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ABSTRACT

Three-dimensional MHD equilibria including the bootstrap current self-consistently
are studied for the Large Helical Device(LHD). Magnitude of the bootstrap current is
sensitive to the magnetic axis position or Shafranov shift in LHD, which is proportional
to the plasma pressure and inversely proportional to the rotational transform. Since the
bootstrap current enhances the rotational transform and reduces Shafranov shift, the self-
consistent MED equilibrium is crucial to estimate the bootstrap current. Total bootstrap
current easily exceeds 100kA for LHD plasmas with (8)31% under the assumption that
both electrons and ions belong to the rare-collisional 1/v regime in the whole plasma
region, where () is a volume averaged beta value. Effects of the vertical field, the

quadrupole field and the pressure profile on the bootstrap current are also investigated.

KEYWORDS : bootstrap current, three-dimensional MHD equilibrium, stellarator,
heliotron, torsatron, Large Helical Device(LHD)



1. INTRODUCTION

It is believed that currentless plasmas are always confined in stellarators without the
ohmic heating. However, the neoclassical theory of stellarators predicts the existence of
the bootstrap current particularly for rare-collisional plasmas{1]. In several stellarators
such as ATF[2] and WVH-AS[S] the bootstrap current was already measured and it agrees
reasonably with the theoretical estimation based on the neoclassical theory. It should
be noted that the maximum bootstrap current in ATF and WVII-AS are several kA. Its
effect on the confinement properties is negligible in ATF; however, in WVIE-AS, the small
change of the rotational transform sometimes produces the low order resonance satisfying
¢+ = n/m and destroys the flux surfaces, which degrades the energy confinement, where
¢ Is a rotational transform, and m and n are the poloidal and toroidal mode numbers,
respectively. This situation comes from the shear-less configuration in WVII-AS.

Recenily Large Helical Device(LHD)[4,5] was designed to study confinement proper-
ties of rare-collisional plasmas in heliotron /torsatron type configuration. Since the LED
configuration is similar to ATF, the effect of the bootstrap current on the confinement
may not be serious compared to the shear-less configuration. A simple way to calculate
the bootstrap current in stellarators is the application of the result given by Shaing and
Callen[1] to vacuum magnetic configurations. Plasma parameters and radial profiles of
density, n, and electron and ion temperatures, T, and T;, are evaluated by using a stel-
larator transport code. When the vacuum magnetic field B(y, 85, (5) in the Boozer
coordinates[6] and n(v), T.(v¥), Ti(¢) are given, the bootstrap current can be evaluated.
This type of analysis was already given for LHD{7]. For this case the bootstrap current,
Ips, becomes fairly large and I, 3200kA for {8) ~ (1 - 2)%, where {8) is a volume av-
eraged beta. It is natural to consider that this large bootstrap current affects the MHD
stability and the transport phenomena. Before approaching these subjects we need the

three-dimensional MHD equilibrium with the bootstrap current self-consistently. We em-




ploy the stellarator equilibrium code, the VMEC code[8,9], which is useful for studying
the three-dimensional MHD equilibrium with the nei plasma current. This code was
already applied to study the bootstrap current of ATF[10].

The bootstrap current in the non-axisymmetric system was calculated in terms of the
geometric factor Gy, for the 1/v collisional regime by Shaing and Callen[1] and for the
plateau collisional regime by Shaing, Hirshman and Callen[11]. The bootstrap current
can be written in the same form through the 1/, plateau and Pfirsch-Schiiiter collisional
regime([12]:

dP dT. a7;

(Jb,B) = -"Gb,(L;n d¢ + Lazne d¢’ +L32n dlj)

=) (1)

where
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Here J;, is the bootstrap current density, B is the magnitude of magnetic field, { ) means
the flux surface average(see Eq.(17)), n., ni, T. and T; are the electron and ion density,
the electron and ion temperature, respectively. P is the total pressure, P = n. T, + n1;.
i = ®7/27, where ®r is the toroidal flux. An expression to calculate Gy, in the 1 [v
regime is described in Section 2. I} are the friction coefficients between species a and b.
By neglecting terms of O(m./my), 15 = Z, I§5 = 3Z, I = V2+ 27, and I = V2.
Here Z is the effective ionic charge number. We assume Z = 1 in this paper. p,, denote
the viscosity coefficients. The expression (1) giving the bootstrap current is valid in the
case that electrons and ions are in the same collisional regime. It is shown in Ref[12]
that the neoclassical current driven directly by the radial electric field, which does not

exist in the axisymmetric systems, exists in the non-axisymmetric devices if electrons



and ions are in different collisional regimes. However, in this paper we Testrict ourselves
to the case that both electrons and ions are in the 1/v regime. In the rare-collisional 1 fv

regime, viscosity coefficients are expressed as[10,12]
P = %{\/5 —In(1+v2) + Z6,.},
e 5 3
faz = f—{zﬂ - Il +V2) + 276}, (3)
fe .39 25 13
e = EVI-Zna+va) + 2z,
Ha3 T 8\/— 411( +\/_)+4 }

where f, is the fraction of untrapped particles and f, = 1— fe. Here terms of O(y/m, /m;)
are neglected. When f,/f. is small, Ls;, L5, and L%, are reduced to[1]

Ly = 1-63£, L, = -1.23—f£, Ly, = —1.91—13 (4)

fe fe fe
Since J;, = (Jb,B)g /{B?) is the bootstrap current density, the bootstrap current inside
the flux surface, I£59(¢), is given by

1F5°0) = 5= [ VasddesdtalT - VC)

— (JbsB)
= 2r / d Ve (5)

in the Boozer coordinates (v, 5, (5), where V95 = (Vi x Vg V(g)™.

Our approach to obtain the self-consistent three-dimensional MHD equilibrium with
the bootstrap current is the following. First, the geometric factor Gy, is calculated for
the three-dimensional currentless MAD equilibrium of LHD with a pressure profile P(1)).
Here n(¢), T.(¢) and Ti(¢) satisfying P(y) = n(¥)(To(¢)) + Ty(¢)) are specified to cal-
culate I7°¢()). Next the three-dimensional MID equilibrium including 7Z5¢ ()1 i
obtained by using the VMEC code. Now B(4, 65, (5)® for the MHD equilibrium includ-
ing the initial guess of the bootstrap current IZ5¢(4))) is given, which is different from
that for the currentless MHD equilibrium, B(¢, 85, (5)®. With use of B(y, 85, (5)O,
Gy, and IZ7C(4)® are calculated again. It is natural that JBS¢(y)? # IZ5C(¢)M),




Then the VMEC code gives B(#, 85, (5)® by using IFS¢(¢)®, and IBSC () is

evaluated here. By iterating the above procedure N times,

IB50 (Ypage) Y — IF5 (hage)l
TB5C (3fpage )V +Y)

will be achieved. Here ¥gaq denotes the boundary flux surface and IZ°C(¢gaqe) cor-

N)
| <2x107?

|

responds to the total bootstrap current. For the LD case with f; < 5%, N ~5is
sufficient o satisfy this criterion. When f; is increased more than 5%, the convergence
becomes worse.

This paper is organized in the following way. In Section 2 numerical procedures to
obtain the self-consistent three-dimensional MHD equilibrium with the bootstrap current
is described briefly. In Section 3 properties of the geometric factor of LHD are studied
by changing the vertical field and the quadrupole field. In Section 4 characteristics of the
self-consistent three-dimensional MHD equilibrium with the bootstrap current in LHD
are described. Particularly our interest is in dependency of the total bootstrap current
on the beta value and in the change of the rotational transform due to the bootstrap

current. In Section 5 results are discussed and future directions of our study are given.

2. NUMERICAL METHOD FOR THREE-DIMENSIONAL MHD EQUILIBRIUM
WITH BOOTSTRAP CURRENT

For calculating the three-dimensional MHD equilibrium with net torcidal current such
as the bootstrap current, we use the VMEGC code. In the coordinates (¥, 6, () of the

VMEC code, the magnetic field B is expressed in the two ways[8], -
B=vVyxV(f—+—N), (6)
and

B = ByVO+ B,V(+ ByVY, (7)



where € and ( are the poloidal and toroidal angles, respectively. + is the rotational
transform, ¢ = x'. Here y = ®p /2, where ®p is the poloidal flux and the prime denotes
the derivative with respect to 4. X and By, are periodic functions with respect to 6 and
¢. Then the current density, f, and the total toroidal current inside flux surface, 17 (¢),

are given by

. 8B - 8B
J:a—JV¢xV6+3—JVCxV¢+VB¢xV¢, (8)

and

In(9) = o [ a64cB, (9)

Also the plasma pressure P is given as a function of 9. Substituting IZ5C(y}) given
by Eq.(5) into Ir{¢) in Eq.(9) gives the MHD equilibrium with the bootstrap current.
Here geometric factor Gy, in Eq.(1) is calculated from the magnetic field of the finite beta
equilibrium obtained by the VMEC code. As discussed in Section 1 a self-consistent MHD
equilibrium solution with the bootstrap current is obtained by calculating the bootstrap
current and the finite beta equilibrium including the net toroidal current iteratively.

Now we give an expression of Gy, and a numerical procedure to calculate it. It is
more convenient to calculate Gy, in the Boozer coordinates B(¢, 85, () than in the
VMEC coordinates B(¢, 6, () given by Eqs.(6) and (7). We develop a subroutine to
construct the Boozer coordinates from the finite beta magnetic field including the effect
of IF5C(y) given by the VMEC code.

In the Boozer coordinates (¢, 85, (z), the magnetic field B and its Jacobian N{T]

are represented as[6]

B = V¢ xVig+eVip x Vi, (10)

B = IV85+GV(s+ iV, (11)
and

Va5 = (Vi x V5 - Vep) ! = G;j/q, (12)



where 65 and (y are the poloidal and toroidal angles, respectively. G = Ip/2m, I =
Iz/27, where Ip is the total poloidal current outside the flux surface. £ is the periodic
function with respect to #5 and (5. When

1

Foglt L an@enls = nollh (13)

is given, the geometric factor Gy, in the rare-collisional 1/v regime is expressed as[10]
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3a1+4G AW(N)dA
- 5RO @EsT -
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In Eqs.(14)-(16), { ) denotes the flux surface average defined by
_ [ Jid8sdgs A

(4)= NG (17)
and
(4)) = 4—;5 f d8dCy A. (18)

The fraction of the trapped particle is expressed as

3By g AdA
fo=3 B? /e (1= AB/B o)t ?) (19)

In Eq.(15), (brmary Cmaz) are the values of (98, (g} at B = B,,,, where B,,,. is mam]gl

on the chosen flux surface.

3. PROPERTIES OF GEOMETRIC FACTOR G, FOR LHD

First we study G, for the vacuum magnetic configurations of LHD. In this paper,
we use the final design parameters of LHD[5]; L = 2, M = 10, Ry = 3.9m, By = 3T
and o = 0.1, where L and M are the pole number and the toroidal pitch number of the
helical coil, Rc is the major radius at the axis of the helical coil, By is the magnitude
of the magnetic field there and « is the pitch modulation parameter defined fgr =
(L/M}éqr + asin[(L/M)pqr]. Here 8gr and ¢qr are the poloidal and toroidal angles in
the quasi-toroidal coordinates. By controlling RY, and Bg with the vertical field and the
quadrupole field, respectively, we study various configurations, where R} is the major
radius of the vacuum magnetic axis and By is the quadrupole field produced by the
axisymetric poloidal coils which is added to the quadrupole field by the helical coil.

Figures 1(a) and (b) show poloidal cross sections of vacuum flux surfaces calculated

by the VMEC code. The axis of the torus is located on the left hand side of the figures



in Fig.1. Flux surfaces in the upper and lower column correspond to cross sections at
M(¢ = 0° and M({ = 180°, respectively. Here ( is the toroidal angle coordinate in the
VMEC coordinates. The plasma boundary is defined at the outermost magnetic surface
in the vacuum magnetic configuration, which is determined by the line tracing calculation.
Figure 1(a) shows three cases of flux surface at Ry, = 3.6m(left), Ry, = 3.75m{middle)
and RY, = 3.9m(right). In these cases, By = 100% is kept, which means that the
quadrupole field produced by the helical coils are completely canceled by that by the
axisymetric poloidal coils. In other words, the average cross section of the flux surface over
the one field pitch length becomes circular. The magnetic configuration with R/ =3.75m
and By = 100% is referred as the ‘standard configuration’. Figure 1(b) shows flux
surfaces for various cases of By (Bg = 0, 100 and 200%) when RY, is fixed at 3.75m.
The cross section averaged over one field pitch length becomes vertically elongated for
By = 0% and horizontally elongated for By = 200%.

By considering that the bootstrap current in the rare-collisional 1/v regime is pro-
portional to (fi/ f.)Gh, for the small f;/ . limit, we plot (f/f.)Gs, for various magnetic
configurations of LHD. Figures 2(a) and (b) show the radial profile of (f./f.)Gs, when
RY and By are vaﬁed, respectively. Solid lines in Figs.2(a) and (b) indicate the stan-
dard configuration. In Fig.2(a), RY, is changed from 3.6m to 4.05m with By = 100%.
(fe/f.)Gu, becomes large as Ry, changes from 3.6m to 3.825m, while it becomes small
as RY, is increased more than 3.9m. It should be noted that (f:/f.)Gs. is significantly
reduced for RY, larger than 3.975m. It was already shown in Refs.[7,10] that the outward
shift of the magnetic axis reduces (f/f.)Gs,. Here it is remarkable that the large inward
shift of magnetic axis also reduces {f;/f.)Gss. In Fig.2(b), Bg is changed from 0% to
200% with RY, = 3.75m. Although the vertical elongation of the flux surface or By = 0%
reduces (f,/f.)Gs, and the horizontal elongation or By = 200% enhances it, the effect of
Bg on (fef f.)Gh, is not significant. It should be noted that (f/fc)Gs, depends on Bg

strongly for the case of the outward magnetic axis shift, while it depends on Bg weakly



for the inward shift case[7]. Here RY, = 3.75m belongs to the latter case.

4. BOOTSTRAP CURRENT OF FINITE BETA LED PLASMAS

Here we assume that the collisionality of the whole plasma belongs to the 1 /v regime
and that the outermost flux surface boundary is fixed even for finite beta equilibria.
Figures 3-6 show the properties of finite beta MHD equilibrium with the self-consistent
bootstrap current in the standard configuration with RV, = 3.75m and By = 100%. It’s
fiux surfaces are shown in the middle column of Figs.1(a) and (b). The plasma parameters
are assumed n = ng(l—¢)and T = T, = To(1 — ¥), where ny = 0.5 x 10%0m,3
is fixed and Tp is varied. This case corresponds to g = Bo(l — ¥)%, and the volume
averaged beta is given by (8) ~ fo/3. Here £ is changed from 0% to 4.47%. Figure 3
shows the total bootstrap current, I,, and Shafranov shift versus central beta value, ;.
Circles correspond to the MHD equilibrium with the self-consistent bootstrap current. In
Fig.3(a) squares denote the bootstrap current estimated by using the currentless MHD
equilibrium. Solid line denotes the bootstrap current estimated by using the geometric
factor for the vacuum magnetic field. In Fig.3(b) squares denote the Shafranov shift of
the currentless MHD equilibrium. Figures 4, 5 and 6 show the radial profile of rotational
transform, Ji31Gb, and Gy, normalized by (Gy,)r, which refers to Gy, of tokamaks and
(Gre)r = Ip /2w, for various fy. Left figures in Figs.4-6 correspond to the currentless
MHD equilibrium and right ones to the MHD equilibrium including the bootstrap current

self-consistently. From Eq.(1) the bootstrap current in the 1/v regime is also shown as

- n' T! T!
(Jb_,B) = —-1.63L31G1,3P(; + al?' + 0125_%). (20)

Here we note that 1.63L31Gs, = La1Gs and LyGhy — (fi/£.)Gh, in the limit of f,/f, —
0. Though a; and «; depend on f;/f., the magnitude of a; and o, is usually on the

order of 1071, Thus it is considered that ig]Gb_, determines the dominant geometrical



contribution to {J5,B). Figure 3(a) shows that the total bootstrap current is about
930kA for the MHD equilibrium with 8 = So(1 — #)* and f, = 4.5% including the
bootstrap current self-consistently. However, this bootstrap current is as large as that
estimated by using the currentless MHD equilibrium at fiy = 4.5%. We note that Iy,
obtained from the currentless MED equilibrium decreases as [ increases more than
8o = 3.5%. The increase of f; makes Shafranov shift of the magnetic axis significantly
large in the currentless equilibrium as shown by squares in Fig.3(b). As similar to the
dependency of the geometric factor on the vacuum magnetic configurations in Fig.2(a),
the large Shafranov shift reduces (f/f.)Gy. substantially( see the left figure in Fig.5).
Since the bootstrap current is determined by the competition with the increase of P
and the decreases of [3,Gy, as seen in Eq.(20), I, estimated from the currentless MHD
equilibrium has the maximum value at Gy ~ 3.5%.

Next we consider dependency of I, on ffy for the MHD equilibrium including the
bootstrap current self-consistently. For Bo<A%, the self-consistent MHD equilibrium
gives smaller [;, than that obtained from the currentless MHD equilibrium. This is

understandable by the following relation. The geometric factor depends on +as
Gy, L (21)

As shown in Fig.4, the self-consistent MHD equilibrium has the larger ¢ in the whole
plasma region than that of the currentless MHD equilibrium with the same S(¢), since
the bootstrap current usually enhances the rotational transform. This increase of the
rotational transform by the bootstrap current suppresses the Shafranov shift. Thus,
for fy<4%, the self-consistent MHD equilibrium has smaller Ly; Gy, and Iy, than the
currentless MHD equilibrium.

Figure 6 shows that Gy, normalized by (G, )r(= Ip/27¢) hardly changes for the MHD
equilibrium including the bootstrap current, while Gy,/(Gys)r for the currentless MHD

equilibrium decreases significantly for Bo23%. From simplified relations He, ~ c1 1y, and



Gys ~ ¢3¢, we have

cacsff ~ cacaff

IsN G_,N 3
be ™~ 3Gy ¢0+Aebs 4ot cilys

(22)

where c1, c; and 3 are positive constant and As », denotes the increment of the rotational
transport due to the bootstrap current. Thus we obtain the relation between I, and B,

\Mz + 4C162C3ﬂ — ¢
: ¢ (23)

bs ™~
* 261

This shows that I, for the MHD equilibrium including the self-consistent bootstrap
current increases monotonously according to the increase of 8 as shown in Fig.3(a).
Moreover Fig.3(a) shows that the bootstrap current estimated by using the vacuum
magnetic field[7] is proportional to B, and becomes about twice as large as that estimated
by using the MHD equilibrium including the bootstrap current self-consistently.

Figures 7 and 8 show the total bootstrap current and Shafranov shift for various pres-
sure profiles, respectively. Left figures in Figs.7 and 8 show the results for the currentless
MHD equilibrium. Right figures show the results for the MIID equilibrium including the
self-consistent bootstrap current. Circles correspond to the pressure profile of (8) ~ /3,
where n = no(1 —¢) and ng = 0.5 x 10®m™>. Squares correspond to the pressure profile
of (8) ~ 0.458;, where n = ng(1 — ¢*}) and ny = 0.65 x 10®m3, Triangles correspond to
the pressure profile of {£) ~ fo/4, where n = no(1 — )2 and ng = 1.5 x 10%m=2, Ip all
cases the temperature profile is fixed at 7, = 7, = To(1— ), and Ty is varied to change
{#). For several peaked pressure profiles, I, obtained by assuming the currentless MHD
equilibrium has the maximum value with respect to {8) or fy. The currentless MHD
equilibrium with the more peaked pressure profile has the lower {5) giving the maximum
value of f,. This is understandable from the fact that the MAD equilibrium with the
more peaked pressure profile has the larger Shafranov shift. The maximum values of Iy,
are about 250kA which seems independent of the pressure profile. For the MHD equilib-

rium including the self-consistent bootstrap current, J;, increases monotonously with the




increase of {8), as shown in Fig.3(a) and Fig.7 for various pressure profiles. However, the
magnitude of I, depends on the pressure profile. Since L5,Gh, 15 large in the inner plasma
region, the MHD equilibrium with the more peaked pressure profile has the larger I, for
the same {#). In the case of (8) ~ 1% in Fig.7, the MHD equilibrium with 8 oc (1 —4)?
has I, about twice as large as I, in the case with 8 oc (1 — )1 — ¢). It was already
shown in Ref[7] that the magnitude of Iy, depends sensitively on the pressure profile.
In particular, the hollow density profile significantly reduces I,. It is remarkable that
the MHD equilibrium including the self-consistent bootstrap current has almost identical
Shafranov shift for various pressure profiles. This is understandable from the fact that
the enhancement of Shafranov shift is canceled by the reduction of Shafranov shift due
to the large I, in the case of the peaked pressure profile.

Furthermore we investigated how the bootstrap current changes by controlling the
vacuurmn magnetic axis position, RY_, and the external quadrupole field, By. Figures
9 and 10 show the dependency of the total bootstrap current and Shafranov shift on
the vacuum magnetic axis position RY,, respectively. Lefi figures in Figs.9 and 10 show
the results for the currentless MHD equilibrium. Right figures show the results for the
MHD equilibrium including the self-consistent bootstrap current. Circles correspond to
RY_ = 3.75m(standard configuration). Squares correspond to RV, = 3.6m and triangles to
RY. = 3.9m. Here the external quadrupole field is fixed at Bg = 100%. The currentless
MHD equilibrium with the smaller RY_ has the larger maximum I, at the larger fo.
Since the currentless finite beta MAD equilibrium corresponding to the larger RY has
the more external magnetic axis position, Gy, reduces significantly in this situation. This
may explain the maximum I;, appears at G ~ 2.3% for RV = é.gm instead of 3.5%
for the standard configuration. For the MHD equilibrium including the self-consistent
bootstrap current, I, becomes smaller when the vacuum magnetic axis shifts inward. I,
for RY. = 3.6m is about two thirds of I, for RY_ = 3.9m. From Fig.10, Shafranov shift

becomes larger when the vacuum magnetic axis is shifted more inward. Figures 11 and 12



show the radial profile of (a) Gi, normalized by (Gy,)r and (b) rotational transform for
the configurations with R, = 3.6m and R”, = 3.9m, respectively. Figure 11 corresponds
to squares in the right figures of Figs.9 and 10. Figure 12 corresponds to triangles in
the right figures of Figs.9 and 10. For RY, = 3.6m, Gy, /(G,,)r increases slightly with
the increase of §; as shown in Fig.11(a). On the contrary, for RY =3.9m, G /(G )7
decreases slightly withk the increase of f, as shown in Fig.12(a). Since G, /(Ge,)p for
R}, = 3.6m is smaller than that for RY. = 3.9m, it is expected that the configuration
with the smaller RY, has the smaller I,,. This is consistent with the right figure in Fig.9.
Moreover the configuration with the smaller R}, has the smaller change of the rotational
transform.

Figure 13 shows the dependency of (a) the total bootstrap current and (b} Shafranov
shift on the quadrupole field. Bg is changed from 0% to 200% with RY = 3.75m. We
note that By = 100% corresponds to the standard configuration. The plasma param-
eters are assumed n = ng(l — ¢) and T; = T. = Tp(1 - ¢) with ng = 0.5 x 10®m=?
and Ty = 5keV, which give B, = 2.23%. Circles correspond to the MHD equilibrium
including the self-consistent bootstrap current and squares to the currentless MED equi-
librium. The bootstrap current becomes lower for the configuration with more vertically
elongated flux surfaces. This result is the same as that already found for the vacuum
magnetic configurations[7]. For the MHD equilibrium including the self-consistent boot-
strap current, I, for By = 0% is about a half of that for By = 200%. As for Shafranov
shift, the MHD equilibrium with the larger By has the larger Shafranov shift. As similar
to Iy, Shafranov shift for the MED equilibrium including the self-consistent bootstrap

current depends more weakly on By than that for the currentless MHD equilibrium.

5. CONCLUDING REMARKS

We studied the properties of the three-dimensional MHD equilibrium by including



the bootstrap current self-consistently for the Large Helical Device{LHD). According to
the neoclassical transport theory the bootstrap current density is proportional to the
geometric factor Gy, and to the density and temperature gradients. The geometric factor
Gy, in the rare-collisional 1/v regime is calculated from the magnetic field of the three-
dimensional finite beta MAD equilibrium obtained by the VMEC code. A self-consistent
equilibrium with the bootstrap current is obtained by calculating the bootstrap current
density as a function of flux surface and the finite beta equilibrium with the net toroidal
plasma current iteratively. After this numerical procedure is converged, we calculate the
total bootstrap current. When the pressure profile is P = Py(1—4)” and the collisionality
of the whole plasma is in the 1/v regime, the total bootstrap current, Iy, of the standard
configuration with RY, = 3.75m and By = 100%, is about 230kA for the self-consistent
MHD equilibrium with fy ~ 4.5%. This current is comparable to the bootstrap current
estimated from the currentless MHD equilibrium. Usually the former self-comsistent
bootstrap current is smaller than the latter estimation of I, for the low beta plasma. I,
for the currentless MHD equilibrium has maximum value at 8y = Bma. and I, decreases
as f is increased above fner. On the other hand, Iy, for the MHD equilibrium with the
self-consistent bootstrap current increases monotonously with the increase of .

In the LHD configuration the bootstrap current flows to enhance the rotational trans-
form in the whole plasma column. Since Shafranov shift is inversely proportional to the
rotational transform, the bootstrap current has a tendency to suppress the Shafranov
shift. Thus Shafranov shift becomes smaller {for the MHD equilibrium with the seif-
consistent bootstrap current than that for the currentless MHD equilibrinm. This re-
duction of Shafranov shift may affect the stability beta limit significantly[13], since the
magnetic well produced by Shafranov shift is reduced.

We calculated [, for the MHD equilibrium with the self-consistent bootstrap current
for various pressure profiles. When the volume averaged beta value, (£}, is kept constant,

the MHD equilibrium with the more peaked pressure profile gives the larger I,. In the



case of (8} ~ 1%, the MHD equilibrium with the peaked pressure of 8 o (1—¢)® has I,
about twice as large as that with the flat pressure of 8 o< (1 — ¢3)(1 — ¥).

Furthermore we calculated the bootstrap current by controlling the vacuum mag-
netic axis position R}, and the external quadrupole field produced by the axisymmetric
poloidal coils Bg. Under the assumption of the currentless MED equilibrium, the max-
imum Iy, with respect to fl, decreases when R}, becomes large. On the contrary, the
MHD equilibrium with the self-consistent bootstrap current gives monotonously increas-
ing Iy, with the increase of §, and I, decreases when RY. becomes small. As for the
effect of By on I, the lower I, is obtained for the configuration with the more vertically
elongated flux surfaces. However, I, for the MHD equilibrium with the self-consistent
bootstrap current depends on By more weakly than that estimated from the current-
less MHD equilibrium. It should be noted that the self-consistent I decreases for the
configuration with the smaller R}, and the more vertically elongated flux surfaces.

In this paper we assumed that the collisionality of the whole plasma column belongs
to the 1/v regime for both electrons and ions. However, this assumption is idea! and the
collisionality of the edge plasma or of the plasma near the magnetic axis is likely to be in
the plateau regime. It should be noted that the bootstrap current in the plateau regime
is much smaller than that in the 1/ regime(7,11]. Further the geometric factor which we
have used is valid in the limit of 1/v regime. The geometric factor should depend on the
collisionarity decreasing in the transition regime from the 1/v regime towards the plateau
regime. Thus /i, shown in Section 4 might be overestimated if the plateau regime exists
in the plasma column. Moreover, it is shown that the parallel current proportional to the
radial electric field can be generated when electrons and ions are in different collisional
regimes (for instance electrons are in the 1/v regime and ions in the plateau regime as
obtained in the ECH plasma}[12]. This current, which does not exist in the axisymmetric
system, tends fo cancel the conventional pressure driven neoclassical bootstrap current.

The estimation of the bootstrap current for a plasma in which electrons and ions are in



different collisional regimes will be published in another paper.

We also studied the bootstrap current in the finite beta plasmas under the assumption
that the outermost flux surface is fixed. This makes the geometric factor Gi, in the
outer edge plasma region hardly changeable even in the finite beta plasma except the
contribution from the rotational transform ¢. It is expected that the free boundary
MHD equilibrium with {8)21% may have a considerably different outermost flux surface
comparing to the fixed boundary case{10,14]. This effect may be important for the
bootstrap current in the edge plasma region since the deformation of outermost surface
due to the free boundary effect changes the geometric factor Gy, there.

The bootstrap current may significantly affect the MHD stability and the particle and
energy confinement of LHD particularly for the high beta plasma with (£)>(1 — 2)%,
since the bootstrap current changes the magnetic shear and Shafranov shift substantially.

These are our future study subjects.

ACKNOWLEDGEMENTS

The author K.W acknowledge National Institute for Fusion Science for giving a chance
to stay and study the bootstrap current in LHD as a visiting graduate student from Ky-
oto University. We acknowledge Dr S. P. Hirshman for permitting to use the VMEC code
in Kyoto University and Dr. K. C. Shaing for valuable discussions about the bootstrap

current theory of stellalator.



REFERENCES

[1] SHAING, K.C., CALLEN, 1.D., Phys. Fluids 26 (1983) 3315.

[2] MURAKAMI, M., CARRERAS, B.A., BAYLOR, L.R.,, BELL, G.L., BIGELOW,
T.S., ENGLAND, A.C., GLOWIENKA, J.C., HOWE, H.C., JERNIGAN, T.C.,
LEE, D.K., LYNCH, V.E., MA, C.H., RASMUSSEN, D.A., TOLLIVER, J.S.,
WADE, M.R., WILGEN, J.B., WING, W R., Phys. Rev. Lett. 66 (1991) 707.

[3] RENNER, H., GASPARINO, U., MAASSBERG, H., KUHNER, G., RINGLER, H.,
SARDEI F., WELLER, A., W7AS TEAM, NBI GROUP, PELLET INJECTION
GROUP, ECH TEAM, in Plasma Physics and Controlled Nuclear Fusion Research
1990 (Proc. 13th Int. Conf. Washington DC, 1990}, Vol.2, IAEA, Vienna (1991)
439.

[4] ITYOSHI, A., FUIIWARA, M., MOTOJIMA, O., OHYABU, N., YAMAZAKI, K.,
Fusion Technology 17 (1990) 169.

[5] YAMAZAKI, K., KANEKO, H., TANIGUCHI, Y., MOTOJIMA, O., LHD
DESIGN GROUP, Status of LHD Control System Design, National Institute for
Fuston Science Report, NIFS-122, Dec. 1991,

[6] BOOZER, A.H., Phys. Fluids 23 (1980) 904.

[7] NAKAJIMA, N., OKAMOTO, M., TODOROKI, J., NAKAMURA, Y.,
WAKATANI, M., Nucl. Fusion 29 (1989) 605.

[8] HIRSHMAN, S.P., Phys. Fluids 26 (1983) 3553.

[9] HIRSHMAN, S.P., VAN RIJ, W.I, MERKEL, P., Comp. Phys. Commun. 43
(1986) 143.



[10] SHAING, K.C., CARRERAS, B.A., DOMINGUEZ, N, LYNCH, V.E,, TOLLIVER,
J.S., Phys. Fluids B1 (1989) 1663.

[11] SHAING, K.C., HIRSHMAN, S.P., CALLEN, J.D., Phys. Fluids 29 (1986) 521.

[12] NAKAJIMA, N., OKAMOTO, M., to be published in J. Phys. Soc. Jpn. 61 No.3
(1992).

[13] NAKAMURA, Y., WAKATANI, M., LEBOEUF, 1.-N., CARRERAS, BA.,
DOMINGUEZ, N., HOLMES, J.A., LYNCH, V.E., PAINTER, S.L., Fusion
Technology 19 (1991) 217.

[14] MERKEL, P., J. Comp. Phys. 66 (1986) 83.



FIGURE CAPTIONS

Fig.1 Vacuum magnetic surface of LHD calculated by the VMEC code. (a) The magnetic
axis position is controlled by vertical field for Bp = 100%; RY, = 3.6m(left),
R}, = 3.75m(middle) and RY, = 3.9m(right). (b) The quadrupole field is controlled
for R], = 3.75m; By = 0%(left), By = 100%(middle) and By = 200%(right). Here
Bg = 100% means that the quadrupole field produced by the axisymetric poloidal

coils is equal to that by the helical coil.

Fig.2 Radial profiles of (f;/f.)Gi, for various vacuum magretic configurations. #(m)
denotes the minor radius of the averaged flux surface. Solid lines correspond to
the standard magnetic configuration with R}, = 3.75m and By = 100%. (a) RV,
1s changed from 3.6m to 4.05m with By = 100%. (b) By is changed from 0% to
200% with RY = 3.75m.

Fig.3 (a) Total bootstrap current and (b) Shafranov shift for the standard configuration
versus central beta value, . Circles correspond to the MHD equilibrium with the
self-consistent bootstrap current and squares to the currentless MHD equilibrium,
respectively. The solid line denotes the bootstrap current estimated by using the
geometric factor for the vacuum magnetic configuration. The density and temper-
ature profiles are n = ng(1— ) and T; = T, = Tp(1 — ), where ng = 0.5% 102°m™3
and Tg is varied. For these profiles (8) ~ 3 /3.

Fig.4 Radial profile of rotational transform for the various fy. 5 is changed from 0%
to 447%. Left figure denotes the totational transform for the currentless MHD
equilibrium corresponding to the squares in Fig.3. Right figure denotes the rota-
tional transform for the MHD equilibrium with the self-consistent bootstrap current

corresponding to the circles in Fig.3.



Fig.5 Radial profile of £31Gbs for various f;, where 15Gy. = L51Gs, /1.63 converges to
(fo/f-)Ghs in the limit of small (f;/f.). Others are the same as in Fig.4.

Fig.6 Radial profile of Gy, normalized by (G,)r for various fo. (Ga)r = Ip /274 corre-

sponds to Gy, of tokamak. Others are the same as in Fig.4.

Fig.7 Dependency of total bootstrap current on the pressure profile. Left figure shows
total bootstrap current evaluated from the currentless MHD equilibrium. Right fig-
ure shows total bootstrap current for the MHD equilibrium with the self-consistent
bootstrap current. Circles correspond to {8) ~ /3, where n = no(1 — ¥) and
ne = 0.5x 10®m™3. Squares correspond to {8} ~ 0.456;, where n = ng(1—%°) and
ne = 0.65 x 102m=3. Triangles correspond to {8} ~ fu/4, where n = ng(1 — 9)?
and ng = 1.5 x 10®m™3. Temperature profile is fixed at T; = T. = To(1 — ) and

Ty is varied to change {f).

Fig.8 Dependency of Shafranov shift on the pressure profile. Others are the same as in
Fig.7.

Fig.9 Total bootstrap current for the magnetic configurations with various vacuum mag-
netic axis positions versus fp. Left figure shows total bootstrap current evaluated
from the currentless MHD equilibrium. Right figure shows total bootstrap current
for the MHD equilibrium with the self-consistent bootstrap current. Circle corre-
spond to RY, = 3.75m(standard configuration), which are the same as in Fig.3(a).
Squares correspond to RY, = 3.6m. Triangles correspond to R}, = 3.9m. The
quadrupole field by the axisymetric poloidal coils is fixed at BQ = 100%. The den-
sity and temperature profile are n = no(1—9) and T; = T, = To(1—1), respectively,
where ng = 0.5 x 10°m=3 and T} is varied to change (8). Here {8) ~ 8/3.

Fig.10 Shafranov shift for the magnetic configurations with various vacuum magnetic

axis positions versus ffp. Others are the same as in Fig.9.



Fig.11 Radial profile of (a) Gi./(Ge,)7 and (b) rotational transform for various f;. 5,
is changed from 0% to 4.47%. These results correspond to squares in right figures
of Figs.9 and 10 for the MHD equilibrium with RY, = 3.6m including the self-

consistent bootstrap current,

Fig.12 Radial profile of (a) Gy, /(Gss)r and (b) rotational transform for various 5. £, is
changed from 0% to 4.47%. These results correspond to triangles in right figures
of Figs.9 and 10 for the MHD equilibrium with R}, = 3.9m including the self-

consistent bootstrap current.

Fig.13 (a) Total bootstrap current and (b) Shafranov shift for various values of quadrupole
field. By is changed from 0% to 200%. R}, = 3.75m is fixed. Here By = 100%
corresponds to the standard configuration. Circles correspond to the MHD equi-
librium with the self-consistent bootstrap current and squares to the currentless
MHD equilibrium. The density and temperature profiles are n = ny(1 — ) and
T: = T. = To(1 ~ ¢), respectively, where ng = 0.5 x 10®m™3, and Ty = 5keV which
give By = 2.23% and (B) = 0.74%.
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