(3.29)—(3.32), we can express turbulent transport quantities in terms of the re-
sponse functions and the fluctuation specira. For example, the turbulent convective trans-

port of mass {(p&*) is given by

(B7%) = (Poo¥a0) + 8[{P1o¥50) + (Poo%0)]

+A[{Bor50) + (BooTer)] + O(6%, 82, X% (3.36)

with

(ﬁooﬁgo) = (5005?0) = (:50158(}) =0 (3-37)



(Frotae) = [ ERlprolk)oin(—R))/5(0)
= g [ [ dta(Gls 6, t)folls oo~ 2))/50)
= —8,p0 / i [_ dt1G {k; 1, 1) Q@ (k; 11, 1) (3.38)

and

(oot) = [ lpuolle)oss (—R))/5(0)
(g /Po)/aﬁk[ dty (G (s, 1) poolle; £1) poo (— 5 11)}/6(0)

= G lpo) [ [ Gt 1),k 1,) (3.39)
Here we defined the average response and correlation functions as
(b, t) = (67 (kst, ) (3.40)
Fo;tt) = (F¥(k1,0)) (3.41)
Gkst,t) = (Gy(k;t,t) (342)
QP(k;t,t") = (ugo(kst)oge(—k;2))/5(0) (3-43)
Qu(k;1,7') = (poo(k;t)poo(—k;1'))/6(0). (3.44)

Tn eq.(3.38) and (3.39), we used DIA®®) to replace (G,vguhy)/5(0) and (G 000 P00} 18(0)
by G,Q%% and G**Q,, respectively.
Putting § — 1, A — 1 and 8, = 8/8X* — 8/0z*, we obtain from eqs.(3.36)-(3.39)

(5% = ap" / £k j 3G, (k: £, 410 (k: £1, 1)
+p—0 f &k /_ G (i, 1)Q (ks 1), (3.45)

Thus, in this case, the turbulent transport of mass consist of two terms: the first term
is a familar one which contains the density gradient while the second one is due to the
gravity. We can see that the turbulent diffusion tensor is a functional of the wavenumber
spectra of the density response and the velocity fluctuations while the coefficient of the
gravity term is a functional of the wavenumber spectra of the velocity response and the

density fluctuations. The gravity term in the turbulent transport of mass resulted from



the coupling of the density fluctuation to the velocity (or momentum) equation through
the gravity. The similar convection term due to the buoyancy force is obtained by TSDIA
for the thermally-driven turbulence.!®

For a passive scalar § = @ + £ (© = (§)) which satisfies

8
(E +v- V) § = KkV?0, (3.46)

the turbulent convection of 7 is calculated in the same way from TSDIA

- o0 £
Fo) = = [k /_ dt, Golke; 1, 11)Q% (ks 11, 1) (3.47)

:L-G

where the average response function Gg(k;¢,t') is defined by
Golk; t,t) = (Go(k;t, 1)) (3.48)

A
(0 + k™) Gyl t,1') + ik > 02 (p;8)Golg; t,t)) = 6(¢ — t'). (3.49)
Similarly we obtain the Reynolds stress up to O(6, X)
t
—{5*P) = —/d%Qaﬁ(k;t,t) +/d3k/ dt Fo(kt,11)0rQ°F (k; i1, 1)

+pec®n) T BEBE / Pl(k*k k%) f_ ; dtl[F“(k;t,tl)Qfﬁ(k;zl,t) +(a < §)]. (3.50)

Here we did not show the turbulent transport terms due to the mean velocity shear by
assuming that ¥V = (v) = 0 although we can express those terms in the same way as above

when the mean velocity shear exists.



§4.  Evaluation of Turbulent Convection

Here our concerns are in the evaluation of turbulent convection given by eqs.(3.45) and
(3.47). For that purpose, we need to obtain the expressions for the wavenumber spectra of
the fluctuations and the response functions of O(6°X%) fields. Here it is the simplest way
to express them by using the inertial-range theory since O(°A°) fields satisfy the same
equations as for homogeneous turbulence as seen in eqs.(3.27) and (3.28). Then we assume

O{8° ") fields to be homogeneous and isotropic so that

Q*(k;1,1') = D*(k)Q(k;1,1) (4.1)
Qu(k;t,t) = Qu(k;t,t) (4.2)
G(k;t,t") = D**(B)G(k;t,1) (4.3)
FP(k;tt") = 6*FF(k;t,t) (4.4)
G k;t,1") = G,(k;t,t). (4.5)

The inertial-range theory!"1®) shows that
Q(k;t,7) = o(k)exp{—w(k)it - t']] (4.6)
Qulk;t,) = o,(k)exp[—w,(k)]t — 1] (4.7)
G(k;t,t') = exp[~w(k)(t —t)H({E-1) {4.8)
F(k;t,t) = expl—wp(k)(t — )] H( - 1) (4.9)
G (k;t,t"y = expl-w,(k)t — ) H({ —1") (4.10)

with

o(k) = 0.1262357 13 (4.11)
o (k) = 0.066¢,e 313 (4.12)
w(k) = 04273120 (4.13)
wi(k) = 0.767w(k) (4.14)
wy(k) = 1.60w(k) (4.15)



where H(t —t') is the unit step function, ¢ and ¢, the transfer rates of the energy and the
density fluctuation variance in the wavenumber space, respectively. As seen from eqs.(3.35)
and (3.49), we can put Gp = G, in the inertial-convection range where both the equations

are identical.

Substituting eqs.(4.1)-(4.15) into eqs.(3.45) and (3.47), we obtain

(5) = —ngfg+ Dgi—: (4.16)
(fv°) = —Degi (4.17)
where
D, = D,
- % : smk2dk [ G (st 1)Q(ks 1, )
= 0.0596¢/34° (4.18)
D, = g /k j drk?dk f_t Gkt 1)Qy kit ).
= 0.0426¢,e 2343, (4.19)
In eqs.(4.18) and (4.19), the lower limit of the wavenumber integral is given by
b = 27/l (4.20)

where [ is the characteristic length of the largest energy-containing eddies.
Using eq.(3.50) and the irertial-range energy spectrum given above, we obtain the tur-
bulent kinetic energy K to the lowest order

1 %)
= (") = /k Ak dkQ(k; 1, ) = 0.665623 21, (4.21)

From eqs.(4.18), (4.19) and (4.21}, we have
D, = Dy=0.135K%" (4.22)
D, = 0.096K% %, (4.23)

Thus the turbulent transport coefficients 1,, Dy and D, are expressed in terms of the
turbulent kinetic energy A, the energy transfer rate ¢ and the transfer rate of the density

fluctuation variance ¢,. In the next section, we will consider how K, ¢ and €, are determined.



§5. Equations for K and ¢

When V = 0, eq.{2.10) reduces to

I
gET = (pD) (Po) €~ €m
LV _E(@zf,)_l@ﬁwivwzﬂ(i)ziV(gz) 6-1)
9 £o 2 4r/ 2p0 -
where
= l“’? —1 i’ ""l 72} =
Br = g0t gt )=l =k (2
95 95"
€= ”<£Faxb> &9
enen oF A
e = (g) p—<a—“5—> 64)

Here we used the ordering in terms of § and X in §3 in order to neglect higher-order terms
in eq.(2.10) and derive the above equations. Substituting eq.(3.26) intc eq.{(5.4) and using
eq.(3.43), we can express the ohmic dissipation dissipation €, as

Bg
poc?n

Em = O

K. (5.5)

where the parameter « is defined by

o = 2f dsk(k"/k)ggaa(k) _ dek(k"/k)zQM(k)
fﬁkQaa(k) K .

(5.6)

Here ky = k - Bo/By denotes the wavenumber along the mear magnetic field By and the
value of the parameter o becomes o = 2/3 when the isotropic spectrum eq.(4.1) is used.
In the transport terms of the form V-[---], the viscosity and resistivity terms are ignor-
ably smaller than the others in strong turbulence and the latter terms are approximately
expressed for the non-MHD case by Yoshizawa using TSDIA.® Here we adopt the following
simplest expression used successfully for the non-MHD flow®)
v- [—%{azﬁ) - pl—o(fﬁﬁ)] =V- (CKKTQVK) (5.7
where Cf is a non-dimensional numeriscal constant. Equation (5.7) implies that transport

of K is also given by the turbulent diffusivity ~ K</e.



The derivation of the equation for the energy dissipation rate ¢ is more difficult than
for the enmergy K although Yoshizawa derived it by using TSDIA and some additional
assumption.” Here we assume that, if the transport terms of K and e are ignored, the rate

of change of ¢ is proportional to that of K :

1¢ ~ 0K
AT Ea 5
where <y is a numerical constant. This is similar to the equation for ¢ given by Yoshizawa”
except that the latter is assumed to hold including the transport terms. Equation (5.8)
ensures that K and ¢ can take the stationary and finite values simultaneously in the homo-
geneous case where the density gradient, the gravity force, K and ¢ are all uniform so that
the transport terms of the form V - [--+] vanish. In the inhomogeneous case, we add the
transport term for ¢ using the turbulent diffusivity ~ K?/e in the same way as in eq.(5.7).

The equation for €, is obtained in the similar manner to that for «.20) However it is

complicated since it containes the density fluctuation variance K, = {3?) as an unknown

field variable. Thus we simply estimate ¢, in terms of €7 = ¢ + €, Vo and g/po as

(= e 2
g lg/ oo

which holds exactly for —Vp, || g in the stationary and homogeneous case since we obtain

(5.9)

ér = (pv) - g/po and €, = —{pw) - Vg in that case.

Finally, our model equations for K and ¢ are summarized as follows

8K ... (g B2 ( K? )
CERUF P ) L Y TR (0 P it /3 5.10
e € g ¢ B? K?
ALY I 20 L e, .
pria L) (pﬂ) L iwcmn —Ve (5.11)
where {58) is given by eqs.(4.16), (4.22), (4.23) and (5.9) for the case of —Vpq || g as

K2 B2 K3
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(p8) = — (Cp-“e'— + Cy

P002U€_2
Solving eqs.(5.10)-(5.12) for K and ¢, we can obtain the turbulent diffusivity Ds for the
passive scalar ¢ by

K2
Dy = Co—. (5.13)



Numerical constants in eqgs.(5.10)-(5.13) are given empirically or theoretically by TSDIA
in the case of the isotropic O(6°A%) turbulent fields as

C,=0231, C,=009, Cs=0135  Cg =0.09,

C.=007, o=0667, ~=L170. (5.14)

The equations for K and ¢ have the similar structures to each other in that both of them
contain the transport terms, the viscous and Ohmic dissipation terms, and the production
terms due to the turbulent density flux conbined with the gravity. We can see that, if
—Vpo - g > 0, interchange modes are unstable and turbulence production is positive. It is
the transport terms that give the nonlocal effects on the turbulent diffusivities, which have
been not included in the conventional treatment of the plasma anomalous transport based
on the turbulent diffusivities represented by the local plasma parameters.

In order to examine the noniocal nature of the anomalous transport, let us consider the

stationary states. Then we have from eqs.(5.10) and (5.11)

K2
Px—er+V- (CI(7VI<) -0 (5.15)
-2 'Y 72
V- (CKAG VK) - 7_1%»V- (C’e%--Ve) =9 (5.16)

where we put Pi = {p9)-(g/po). If the balance of local production and dissipation Py = e
is assumed to hold, the characteristic time of turbulence 7 = K/¢ is specified as seen from
eqs.(5.10) and (5.12) although both K and ¢ are not determined simultaneously by the
local balance equation alone. When the characteristic time 7 is regarded as a constant,

either eq.(5.15) or {5.16) yields
KZ
— Cx—VK = h = const. (5.17)
€
which represents a constant turbulent energy flux. Then we have the solution
K(z)=[K*(zo) — (2h/Cx7)(z — 20)]*? (5.18)

where the z-axis is taken in the direction of VA It is seen that the furbulent eneregy K

and the anomalous transport coefficient D ~ K?/e = K7 at a point {z = z} are affected



by the turbulent energy K and the turbulent energy flux given at a distant point {z = z¢)
even if the characteristic time of turbulence 7 is locally determined. This simple example

suggests the importance of the boundary conditions in our anomalous transport model.



§6.  Discussions

We have presented the new model of the anomalous transport in the resistive interchange
turbulence, which can treat nonlocal properties of the anomalous transport coefficients not
included ir its conventional expressions in terms of local plasma parameters only. The
turbulent diffusivity is represented by the turbulent kinetic energy K and its dissipation
rate ¢ as in eq.(5.13) while K and ¢ are determined nonlocally by solving their transport
equations (5.10)~(5.12). Hence, in our model, the boundary conditions at the plasma
surface possibly affect the inside transport as seen in §5. Farthermore, the anomalous
transport may occur in the linearly stable region. The density profile is required to solve
the K-¢ equations so that it is desirable to combine them with a transport code solving
the density and temperature profiles using the anomalous transport coefficients given by
K and e. These new transport analyses are under investigation and the results will be
reported elsewhere.

In the derivation of the present model, the lowest-order O(6°A%) turbulent fields are
assumed to be isotropic. Therefore the resulting equations appear to contain no mag-
netic shear effects on the wavenumber spectra. The place where the anisotropy of the
wavenumber spectra due to the magnetic shear occurs manifestly is the factor o in the
ohmic dissipation term as seen in eq.(5.6). If the magnetic shear is significantly large, the
fluctuations with large wavenumbers along the magnetic field are strongly damped so that
the value of o becomes much smaller than the value 2 for the case of the isotropic spectrum.
This effect should be involved in analyzing resistive interchange turbulence. However, if
we include the magnetic shear into the lowest order equations, they become difficult to
solve and have no simple spectral solutions such as those for the inertial range of isotropic
turbulence. Then the simplest way to treat the magnetic shear effect is to express the

factor o in terms of the magnetic shear length L, and the mixing length [ ~ K3/% /¢ as
a~ (/L) ~ K3/(eL,)?

which was derived by replacing k) /& with [/L; in eq.(5.6). Futher improvement of the

model of the local turbulence structure may give the more accurate estimation of o and



other numerical constants in the K-¢ equations or suggest other quantities instead of K
and ¢ to characterize the local turbulence spectrum.

As a future work, we are planning the extensions of our transport mode! to treat the
mean velocity shear effects relating to the H-mode plasma and to include the two-fluid

effects by formulation based on the Braginskii equations.
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