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Abstract

Stability of low frequency long wave length modes is
studies by a kinetic apprcach in rotating Maxwellian
plasmas. In the rigid rotatcr model, the centrifugal force
due to the plasma rotation strongly destabilizes the
ballooning modes particularly when the Mach number is close
to unity. The fluid flow shear weakly stabilizes the
ballooning mode. Energetic particles are effective to
stabilize the ballconing mode particurarly in the high-g
region even in the rotating plasmas. The electric potential
induced from the radial electric field increases the
particle trapping rate for e®>0. For <0 as in tokamaks,
electron trapping rate increases, which destabilizes the

dissipative trapped electron mode.
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§1. Introduction

Recently plasma state in the presence of radial electric field in
tokamaks is paid attention in connection with the H-mode experi-
mentsl)2) . The radial electric field is also produced in helical
hystems3). It may be induced by the unbalance of electron and ion
transports, and also-by the momentum balance in the neutral beam
injections. The plasma state in the steady electric field is
interesting and important, because the steady electric field modifies
particles orbits and also affects plasma neutrality significantly.

When the radial electric field Eyr exists, plasma particles suffer
ExB drift motion. In the toroidal system, the ExB drift motion makes
plsama rotation in the poloidal aﬁd toroidal directions, since the
drifts are the same direction both for electron and ion. In the
laboratory system, this plasma rotation makes the Doppler frequency
shift. On the cther hand, the plasma rotation makes the centrifugal
force in the radial direction, and therefore, the ion drift motion.
Since the ballooning mode is induced by the precessional drift moticn
due to the centrifugal force of particles moving along the magnetic
field lines, and since the plasma rotation alsc makes the centrifugal
force, the ballocning mode may be modified in the rotating plasmas
which may becomes important when the rotation speed vg=-CE/B
becomes comparable to ion thermal speed, which has been
experimentally observed in tokamaks. Both the centrifugal forces of
particle moving alcong the magnetic field limes and plasma rotation
are outward direction, the plasma rotation may destabilize the
ballooning mode. The ballooning mode stability in the rotating
plasmas has been studied by many authors4)~8). In this report, we
study long wave length modes by kinetic approach assuming the
Maxwellian plasmas.

When the the electric field Ey exists, through the relation Ep=-

d®/dr, the elctric potential ¢ also exists, which modifies plasma
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particle dynamicis. For ®<0¢ as in tokamaks9), more electronsg and
less ions may be trapped by the electromagnetic potential which may
modifies the neutrality condition. Trapped electron mode may be
destabilizes by the electric potential. We will also consider this

problem in §4.

§2. Perturbed Distribution Functiomn

We first derive the distribution function f; which is the solution
of the first order perturbation of the Vlasov equation in the usual
toroidal coordinate system (r,6,).In terms of the perturbed electric
field E; and magnetic field B,, the purturbed distribution function

f, may be given by the particle orbit intergral form:

&%

- Bt s s luxm )0
fl' Mf—mdt (El+cv B,) v

(1)

The unperturbed distribution function f , for the rotating plasma in

. . , . . , 10
the poloidal direction is assumed to be given in the form ?

2

n=(nvth)7exp(—"a”—2f°‘) 0-L (2)
Vin L

where vy is the thermal velocity which is related to temperature T
by TbMvthz/z with M being particle mass, G is the gravity of particle
in the radial direction, x is the radial coordinate from the rational

suface r=ro,i.e.,x=r—r ¥ =x+vaL and all other notations are

or
standard.

The quantitieSG=vl2—2Gx and v are the invariant of particle motion
just like the total energy E=MvZ2/2+e® and angular momentum
p=Mv| 2/28, i.e., they are constant of particle motion ,dwdt=0, etc.

In eg.({2), L' is the scale length of density variation L and the
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curvature of the gravity at x=0:

2G

ey L,
fave) -— (3)

114
L Ndr V..
We assume that the radial component of gravity G consists of the
radial electric field E,, and the centrifugal forces of particle
metion along magnetic field (source of ballooning mode) and the

plasma rotation in the polcidal direction due to the ExB drift

motion:
v
6 B )

whera vE=c(Ele)/B2.

For the low-beta (B<<l) plasmas, we assume that the pertubed vector
potential consists of only parallel component: A;=A, b with b=B/B,
and the radial component of perturbed magnetic field is given by
B,=ikgA,er. In this case, the perturbed electric field becomes E;=-V
¢+iwA"e¢ /c with ¢ being perturbed scalar potemtial. From eq.(2), at

x=0, we have

v+$ee)g (5)

Applying edq. (5) to eq.(l), we have the perturbed distribution in the
form
e e keT Vi
=—=¢-i= [ dt"w-——) H-—A 6
T¢1ij {w L o] c ) £ (6)
Making use of egs.(3) and (4), the frequency kgT/MQL' in eq.(6) can

be decomposed into four porticns:

KT
MOLY

septuptegte ¥ (7)



where cvg=kgvg with vg=CE,/B is the plasma rotation freguency due to
ExB drift motion, wd=-kev2 /20R is the curvature drift frequency,
wg=—k9vE2/2rQ is the drift frequency due to the rotational
centrifugal force, and w*zkﬂcT/eBL is the diamagnetic driftc
frequency.

Expanding the perturbed scalar potential ¢ and vector potential A
in Fourier series, taking into account the particle orbit information
in the toroidal system to the eikonal by the same method as in
Ref. (11) for low frequency regime w<<Q=eB/Mc, from eg. (6), we obtain

the Fourier coefficient of the perturbed distribution f£; in the form

A

£--2g¢-@
T

(8)

,‘
W-Wg—Wp - W - ¥ ( VIA.)}

©-w, - oo, ~ kv,

where Jg is the Bessel function and a=k:v./Q. The terms -wg-wp-eg in
the numerator in eq. (8) is induced from the gravity in eg.(4). In

usual theory without the electric field, these terms are absent.

§3. Effect of Plasma Rotation on Ballooning Modes

We now proceed to derivation of electromagnetic dispersion relaticn
for rotating plsamas making use of the distribution function given by
eq. {8) . For the sake of simplicity, we assume Tg=T{=T. In this case,
from the definitions, w*g=-w*ij=w*>0, pe=-tpi=up>0 and
tgellegi=wg<0. While «g is the same for both ion and electron. The
frequency « in eq.(8) is shifted by wg. We express the Doppler
shifted frequency by e=v-wg. From eq. (8), the perturbed distribution
function for ion can be written in terms of electron's characteristic

frequencies as follows

VFHw_—© _twF . oy

i
i 9
@ . A) (2)

]
e -~

]
T 0

|.1.H1>

) -w -k v
w+wD wg Y
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For electrons, taking into account the Krock type colligion,
neglecting the finite Larmor radius effect, Jp—>1, and the

centrifugal force effect, from eq.{8), we have

b-—2a,) (10)
C

where vg is the collision frequency.
Integrating eq. (9) over the velocity space, neglecting trapped

particles, we have the perturbed ion density:

~ B _ * . ~ ~
Q=-§E{¢+2%—w£w—ro(b){zo ) o-7, (gi)EAl}:f (11)
T kv, c

where vi is the ion thermal velocity, [g(b)=I5(b)exp{-b) with I,

being the modified Bessel functiom, b=ki2p;2/2,

7, €) =jl-"f,,dy;i e¥ (12)
"

is the p-th moment of the plsma dispersion function, and Ci={w+up-

mg)/knvi. By the same manner, we have the perturbed electron demsity:

f‘f\ —_ A ~
eNi, v-w,-e* _ v,
m-7;P+—j;€——{%kJ¢ Z €. CA}} (13)

where vg is the electron thermal velocity and {g=(wt+up*ivg) /kivg.
The quasi-neutrality ceondition, ni=ng, from egs.(1l1l) and (12),

yields a relation between ¢ and A :

~

~

) =Di{ @ +op- 0+ 0T, 7 () + G -0y w*) 7, (cJ) ":_]; (1e)

es
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where Dgg is the electrostatic part of the dispersion function:

— _ . -
Mro(b)zb(gi) +MZ0(CQ) (15)

D=2+
kv, kv,

Introducing egs. (9) and (10) into the parallel compornent of Ampere's

law:

-, .
VA, =——"efv. E-£)dv (16)
C

we cbtain anocther relation between ¢ and 2i:

~
~

KA, =—1£'5—l[ @ +wy-wto*) @+wy,-0) A (), + @-u,-0*) @-w+1iv,) 3, («;E.)Ii
ck, ck
—[{ rop-w,t0® 2 )T, 0+ -wp-w*) g @e)]d)] (17)

where kD2=4nNe2/'I‘ is the sguare of the Debye wave number.

Substitution of eqg.(14) into eg.{17) yields an eigenmode eguation

ck,

K,

k

m*[p_ll @+ eom0g+e 9% ) I 0 + B-wp- 093 (6]

{E rep-e 0N B+ p-eg) Z, QT. )+ @y -0 1] (18)

(T-wptivadd € | |p=0

where p={ck:) 1A . Without magnetic perﬁurbation p=0, the dispersion
relation is reduced to the electrostatic one: Dgg=0.

In the incompressible regime, {g<<{4<<1, the dispersion functions
Zo and 7, are approximated by Ze({i)=inl/2 and Z1 ({3)=1+l3Zo({3)=1.

In this case, from eq.(15), Dgg=2, and applying iki= V., from



eg. (18), we have the ballooning mode equation for b<<l:

P

L

—_ g — 1 1
V. V.w+{bw'-fhye+bw*—bwgho+2@b——wg)@J*+wn~5wg)

2

-iv, (@ *+wp) *bxep kg - w0 *—wD)}q'=0 {19}

The expression in the curly braces in eq.(19) has been confirmed by
using Mathematical?) . Neglecting the plasma rotation and collision in

eq. (14), we have the usual ballooning mode equation:

V.w+[bu{w+1u*)+2w*mb}w=0 (20}

v,

The first term in ed.(1%) is the field line bending term which always
stabilizes the MHD modes. The first term in the curly braces in
eq. (20) is the inertial term, while the second term is the source of
ballooning mcde instabilities. Averaging eq.(19) over the extended

polcoidal angle 6, we have a dispersion relation

— Ve . _ 2 1 N 1 Yo,
@ +tL—b'+u: -wg)w+g(wn-5w9)(w +wn—'2~wg)-13h> +1,) (21}

2 2
gty ~ Wyt ¥ -, - =0

which has been confirmed by using Mathematica. In eq. (21}, wAz = <kﬁ>
VAZ is the square of the Alfven frequency which is always stabilizing
the ballooning mode, b=p;?<k? >/2, and the angular brackets represent

the average defined by

1 2
() frwe

The collision effect in the second term in eq. (21) represents the
effect of collision damping, i.e., it always stabilizes the ballo-
oning mode. While the collision effect in -ivgup is the source of
drift resistive ballooning mocde, which is destabilizing in the high-p

regime. Since wg<0, the plasma rotation always increases the source
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of ballooning mode wp in the third term in eq.(21). The plasma
rotation destabilizes the ballooning mode.

The dispersion relation (21) involves the drift balloocning,
resistive ballooning and drift resistive ballooning modes. We

consider each case separately.

(1) Ideal Ballooning Mode. If we neglect ve, «g and «*2 in

eq. (21), we have =0 or w=wgr and the growth rate

(22)

-t
I
AR
o
=
O] =
£
o
I
e
LN
i

which clearly indicates that the first term is the source of
balloconing mode, and the field line bending energy wAz is stabi-

lizing. If we keep gy, eq. {21} vyields w=mE+wg/2 and the growth rate

2 1 I :
y= T © *+wD—5mg) (wD-Eng) —wi} (23)

Since wg< 0, wg increases the source of ballooning mode w*up, i.e.,
the centirifugal force due to plasma rotation destabilizes the
ballooning mode.

Variation of the growth rate normalized by w+ as a function of §
and the shear parameter s is presented in Fig.l for the ideal MHD
case. In numerically calculating eq. (22}, the parameter b for the
finite Lamor radius effect has been expressed in term of §:
b=p/2 (c/wpi)?<k 2>, The normalized Alfven frequency is also expressed
in term of B: (wp/w*)2=4Ly/p2 (wpi/cky) 2<k, 2> with wpj being the ion
plsama frequecy and Ln=ldlnN/drl'l. The following averaged formulaé)
for a simple strong ballooning mode trial function:w=(2/3)1/2(1+cosH)

for |8l <7, otherwiseyp=0, have also been applied
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2 2
(ki>=kf{1+ E-25) SZ—‘—Oas+5iJ
3 9 12
1+s* &’ /3-05) ~-8as/3+3c2 /4
3@R) (1+5° 1%/ 3-2.5) -10sa/9+5a° /12)

{wp)=u"e Z.;é?.-ﬂ
P 3 9 12

(k)=

where o=-g2Rdf/dr=g2Rf/e,, s = dlng/dlnr, ep=(RAlnNy/dr) "1, and k=
m/r with m being the poloidal mode number. The growth rate normalized
by wr versus § is plotted in Fig.2 for different values of the plasma
rotatiocn effect wg/w*, in which wg=0 means the ideal MHD without
rotation. As seen in Fig.2, the centrifugal force effect due to
plasma rotation increases not only the growth rate but also the
unstable f-region. In these numerical calculations, (cke/mpi)2=l has
been assumed. Since (cke/wpi}2=(cke/wpe)2M1/Me and the plasma skin
depth c/wpe=0.05 cm for N=1014 cm~3, (ckg/wpi) =1 means high poloidal

mode mumber m=22 for the plsama radius a=50 cm.

{2) Drift Ballooning Mode. In this case, we neglect ©g Ve in

eq. {21), which yvields w=wg-w*/2 and the growth rate

(22)

1]
[y
e
o
£
=]
t
SN
|
+
£
*
N
\__,__ﬁ/"_

in which w*2/4 is weakly stabilizing.

(3) Resistive Ballooning Mode. In this case, we neglect ey w2

in eq. (21), which yields w=wg and the growth rate

NN ™

The term (ve/Zb)2 in the square root in eq.(25) is destabilizing, but



-ve/2b in the first term is stabilizing. In total, they are
stabilizing or collision damping. The last term in the square root is
destabilizing, i.e., wpve is the source of resistive ballooning mode.
Without the collision damping ({vg/2b=»0) at the ideal mode marginal
state: wa?=2w*ep/b, eq.{25) yields w=(vae/2b)l/2 and y=
(epve/2b) 1/2, i.e., w=y.

(4) Drift Resistive Ballooning Mode. Keeping all terms in

eq. (21), we have wsz-(w*-wg)/Z and the growth rate

v, |2 1 1 Ve bov, b
Y=o @ et D0g) kopmSog) Hint 0 X ey oAy o *)2}2 (26)

The normalized growth rate as a function of § is pletted in Fig.3 for
different vales of collision frequency ve. AS seen in Fig.3, the
collision vy reduces the growth rate, the second stability boundary
is increased, i.e., the collgsion destabilizes the ballooning mode
slightly in the high-§ region. Variation of the normalized growth
rate as a function of p and s is presented by surface graphics in

Fig.4.

§4. Effect of Electric Potential
4.1 Particle Trapping Rate

Wwhen the electric potential & exists, the total particle energy is
given by the sum of kinetic and potential energies: E=mv, 2/2+uB+ed.
The parallel velocity along the magnetic field lines can be written
by

T
v,~_{M(E hs ecb)} (27)

where p=Mv, 2/2B is the angular momentum which is an invariant of



motion like total energy E.

For tokamak magnetic field B=By(l-ecosB) with e=r/R being the
inverse aspect ratio, the parallel velocity’qhversus the poloidal
angle 6 is schematically shown in Fig.5. If we neglect the drift
motion which may become important in high energy region, the boundary
between particle trapping and passing regions may be given by cost=-1

and v, =0, which vyvields the condition

v|=[aﬁ+2e¢T (28)

M
Without the electric potential, ®->0, eq.{27) reduces tc the usual

1
result v, =¢’v.. For v, < ¢1/2y , particles are magnetically trapped.

while for vh>el/2vL, they are circulating.
When ¢%0, by the same manner, particles are trapped by the electro-
magnetic potential for v < (ev12+2e®/m)l/2r while for v, >

(ev;2+2e®/m)l/2 they are circulating. The boundaries given by eqg. (28)

for ed<C, e®>0, and ed=0 in the velocity space are shown in Fig.s6.
As seen in Fig.6, the "loss cone" becomes smaller for ed>0, i.e.,

more particles are trapped. While for e®<0 less particles are

trapped.

Taking into account the boundary condition (28), the trapping rate

of particles Pe=[d3vf,/N for ed>0 is givn by

ed
B (€,® =erfljj—) +ye. U *erf(1/§2)) exp(;eg) (29)
T ‘Te T

where erf(z) is the error function and ep=efl+e}). In the limit $—0,
eq. {29) reduces to the usual result Pt=eTl/2. In the opposite limit

e=>0, the second term in eq. (29} tends to zero, because from the

Lopital theorem:
.
limi-erf 92) exp(—ie?ih—-:-
o JTE v Jr



Even without the magnetic mirror effect €20, particle can be trapped

purely by the electric potential:

ed
B=er —T— for 0. (30)

Variation of Py as a function of ¢ and e®/T is shown by surface
graphics in Fig.7, in which one will see how much particles are
trapped by the combination of the toroidal effect cand electric
potential .

For ed<0, the trapping rate is reduced, and simply given by

D
R=JET exc{—e—] (31)
eT

which alsc reduces to the usual result Pt=arl/2 for #—=>0. 1In the
limit e->0, Py—>0 because e®<0.

In tokamaks, we assume a negative eletric potential <0 as observed
in 18x%). In this case, e®>0 corresponds to electron, while e®<0
corresponds to ion, i.e., when ®<0, more(less) electrons{ions) may be

trapped by the presence of electric potential.

4.2 Dissipative Trapped Electron Mode

Let us here consider the effect of electric potential on the
dissiparive trapped electron mode which is essentially electrostatic.
For the drift mode regime, k,vj<<w<< k; vy, neglecting passing
electrons the perturbed electron density may, from eqg. (13}, be

written as

e w-w*
rg=—9 - ———B (32)
T WF1V

From eq. (11}, the perturbed ion density becomes



ni=—%¢1\l{l~(1+w—*)l“c(b)} (33)

The quasi-neutrality condition, ng=ni, yields the dispersion relation

for wverr:

1 *
2—(“9—*}0&)} —[I—w—Il~i&JPt=0 (34)
® ® ©

Introducing w=wptiy into eq. (34), and solving for the frequency wr

and growth rate y with u,>> y, we have

W =M (35)
T 2-r,-B
Zvge TR (36)

"o TR

Since the electron trapping rate Py is increasing function with
respect to e®/T as seen in Fig 7, the electric potential destabilizes
the dissipative trapped electron mode, which can also be seen in
Fig.8. The singularity of y as in the case of b=0.5 in Fig.8 occurs

when I'g=P;.



4.3 Ballooning Mode

We now consider the effect of electric potential on trapped
electrons and apply for the stability of electromagnetic ballconing
mode. As Seen in §4.1, in the presence of negative electric
potential, more electron may be trapped by the local magnetic mirror
outside the torus, which may play an important role to the stability
of ballooning mode. As in previous sections, we assume constant
characteristic frequencies: vp, «* and vg , and consider the
incompressible regime, (g<<{3<<1. Integrating the both sides of
eqg. (10} over the wvelocity space taking into account the trapped
electrons, for which k“qlin the denominator vanighes, we have the

approximate form of the perturbed electron density,

A {37)

where voff=ve/t. For the sake of simplicity, we neglect the trapped
ion contribution. All previous results for ions, therefore, can be
used in the same forms. Introducing egs. (11) and (37) into the quasi-
neutrality condition, ng=n4, a relation between ¢ and A;similar to
e2g. (14) can be derived. Substitution of eg.({10) into eq.(16),
neglecting the trapped electron contribution for the parallel
current, yields another relation between ¢ and A;similar to eq.{16),
in which the trapped electron contribution may not be negligible when
ed/T is not very small as discussed in the Appendix A. Combining
these relation between ¢ and A, , we have for b<<l, an eigenmode

equation



2

ck,
%5

Kk,

Kiyp -[(awnwgm @+ wp -0yl 0-1) (G- wp- e *){E-wy +iv,) G-Pt)]

1 _ _ 2
{(w+w9~wg+w*)(1—b)+(w—w0—w*]ﬂ-Pt)} llp=0 (38)

From eq. {15), taking into account the trapped elecrtron effect, the

electrostatic part of dispersion function, from eq.{15), is written

by

W-w,—e*

D.=2-B {39)

0wy tiv
Substitution of eq.(39) into eq.(38) and averaging over the extended

poloidal angle yields the dispersion relation

- : - —ty —gn ¥ 2_ N - * . -
{2(6 wDﬂVeff) Pt@ - )waA (GmD wg+w )@+°“D ug)(l b)
—(Tﬂ'—wa*) (ZE»wD+ive) (i-Pt) }+(E—wD+iveff){(G+wD—mg+m*) {i-b)

+@-wp-w”) 0-B) | =0, (40)

As shown in Appendix B, with respect to ©, eq.{40) is a cubic
equation, which involves the Alfven branch, drift mode branch, and
balloconing mode branch. We are here interested about the ballocning
mode branch in the MHD regime: wX>e* ,up,ve and b<<l. In this case,

ed. (40} with the help of Mathematica reduces to a gquadratic equation

b & "t eff
il % * _
B{w VeffPt+ve ((I—BPt)m +2wD)}—0 (41)

where the centrifugal force effect wg has been neglected for the sake



of simplicity to concentrate to the trapped electron effect first. In
eqg. (41), vg means the collision effect by passing electrons which was
a cause of the resistive ballooning mode as seen in §3, while vgfr
represents the collision by trapped electrons, which was a cause of
the electrostatic dissipative trapped electron mode as seen in 84.2.
The imaginary coefficient of «w (the second term) represents the
collision damping as seen in §3, which reduces the growth rate.
However, it does not make the growth rate negative. Since ve<<verf,
terms with vg in eq. (41) may be neglected as compared to those terms

with vefs. In this case, by solving eq. {41), we have

I | —

[ 2

; ]
Pv Pv 4 By
—_ .t eff 2V teff| _1 D} o * _ .t eff *
1- b + mA oy { b [(2 Pt)w +21( Pt)ij +3 5 © } (42}

The first term in eq.(42) represents the collision damping, i.e., it
reduces the growth rate, but does not change the stable f-region as
discussed in § 3. Without collision effect, vgre=0, eq.(42) reduces
to the ideal mode growth rate which still has the trapped electreon
effect in Py in the sense that the passing particle effect is reduced
by Pr. This growth rate is calculated as shown in Fig.9. One will see
the increase of electron trapping rate Py stabilizes the ideal
ballooning mode as seen in Fig.9.

Whether the last imaginary term in the sguare root in eq. (42) makes
the growth rate negative or positive must be examined. We express the

growth rate of eq. (42) in the form

B.v - .9
y=——t§£§-+IS|3 sin— (43)
2b 2



where S is the complex quantity in the square root in eq. (42) and
the angle & is defined by #&=tan' {ImS/ReS). For the sake of
gimplicity, we consider eq. (43) at the ideal marginal stability

state:

, |

wA= TD(Q_Pt) u:*+2(]—Pt) QDJ {44)

In this case, y=0 when ImS=0. When ImS%0, ¢ must be in the range #2¢
# <z.The maximum value sin(m/2)=1 is attained when ImS=0. Expanding
in power of ImS in Taylor series, we find the growth rate y is
positive: y= (ImS)2/8(ReS)3>0 for ReS»0. This means that the trapped
electrons destabilezes the ballooning mode at the marginal stability
state. This can also be seen by numerical results in Fig. 10, where
the normalized growth rate is plotted versus B for different values

of Py and vgfrf,

§5.Energetic Particle Effect

In high temperature plasmas, energetic ions may be produced by
auxiliary heating such as neutral beam injection and RF-heating. In
fusion plasmas, «-particles are also produced. These energetic
particles may interact with the bulk plasma, and some time excites or
stabilizegs various modes.

In this section, we consider the effect of these energetic ions on
the ballconing mode by the game kinetic approach emploved in the
previcus sections assuming that energetic particles are collisionless
and described by the Maxwellian distribution. In this case, energetic
ions can be treated by the same mamner as the back ground plasma. The

perturbed distribution can be written by



~ e |7 w-w —w*
ﬁ‘=_E|f”h ¢_J:;(an) —

©- Wy - w0

Dh_wsh

(;—3 } (45)
o TV < .

where all characteristic quantities for energetic ions are expressed
by the suffix h. The guantity k;v, in the denominator in eq. (45) is
absent for trapped particles. Making use of the Maxwell distribution

(2} for fsh, and integrating eq. (45) over the velocity space

neglecting trapped particles, we have the perturbed density

-~

I, (o) {Zo (Ch)(b_thh)%Al (46)

~

el ¢+G*wnh~mgh-w'h

£ kv

, =

where (n=(vw-wpp-wgh}/k;vn-

Substitution of eq. {46) into the cuasi-neutrality condition vields
a relation between ¢ and A, similar to eq. (4). Introducing eqg. (45)
into the Ampere law neglecting the trapped particle contributicon to
the parallel current, we have another relation similar to eq. (7).
Combbining these relations, we obtain the eigenmode equation including

the energetic particle effect in the form

-
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where cp=(en/e) < (Np/N) (T/Ty)=(kpn/kp) 2. The electrostatic part of the
dispersion function Dgg is also given in the similar form as eqg. (15).
However, it may change significantly depending on the model and
assumptions we employ.

For energetic particles, we assume w*p=¢*ThH/T and wpp=wpTh/T >>



w=wy. The centrifugal force drift frequency (,-:gh=vE2/2rQh= wgenMnp/eMy
= ug is independent of energy, and may be neglected as compared with
¢wph- If we assume «* %10 KHz, Tp/T=700 for T=5 KeV and Tp=3.5 MeV
for a-particles, then wpp=epw*TH/T 1.4 MHz, and vp=l.3x109 cm/sec.
The transit frequency becomes erp=k,v, #0.52 MHz for R=200 cm and g=2.
The Alfven freguency p=30 KHz for f=0.01.

Without the plasma rotation, up in Iy is absent. In this case,
I{h1<<1 as in the bulk plasma. Including the collisionlesstrapped
particles contribution, the perturbed density may approximately be

written by

~

¢ (48}
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where < >p means the wvelocity space integration for trapped
particles.

In the rotating plasmas, however, (n has owpp in the numerator as
defined in the above, and the criterion change to |{xl>>1. In this
case, since Zo({)=-{1+1/202)/C for [{I>>1, the perturbed density may

be approximated by

~
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When wpp and w*p are constants, the trapped particle contribution is
canceled out in eq, (49). Making use of the approximation (49), the

electrostatic dispersion function may be approximated by

Du=2 - Cu 22T, ) (50)



which has no trapped particle effect. Intrcducing eg. (50) into

eq. (47, and applying the condition {{i>>1 for the bulk plasma, we

have
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In general, eq. (51} is the fourth order algebraic eguation with
respect to ¢, and very complicated to solve analytically.
We solve eq. (51} by assuming «<<upp. In this case, the energetic

particle contribution can be approximated as (w-eph-w*p)/ (w-epp)=

¢*h/weph = w*/up, and eq. (51) can be reduced to the qguadratic
equation
—- + i
b-2c) 0" +iblw -wy) +2chwg}m+2 W +wp - Ewg) -l -2¢el, =0 (52)

which can easily solved. The imaginary part of the solution w or the

growth rate beccomes

1
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In the limits Cp—>0 and wg—>0, eqg. (53} reduces to the drift
ballooning mode growth rate given by eq.(24). As seen in eq.(53), the
energetic particle contribution Chorp? is always stabilizing the
ballooning mode.

The sufficient condition for the stability can be written by
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The right hand side of inequality (54), which is the ideal MHD
quantity Q is plotted ag a function of p in Fig.1l1l for different
values of wg. As seen in Fig.li, there is a maximum Cmax- The
energetic particles can completely stabilize the ballooning mode when
Chern? > Qmax- Since Fg(bp) (kpp/kp) 251074 and (wep/w*) 223x103 for a-
particles, the energetic particle contribution Ch(wyp/w*)220.3 can be
larger than Q at least in certain regions of B. Since Q decreases
verly slowly in the high-p region, the small increase of the
energetic particle contribution Ch(mth/w*)2 enlarges the second
stability region significantly.

The growth rate given by eq.(53) is plotted as a function of f for
different values of Cp and wg in Fig.12. The centrifugal force due
to plasma rotation wg always destabilizes the ballooning mode. It not
only enlarges the growth rate but also expands the unstable B-region.
The energetic particle stabilization can overcome this
destabilization particularly in the high-p region, and reduces the
seccnd stability boundary significantly as seen in Fig.1i2. In the
higher-§ region, another unstable region appears. This instability is
induced from the drift reversal of energetic particle, i.e., the

change sign of upp in Cp. This unstable region may correspond to the

one reported in Ref, (14)..



§6. Effect of Fluid ¥low Shear
In previous sections, we investigated the effect of plasma

rotation on ballooning modes without taking into account the radial
variation of the plasma rotation frequency oR, i.e., we assumed the
rigid rotator model. In this section, we consider briefly the effect
of the fluid flow shear on the ideal ballooning mode.

When the fluid flow has shear, the eikonal S of perturbations
depends on time®) . It is expressed in the toroidal coordinate system

{qg,6{) from the flow resonant condition d8/dt=0 in the form
S=r{¢;—6q—()t+r qﬂ')dﬂﬂ (55)
o

The perpendicular wave number in this case is alsc time dependent:
kl=VS=l{Va;~qVB— (ﬁﬂ.‘lt—eo)VqJ {(56)

where 1.)=d0,/dq. The time dependence through Ot is only in %k, . The
time dependence appears no other place. In this case, the average
can be approximated by
(kj)=k:{1+ sz(%i—z.SJ—]—gqas+l—52—az+ sgﬁf} (57)
where el=ét-ﬁo.
In the ideal case, the dispersion relation may be written in the
form
(c-m0 (@ +iYw=iAvp (58)
where wp=m0{q) and A=(2w+ep/b(#;)-0a2) /2. From the definition of
b=<k% >p2/2 and eq. (57), A depends on time through 8. In the zeroth

order, eq.(58) yields w=mQ{qg,) which represents the flow resonant

condition. In the first order, eq. (58) may be written by

{Y«‘Q-ég-JwAw ' (59)

The solution of eg. (59) is given in the form

-A
w(6)=w°exD(J: 'Y-":'“dﬂ'] {60)

\ Q J
If we require the periodicity to eg.{60), the growth rate may be



approximated by
y=§;E*AdB' {61)

where 0* is the boundary value above which A becomes imaginary.

Variation of A versus 6; is plotted in Fig.13 for different values
of the magnetic shear paraméter s. Without flow shear, é=0, the
growth rate is given by A at 6;=0. With flow shear, ﬁ%o, the growth
rate given by eg.{6l) is plotted versus s in Fig.14 for p=0.05. The
growth rate without shear is also plotted for comparison. Since the
tlow shear always reduces the growth rate, the flow shear stabilizes
the ideal ballooning mode particurarly in the larger shear parameter
8 region.

The averaged growth rate given by eq.(61) has no é, it is
independent of the flow shear parameter Q. The growth rate y has the
discontinuity at b=0, i.e., with and without the fluid flow shear

physics may be different as discussed in Refs. (7) and (8).

§7. Summary and Discussion
A kinetic approach is developed to study the stability of

electromagnetic low frequency modes in rotating Maxwellian plasmas.
The theory is applied to the long wave length MHD modes, and the
growth rates are derived in simple analytical forms in the rigid
rotator model for the cases of ideal and resistive ballooning modes.

The plasma rotation due to the radial electric field makes the
Doppler shift in the laboratory system, which directly does not
affect the stability. The centrifugal force due to the plasma
rotation, however, strongly destabilizes the ballooning modes
particularly when the flow velocity is close to the sound velocity,
i.e., the Mach number is close to unity.

The electron collision on the one hand stabilizes the long wave



modes by the collision damping. On the other hand, it destabilizes
the resistive ballooning mode in the high-p region.

when the fluid flow shear effect is taken into account, the dis-
contimiity in the growth rate occurs, which may indicate the physical
difference between the rigid rotator and shear flow models. With the
flow shear, the ballocning mode growth rate is reduced particurarly
in the larger magnetic shear regions.

Although the plasma rotation strongly destabilizes the ballooning
modes, when energetic particles such as energetic ions and a-
particles exist, they are effective to stabilize and overcome the
destabilization particularly in the high-§ region. The second
stability boundary may be reduced by the energetic particles.

The electric potential ¢ induced by the radial electric field
changes the particle trapping condition in the velocity space. For
e®>0, the particle trapping rate is increased particurarly for
ed/T=1. In this case almost 90% of particles are trapped by the
electromagnetic potential. When ®<0 as in tokamaks, the electron
trapping rate is increased, which may strongly destabilize the
dissipative trapped electron mode.

OQur theory is not completely consistent in the sense that the
curvature drift freguency wp which is the source of ballooning mode
is introduced in the simple form through the radial gravity G given
by edq.(4). The averaged curvature drift frequency <up> in §4,
however, is calculated making use of general curvature velocity
vg=bx (vZ VinB/2+ vZx). To be consistent the gyrokinetic solution
mst be derived for the general drift velocity. The validity of using
the simple strong balliocconing mode trial function in calculaticns of
the average for all cases should be examined.

Although we have assumed that the radial electric field is given, it
should be determined by transport processes and momentum balance

condition. As discussed briefly in Appendix C, if the anomalous



electron transport is dominant, the rotation freguency wg is related
to the electron diamagnetic drift frequency «*. Applicability of this

should also be examined.
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Appendix A. Effect of Electric Potential on Plasma
Digpersion Function
In the calculation of the parallel electron current in the Ampere!
law, the {rapped electron effect was only taken into account
approximately by (i-P¢) in the passing electron velocity integral.
Precisely, the velocity integral of the propagator for passing

electron for e®>0 is calculated as follows:

—d'v
-k vy+iv,

e o ew (V| [e AD
ey I

where Zp ig the moment integral of the plasma dispersion function in

G

pc>=—f————wff° :

which the trapped particle effect is deleted:
o -8
1 wPe™ du
2,65 T(I+IJ (A.2)
Al s oo



The trapped electron contribution in the parallel current does not

vanish:

~

A‘J'"’ ClCl v’f gv=PL ¥T¢sT@ ; (A.3)
+l\’ CcC w- u) +lV

By transforming variavles x=v /v, and y=v Ve, the second moment

integral can be calculated as follows:

mle

I, =jvif0d‘v— 2 J' dxxe” J' dy;fe

] L fe_‘f’_if@? P fee tf f fea 2
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where erf(z) is the error function defined by
erf{z) = due
JE )

In the derivation of eq.{A.4), the partial integrations have been

used. Por ed/T<<1l, eq.(A.4) is approximated by

When ef/T=1, which is experimentally observed, the contribution from
eq-{(A.3) for k vg>>e may play an important contribution to the

parallel current.

Appendix B. Cubic Dispersion Equation

When we expand eq. (40) by using Mathematica, we have in total 134
terms, which consists of three w3, 15 @?, 44 w and 72 «¥ terms,
respectively. This is too long to handle. We neglect b2, bP: bup? and

ep® terms, and also only veff terms are taken into account neglecting



ve terms. In this case, eqg.(40) is reduced to a cubic equation
— * . 2 2 w L'.:L: *
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(B 2) b’ +0-B) e+ LB e [0

b |m5m
W

This equation is still complicated. We consider the low-§ MHD
regime:w* wp>>ur>en. In this case, the zeroth order terms may be

neglected, and we have a simpler quadratic egquation

—b?52+[b(wn+wg—w') “1v (B +b- B) }E+ b - @D-%){Z(l- B) (wn-%) - 2-B) ]

+iveff{Pt (w*+wg- Buw" +b(o:g*o:') } ]=0

Appendix €. Ambipolar Condition

When the momentun balance condition is ignored, the radial electric
field may be determined fram the ambipolar condition:

Ié-ri=0
where I'=-D, VN is plasma particle flux. If we assume an anomaluos
transport state in which the electron flux may be much larger than
the ion flux:|F®|>>|Tl|. In this case, the ambipolar condition may be
written in the form
I'’=-DiN"“+m.NE, =0

where mg is electron mobility. From the Einstein relation: mg=-eDS/T,

and the above ambipolar condition, we have



which can be rewritten in the form

ab T a
——==—1nN
dr edr

In terms of velocitieg, this condition can also be written as

CE, CctN

E=_= b e T —

B eB N
i.e., the flow velocity vy is equivalent to the opposite of

Va

diamagnetic electron drift velocity vg. In terms of freguencies, this

can be written as ug=-wow*.
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FPigures Captions

Fig.l :Variation of normalized ideal ballooning mode growth rate
ve* versus p and s presented by surface graphics for ug=0,
en=0.2 and g=2.

Fig.2 :Variation of normalized ideal ballooning mode growth rate

yve* versus ffor different values of plasma rotation frequency
Cy for s=1.

Fig.3 :Variation of normalized growth rate vw* versus p
for different collision frequency ve for s=1.

Fig.4 :Surface graphics of normalized resistive ballooning mode

growth rate for vg/w*=0.6 and wg=0.

Fig.5:I1lustration of variation of v as a function of poloidal
angle 6.

Fig.6:Tllustration of "loss cone” boundary in velocity space in the
presence of different signs of electric potential &.

Fig.7:Variation of particle trapping rate versus b and s presented by
surface graphics for e®>0.

Fig.8:Variation of normalized dissipative trapped electron mode
growth rate vuw* versus e®Tfor vere/w*=0.5 and different
values of b.

Fig.9:Variation of normalized ideal ballooning mode growth rate ye*
versus pfordifferent values of electron trapping rate Pr
and vars=0.

Fig.lC:variation of normalized ballconing mode growth rate ve*

versus fpfor different values of vors and P.

Fig.ll.:Variation of Q as a function of p for different values of O«

Fig.l2:Variation of normalized growth rate y/w* versus f§ for s=1 and
different values of energetic particle contribution cp and wg
Curve a represents the ideal case wg=0, and cp=0, Cuve b :

wg/w*=-0.5, and cp=0, Curve C:iug/ws=-0.5, and cp=0.0003.

Fig.13:variation of A as a function of 6; for different values of s.

Fig.l4:Variations of normalized ideal ballooning mode growth rates

vw* versus s with fluid flow shear(solid curve) and without

flow shear (broken curve) for f§=0.05.
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