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Abstract

The diversion properties of the magnetic field outside the last closed magnetic surface of
a Helias stellarator configuration [1] are investigated for finite S-equilibria. The results
support a divertor concept which has been developed from the diversion properties of the
corresponding vacuum field. Cross-field transport is simulated by a simplified scrape-off

layer (SOL) model.



1. Introduction

In experiments such as Heliotron-E [2], ATF [3], and Wendelstein VII-AS [4] characteristic
stripes along the torus wall have been observed that are due to plasma-wall interaction.
The positions of these stripes correspond to those of the helical edges characteristic of
Helias configurations [1]. In a Helias configuration with N periods N half-helix-like edges
run along the toroidally outward side of the plasma boundary and afford the possibility
of separatrix formation owing to the coincidence of the helical edge and x-points be-

tween islands. Fig. 1 shows the plasma tube and its five helical edges for the proposed
Wendelstein 7-X stellarator [3].

By investigating the diversion properties of the vacuum magnetic field outside the last
closed magnetic surface a divertor concept could be developed for W7-X [6]. Fig. 2 shows
the plasma tube and the so-called ‘helical troughs’ which fulfill the following conditions:

¢ They do not act as limiters, but rather as divertor plates.

¢ They lead to a complete separation of the magnetic field lines starting at the plasma

and ending at the divertor trough from the field lines starting at the first wall.
o This separation is independent of the detailed island positions.

Here, it is investigated whether this divertor concept is robust for finite S-equilibria. In
section 2, the diversion properties of a vacuum field produced by an optimized coil system
are reviewed. Then, in section 3, the magnetic field of a finite S-equilibrium, obtained
by the HINT-code, and its corresponding vacuum field are compared, and the diversion

properties of the finite 4-equilibrium are studied. A summary of the results is given in

section 4.

2. The vacuum magnetic field

The vacuum magnetic field, shown in Fig. 3, is obtained from an optimized coil config-
uration [7] which has a sufficiently large distance so that divertor equipment (dark blue
areas) can be installed between the plasma and the cryostat (dashed line) containing the
superconducting modular coils. The current-carrying surface belonging to this coil sys-

tem is given by the outer black solid line. The last closed surface (green dotted line) lies



outside the five islands (¢« = &) (red dots) in this case, while outside the last closed flux

surface there is an ergodic region where only remnants close to the fixed points of the

(¢t = L} islands (blue dots) can be found.

In order to describe the space between the plasma surface and the outer current-carrying
surface in an adequate manner, the coordinate system (s, u, v), defined in 6], is used. The
coordinates u (poloidal) and v (toroidal) are angle-like variables (0 < u,v < 1), while s is

a radial coordinate (0 < s < 1).

With a homogeneous distribution of points on a surface outside but very close to the
plasma surface as starting points, magnetic field lines are traced in both directions. The
field lines intersect the plasma facing surfaces of the helical troughs (see Fig. 4) under
small angles, (Ueon) = 4°. These relatively small values of the intersection angles are a
consequence of the adequately chosen plasma facing surfaces of the helical troughs which
are parts of a surface with fixed s-coordinate, the so-called control surface (scon = 0.2
A Apes = 0.1m for a device with Ry = 5.5m, Aps = distance plasma-control surface),
and which, therefore, incorporate the geometries of the last closed magnetic surface and
the current-carrying surface. In Fig. 4 the helical troughs are marked by the hatched
areas. Figure 4 again confirms that x-point regions in the ergodic region lying in the

neighbourhood of a helical edge are positions where the field lines are diverted.

The intersection points form patterns on the plasma facing surfaces, shown in Fig. 5,
whose details depend on the position of the helical troughs, but whose general structure -
being close to the helical edge - originates from the island structure: islands and x-points
are widest close to the edges. Furthermore, the intersection position depends on the
direction of the magnetic field line. The red dots in Fig. 5 characterize the intersection
points of the magnetic field lines surrounding the torus in negative direction, while the

green ones represent the positive direction.

3. The finite S-equilibrium

The magnetic field of a finite f-equilibrium with an average B-value of (8} = 2.3% was
obtained by the HINT code [8] in a computational box. This code is used with a cur-

rent distribution on a surface which lies completely outside the grid box. Therefore, a




current-carrying surface was used [9] which fulfills this condition and which produces ap-
proximately the same vacuum field as the coils used in the preceding section. The last

closed flux surfaces of the two vacuum fields are compared in Fig. 6.

In Fig. 7 the vacuum magnetic field inside the grid box is shown, as obtained by the field
line tracing part of the HINT-code. Again five small islands (red dots) lie inside the last

closed surface (green dashed line).

In the case of the finite S-equilibrium the boundary region of the vacuum magnetic field
is ergodized so that the five islands now lie in the ergodic region as it is shown in Fig.

8. Now, the last closed surface lies inside the five islands and the islands are partially

ergodized.

Thus, the aspect ratio is larger for {8) = 2.3%. The positions of the helical edges and
of the islands do not vary significantly (see Fig. 9). This behaviour is an important
condition for a successful divertor operation. It guarantees that the field line diversion
occurs in the same regions as in the vacuum case. The plasma boundary of the finite
B-equilibrium lies completely inside the last closed surface of the vacuum field. This is a
consequence of the very small radial shift of free-boundary Helias equilibria. The distance

between plasma boundary and divertor troughs increases.

For the (#) = 2.3% equilibrium the boundary field lines are traced until they intersect the
plasma facing surfaces of the helical troughs. Fig. 10 shows the intersection pattern, while
Fig. 11 represents the Poincaré plots of the boundary field lines. Again the intersection
points are concentrated close to the helical edge on the divertor plates, and the two
directions of the magnetic field lines can be distinguished, but the intersection pattern is

more concentrated than in the vacoum case.

Finally, particle diffusion is taken into account. As in Ref. [6] an anomalous diffusion
coefficient of D = 14";—2 is simulated in a simplified scrape-off layer (SOL) model. The dif-
fusion is simulated by ’diffusion of field lines’ obtained with random displacements during
the field line tracing after characteristic mean free paths (A & 1m). These calculations
again confirm that the diversion process persists at the helical edge, that the detailed

island structure is blurred (see Fig. 12), and that the interaction area on the helical

troughs increases (see Fig. 13).

Due to the relatively small size of the grid box some of the traced field lines reach the
boundary of this grid box before they intersect the plasma facing surfaces. Therefore, the



intersection patterns, shown in Fig. 10 and Fig. 13, are not quite complete. The results

will not change significantly, if the size of the box is increased.

4. Summary

The calculations presented above confirm that the finite -equilibrium shows the same
diversion properties as the vacuum magnetic field. Since the positions of the helical edges
are almost the same, the helical troughs defined for the vacuum magnetic field work as

well in the case of the finite 8-equilibrium.

The intersection pattern corresponding to the {#) = 2.3% is more concentrated than
for the vacuum field, and there is larger distance between the plasma boundary and the
divertor troughs. This increase in distance is mainly due to the fact that - in the vacuum
field - the % islands lie in the region of nested surfaces. In further investigations a vacuum
magnetic field will be used whose five islands already lie outside the last closed surface.

Further calculations will also use a larger grid box.
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Plasma tube with five helical edges marked by red lines.

: Plasma tube and helical troughs.

: Poincaré plots of the vacuum magnetic field for an optimized coil system. The

outer black line describes the current-carrying surface. The dashed curve marks
the first wall and the dark blue areas show the helical troughs. The red points

represent the five islands lying inside the last closed surface which is given in

green, while the nine islands belonging to : = -193- are marked by blue dots.

Poincaré plots of the traced magnetic field lines. The inner solid curve represents
the plasma surface, while the outer one shows the current-carrying surface. The
dashed curve marks the first wall and the hatched areas show the helical troughs.

: Intersection pattern in u, v-coordinates for a vacuum magnetic field. The red

and green points mark the two directions of the magnetic field lines (green =
positive, red = negative). The yellow areas represent the plasma facing surface
of the helical troughs. The distance between the plasma and these troughs is
~20% of the plasma radius.

: The inner black and red curves represent last closed surfaces of vacuum magnetic

fields. The last closed surface shown in red belongs to a magnetic field, defined
on a grid, which was calculated from a current-carrying surface outside the grid
box marked by the pink frame. The plasma boundary represented by the inner
black curve is determined from an optimized coil set. The corresponding current-
carrying surface is marked by the outer black solid curve. The dashed curve

represents the first wall and the blue area marks the position of the divertor
trough.

Poincaré plot of the vacuum magnetic field (HINT code). The red poinis rep-
resent the five islands lying inside the last closed surface which is given by the
green points.

: Poincaré plot of the magnetic field for (8} = 2.3%. The plasma boundary (green

points) lies inside the five islands.

: Comparison of plasma boundaries for {8) = 0 (blue points) and (3) = 2.3%

(green points). The red points mark the five islands of the vacuum field, while

the black points represent the last surface of the vacuum field inside the five
islands.

Intersection pattern for (§) = 2.3%. The yellow area represents the plasma
facing surfaces of the helical troughs. The red and greea points mark the two
directions fo the magnetic field lines (red = negative, green = positive).

Poincaré plot of the edge field lines for {3} = 2.3%.

2

Poincaré plot of the edge field lines taking diffusion (D = 1%

™) into account.

The same as in Fig. 10, but with diffusion D = 14”5-.
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