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Abstract

A new mechanism is proposed for electron acceleration by using two super-
posed laser beams in vacuum. In this mechanism, an electron is accelerated by the
longitudinal component of the wave electric field in the overlapped region of iwo laser
beams. Single-particle computations and analytical works are performed in order to
demonstrate the viability. These results show that the electron can be accelerated well

in this proposed mechanism.
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Recently, a number of mechanisms 1~ have been proposed for high energy par-
ticle acceleration. We have also proposed electron acceleration mechanisms in systems

1617 and the inverse bremsstrahlung ®. In these

of the inverse synchrotron radiation
mechanisms, a static magnetic field or a static electric field is applied so that the symme-
try of the electromagnetic (EM) wave in space and time is removed and then electrons
can absorb the wave energy. Without a static magnetic field or a static electric field
an electron can not be accelerated by an EM wave generally in vacuum, because of the
symmetry of EM wave.

In this paper we present a new mechanism ?° for an electron acceleration by
using only lasers in vacuum. Figure 1 shows the mechanism proposed in this paper for
the electron acceleration. In this mechanism two superposed laser beams are used in
vacuum. These two beams can produce the longitudinal electric field by which electrons
can be accelerated in a straight trajectory, as follows: Laser beams have the incident
angle of 16 to the z axis and cross on the z axis. These electromagnetic waves have the
same wavelength, the converse phases with each other and the same amplitude. The
magnetic component of the waves is in the z — z plane and the electric one is in the
z —y plane. In the crossing region of two lasers, the electromagnetic field is represented

by the following expressions:
E, = Eyosinf sin[k(z cos§ — ysin@ — ct)] + Eyosinfsinfk(z cosd + ysin — et)], (1)

E, = Eygcosfsinfk(z cos§ — ysiné — ct)] — Eyocos fsin[k(z cosf + ysinf — ct)], {2)
B, = Bygsin[k(z cosf — ysinf — ct)] — Bgsin[k(z cos 8 + ysin§ — ct)]. (3)

On the z axis the electric component ( E, ) in the y direction and the magnetic com-
porent ( B, ) in the z direction are canceled out, and the electron staying on the z
axis feels only the electric component { E, ) in the z direction. Therefore electrons
can be accelerated by this E, with choosing an appropriate parameter set which will
be discussed below in detail. This is the mechanism which we propose. We performed
numerical analyses and analytical works for the acceleration mechanism. We also dis-

cuss the radiation energy loss from the accelerated electron at the end of this paper. In



addition to the above analyses for the electron on the z axis, we also discuss the behavior
of the electrons off the z axis in this paper.
The equation of motion and the energy equation for the electron moving on the

z axis (y=0) are

dP./dt=F, = —eE, —ef, B, = —ek,, (4)
dP,Jdt = F, = —¢E, + e, B, = 0, (5)
d(mcy)/dt = —eE,v,. (6)

Here B, = v,/c and B, = v,/c. In the half-wavelength of 0 > k(rcos6 —ct) > —7, F;
becomes F, > 0 and the electron is accelerated in the +z direction. In the remaining
one of —1 > k(z cos§ — ct) > —2x, F, becomes F, < 0 and the electron is decelerated.
Consequently we choose the optimal incident angle and radius of lasers so that the
electron interacts with the lasers only in the half wavelength of 0 > k(zcosf—ct) > —n
in order to accelerate the electron well. The electron staying on the z axis is therefore
accelerated along the z axis and the radiation energy loss is minimized.

First, we perform single-particle analyses numerically in order to demonstrate
the viability of this mechanism. In these analyses, an electron has the initial speed v,
in the +z direction. The amplitude of the plane EM wave E,o is AE,, where A is a
constant factor and Ey = mc?/(v/2eA/32) = 1.157 x 107/ V/em; for the wavelength
X = 10pm, Epis 1.77 x 103W/cm?. Table 1 shows several results of the beam diameter
d, the optimal incident angle of 8§, R = ¥/, the final « and the acceleration gradient
G, where 7/, is the ratio of the final relativistic factor to the initial one. These results
present that the electron can be accelerated well and that the high acceleration gradient
of 1 ~ 10GeV/m can be attained. Here it should be noted that the crossing angle 4 is
rather small in order to make the interaction length long enough in this system.

We also perform an analytical estimation for the final v and the optimal inci-
dent angle #. In order to find the final y we integrate the equation of motion in the

direction and the energy equation by introducing an effective f,., which is defined by

T =c [ B.dt = cfe.t:
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Here 7 is the time at k(z cos§ — ct) = —7 and is estimated by }/2¢(1 — B,.cos§). In
order to estimate §;. we use eq. (7) with the assumption of ;. = By in the right hand
side of eq. (7) and average it over 7, where 7 = A/2¢(1 — B,gcos6). Consequently we

obtain the following expression:

\/1__;5;,3 = / yuydt. (10)
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In addition, from eq. {9) the condition dv*/df = 0 leads to the following equation for
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For the optimal @, §;. should be also maximized as well as . Therefore this physical

COSS—;B.1:¢3+

consideration leads to
8 =cos™! B,.. (13)

In this paper we set 5. in eq. (13) to f,.(8 = cos™! F,0) for simplicity.
Figure 2 shows v versus the amplitude factor A of the EM wave; the solid line and
the dashed line are obtained by the analytical estimations for v, = 0.999¢ and 0.99¢,



respectively. Dotts besides these lines are obtained by the single-particle computations
presented above for these cases. Figure 3 also shows § versus the initial speed vz = ¢f0
of the electron; the solid line and the dashed line are obtained by the analytical estima-
tions for A = 0.05 and 0.1. Dotts are also obtained by the single-particle computations.
These figures show that the analytical estimation can reproduce the general tendency
of the numerical results and that the expressions (9}, (11) and (13) being derived above
present the correct scaling laws for this mechanism.

In addition to the analyses for the electrons on the z axis, we also perform
numerical analysis for electrons off the z axis in order to estimate a quality of electron
beam being accelerated. We compute the normalized emittance N which corresponds
to the dimensions of electron beam in the phase space ( y, P,/mgc ). Here N is defined

by the following expression:
11 P
N=- [ty (14)
s

moc

Figure 4 shows the distribution of electrons in the phase space, and Figs.4(a}, (b) and
(c) show that at the normalized position of £ = 0,1530 and 6120, respectively. The
point of z = 0 is the start point of electrons, the point of z = 1530 is at the left edge
of overlapped region and the point of z = 6120 is at which almost all electrons pass
through the acceleration region. The overlapped region is from z = 1530 to z = 3060.
In this case the initial speed of electrons is 0.99¢ and electrons are distributed initially in
0 <]y |< 100, 0 <| P,/moc |< 1.225 x 1072 ( see Fig.4(a) ). Heré the space coordinates
z and y are normalized by A/32. In this analysis we assume that there is no interaction
between electrons because of the very low density of beam. The initial number density of
electrons per unit area is 6.4 x 10° cm™~2 and the electric field produced by the electrons is
5.790 V/cm. Therefore this assumption is valid in our parameter range. The normalized
emittance N is 4.874x 1077, 3.580x 107 and 2.070x 10~° m-rad at z = 0, 1530 and 6120,
respectively. These results mean that the quality of electron beam becomes gradually
degraded. Then we obtain the electrons which satisfy the following conditions in order
to find the well-accelerated and collimated electron beam: at 2 = 6120, 0 <| y |< 5,
0 <| Pyfmoe |< 1.225% 1072, 0.9 X ¥, < ¥ £ Ym, Where 7, is the maximum . In Fig4

the hatched region near the origin shows these electrons satisfying the above conditions.



The number of these electrons are 0.92 percent of all employed in Figs.4. This result
shows that electrons should be distributed inside the hatched region in Fig.4(a) initially
in order to be accelerated well.

Finally we estimate the radiation energy loss from the accelerated electron stay-

ing on the z axis. Because of £, = B, = 0, the radiated power P is given by the

following expression 2
P | =121,
st {E+-7x B} - (EB-9)
F= 3m?c? v\ ? (15)
(%)
¢
2¢*
- SmQCSEI' (16)

By integrating this equation over the interaction time r with the assumption of £, = f..,
we obtain the radiation energy loss e.
2¢* B2 Asin® 4
£= .
3m?c}(1 — B, cos§)

For A = 0.1, B0 = 0.999 and X = 10um, the radiation energy loss is 4.92 x 107%¢V,

(17)

This energy loss is quite small compared with the electron energy.

In this paper we proposed a new mechanism for electron acceleration and demon-
strated its viability by numerical analyses and analytical works. This mechanism pro-
vides a high acceleration gradient, that is, possibly about 1 ~ 10GeV/m or more, de-
pending on the laser power and the pre-accelerated-electron initial energy. In addition,
the trajectory of the accelerated electron which stays on the r axis in Fig.1 is entirely
straight along the x axis and the radiation energy loss is negligible compared with the

electron energy.
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Table caption

Table 1. The beam diameter d, incident angle of laser beam 6, R = v/, v and
the acceleration gradient G by the numerical single-particle analyses for the amplitude
factor A of the EM wave and the intial electron speed v, = ¢f0.

Figure captions

Fig.1. A mechanism of high-energy electron acceleration by superposed laser
beams in vacuum. An electron being placed on the z axis is accclerated in the +z
direction. Lasers have the incident angle of § to the z axis, cross on the z axis and have
the converse phases with each other. The electron is accelerated by the electric compo-
nent in the z direction in the overlapped region of the two lasers during the interval of
0> k{zcosf —ct) > —m.

Fig.2. The final electron relativistic factor v versus the amplitude factor A of
the EM wave. Solid and dashed lines are obtained by the analytical estimation for
vz0 = 0.999¢ and v, = 0.99¢, respectively. Dotts besides these lines are obtained by the
single-particle computations.

Fig.3. The optimal incident angle 8 of the laser beams versus the initial electron
speed v, = cfz. Solid and dashed lines are obtained by the analytical estimation
for A = 0.05 and A = 0.1, respectively. Dotts besides these lines are obtained by the
single-particle computations.

Fig.4. The electron distribution in the phase space ( y, P,/moc ). Figures 4(a},
(b) and (c) show that at z = 0, 1530 and 6120, respectively. The normalized emit-
tance is 4.874 x 107, 3.580 x 1077 and 2.070 x 10~% m-rad in Figs.4(a), (b) and (c),
respectively. The hatched region shows the distribution of electrons which satisfy the
following conditions: 0 <]y |< 5, 0 <| Py/moc |€ 1.225 x 1072 0.9 X ¥, < ¥ < Yy at
z = 6120, where <, is the maximum .



Table 1

A B | dlpm] 8degree] R ¥  G[GeV/m]
0.95 | 30.55 9.37 3.723 11.92 23.75
0.1 0.99 | 69.37 4.16 3.794 26.89 10.58
0.999 | 220.2 1.31 3.810 85.21 3.335
0.95 | 22.05 1283  1.986 6.361 16.24
0.05 0.9 | 50.31 5.71 2.017 14.30 7.285
0.989 | 160.7 181 2.024 45.26 2.300
0.95 | 19.08 14.61 1.513 4.846 11.11
0.03 0.99 | 43.70 6.55 1.531 10.85 5.019
0.999 | 138.9 207  1.535 3433 1.580
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