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A thought analysis on relaxation due to nonlinear processes is presented to lead to
a set of general thoughts applicable to general nonlinear dynamical systems for finding
out internal structures of the self-organized relaxed state without using “invariant”.
Thiee applications of the set of general thoughis to energy relaxations in resistive
MHD plasmas, incompressible viscous fluids, and incompressible viscous MHD fluids
are shown to lead to the internal structures of the self-organized relaxed states. It is
shown that all of the relaxed states in these three dynamical systems are followed by
self-similar decay phase without significani change of the spatial structure. The well
known relaxed state of V. x B — £AB is shown to be derived generally in the low 4

plasma limit.
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§ 1. Introduction

Much attention has been paid to the relaxation phenomena of magnetically
confined plasmas in toroidai devices such as for the reversed field pinch (RFP)
experiment'~® and for the spheromak experiment.”® J. B. Taylor has given the
remarkable fundamental explanation for the relaxation mechanism in the RFP
discharge.’” He showed from his idealized theory that the equation of the force-
free field, V x B = AB with a constant profile of A, represents ”the minimmum-energy
state” which is called ”the fully relaxed state”, by introducing the conjecture on
“the time invariant” of "the total helicity”. For a cylindrical plasma he derived the
well-known § = G Bessel function model (BFM) configutation from the equation.!%!
The gross features of the relaxed plasmas in the experiments of the RFP and the
spheromak are well described by the force-free field equation, V x B = AB with the
constant profile of .27 The detailed experimental measurements show, however,
that the relaxed states of plasmas deviate somewhat from the fully relaxed state of
V x B = AB, and have finite pressuze gradient and nonuniform profile of A.'* This
deviation is considered to result from the high resistive boundary plasmas. Taking
account of the experimental RFP plasma which has the finite pressure gradient and
satisfies the boundary condition that the current density j = 0 at the wall, the present
author had introduced the partially relaxed state model (PRSM}**~**) and developed
numerical codes for the RFP equilibria and for the mode transition point of the re-
laxed states by introducing the energy principle with partial loss of helicity in the
boundary region.!*~!® It has been shown that the experimental data of the RFP
plasma in the TPE-1RM15 device > are well fitted by the numerical results of the
PRSM.**18)

Other energy relaxation theories have been also reported, as the modifications



of the theory by Taylor’®'V for the explanation of experimental plasmas, by using
infinit set of global invariant concerning with helicity*® or by using the minimun
dissipation rate or the minimum entropy production rate under the constraint of the
constant time-averaged rate of supply of helicity®® or the assumption of the total
helicity invariant®V. All of these theories mention above are based essentially on the
concept of ”helicity”.

On the other hand, recent experimental data have clarified that in the ZP-2
device,?® which is a simple toroidal Z pinch without toroidal coiles for the toroidal
flux and therefore has no imitial total helicity, there still appears the relaxation of
the field configuration to lead to the spontanecus generation of the toroidal field
within a few tens of us in the produced toroidal plasma.?*=2% The relaxed state of
the plasma becomes to have finite total helicity and to be close to the state of V. x B
= AB that cannot be determined by the initial total helicity, =% contrary to the
theory by Taylor.'®') On the other hand, three-dimensional MHD simulations have
also clarified that the relaxation takes place to lead to the state given nearly by
¥V x B = AB.®) An important point to consider is that in the MHD simulations in
ref.25 they do not solve any equations for hilicity but they do only solve equations
of mass, momentum, and energy ( or equivalently the entropy equation ) together
with Maxwell’s equations and Ohm’s law, where p, j = V x B is used by neglecting
the displacement current. This fact indicates that the quantity of helicity does not
dominate the process of relaxation but is used for a kind of classification or labeling
to describe some part of the process. The both results by the experiments and the
MHD simulations mentioned above suggest that we need a new theory for obtaining
the relaxed state without using ”helicity invaziant for time”.

The set of general thoughts to find internal structures of the self-organized relaxed

states without using any time invariant has been reported by the present aunthor, using



a thought analysis on relaxation due to nonlinear processes with dissipation itself.?®)
Here, the word "thought analysis” means that we investigate logical structures, ideas
or thoughts used in the objects being studied, and try to find some key elements
for improvement and/or some other new thoughts which involve generality.?~2%) An
example of the application of the set of general thoughts to the energy relaxation of
the MHD plasma has been shown in ref.26 to lead to the equation of V x V x B
= A?B for the internal structures of the relaxed states, which has the force-free field
branch V x B = £AB, and also lead to the mode transition condition of the relaxed
state, which are derived by Taylor."®'") Remarkable points of the applied theory in
ref.26 are the followings: (a) The relaxed state of the force-free field branch V x B =
AB and the mode transition condition can be derived from the set of general thoughts
without using "helicity” and “invariant”, whose concepts are essential in the theory
by Taylor.!®'V) (b) The applied theory permits the quasi-steady energy flow through
the boundary surface, as is indeed the case in most experiments, and leads to 2 more
general relaxed state of 2nj = «A for plasmas having spatially dependent resistivity
n. This result leads directly to the experimental fact of j = ( near the wall, as is
indeed the case in all experiments where 7 goes up to infinity near the boundary wall.
Other two examples of the application of the set of general thoughis for finding out
the internal structures of the self-organized relaxed states to incompressible viscous
fluids and to incompressible viscous MHD fluids are reported in ref.29 to lead to
equations which must be satisfied by the relaxed fluid flow patterns and the relaxed
field profiles. The obtained equations for the incompressible MHD fluids would yield
the field profiles and the flow patterns realized in the magmas as the result of the
earth dynamo.%
It is interesting to investigate and clarify the property of the internal structures of

the self-organized relaxed states realized in nonlinear dissipative dynamical systems



such as the resistive MHD plasma, the incompressible viscous fluid, and the incom-
pressible viscous MHD fluid. In this paper, a detailed description of the thought
analysis on the relaxation due to nonlinear processes with dissipation is presented
to lead to the set of general thoughts for finding out the internal structures of the
self-organized relaxed states, whose internal structures are hardest to change them-
selves in their time evolutions and therefore followed by the self-similar decay phase
without significant change of their internal distributions. Three applications of the
set of general thoughts to resistive MHD plasmas, incompszessible viscous fluids, and
incompressible viscous MHD fluids are shown in detail to lead to the internal spa-
tial structures of the self-organized relaxed states and their self-similar decay phases.
In Sec.2, the thought analysis on self-organized relaxed states is presented in detail
to lead to the set of general thoughts to find out the internal structures of the re-
laxed states. The first application of the set of general thoughts to resistive MHD
plasmas is shown in Sec.3 in detail, where some examples of axisymmetric plasmas
such as the diffused Z pinch plasma, the screw pinch plasma, the RFP plasma in
the cylindrical approximation, and the field reversal configuration (FRC) plasma are
presented together with a proof of the existence of the self-similar decay phase after
the realization of the self-organized relaxed state. Other two applications of the set
of general thoughts to incompressible viscous fluids and incompressible viscous MHD
fluids are presented in Sec.4 and Sec.5, respectively, where the internal structures of
the self-organized relaxed states and the self-similar decay phases are also described.

Conclusing remarks are presented in Sec.6.

§ 2. Thought Analysis on Self — Organized Relaxed States

First, we show a thought analysis on relaxation where we try to analyse the



concept of "relaxation due to nonlinear processes with dissipation” in order to under-
stand the basic structure of the thoughts included in it.?®) We now consider a general
nonlinear dynamical system with dissipation that consists of quantities q(¢,x). Here,
t is time, X denotes m—djmensiona.l space variables, and q represents a set of physical
quantities having n elements, some of which are vectors such as B and j, and others
are scalors such as the mass density, the energy density, the specific entropy and so
on. Time evolutions of g are given by definite equations such as the conservation laws
of mass, momentum, and energy, and the Maxwell equations or the laws ruling q(t, x)
of the nonlinear dynamical system in general sense. Integrating one element, w, such
as the energy density in q over the space volume, we can define a global quantity of
W(t), such as the energy of the system, as W(t) = [w(q) dx. We can recognize
from this definition of W(t) that the values of both W(¢) and its time derivative
dW/dt depend essentially on the internal structure ( i.e. the internal distributions
of q ) of the dynamical sysiem. The value of dW/d¢ represents the loss rate or the
dissipation rate with respect to W of the system. We can also understand that the
relation between dW/dt and W (%) is embedded essentially in the laws aling q of the
nonlinear dynamical system with dissipation.

When we follow the time evolution of W(t), we would observe usually ”very rapid
decay phases” and "quasi-steady slow decay phases” almost periodically. ( If W(t)
is the total entropy, then we observe rapid increasing phases and slow ones ). We
would then consider that in the rapid decay phases some nonlinear processes must
take place to change the internal structure (i.e. the internal distributions of q ) of the
system so drastically that the value of W (¢) decreases very rapidly. In other words,
the internal distributions of q in this rapid decay phases are such distributions that
make the value of | dW/dt | very large and lead themselves to the drastic change of

their own internal structures. We call these rapid decay phases with drastic nonlinear



change of internal structure as "the relaxation phase”.

After each of these relaxation phases, we observe the quasi-steady slow decay
phases. We would think and expect for the quasi-steady slow decay phases that the
system must have relaxed and reached by itself to the state with its own peculiar
internal spatial distribution such that makes the value of | dW/dt | minimum ( i.e.
the minimum loss rate or the minimum dissipation rate with respect to W ) after
each of those relaxation phases. We recognize and call this relaxed state with "the
minimum dissipation rate of W” as "the self-organized quasi-steady relaxed state”.

Since we can observe the value of W at the time when the self-organized quasi-
steady relaxed state has realized just after the relaxation phase of interest, we express
here the time and the observed value of W at the relaxed state, respectively as g
and Wx. We then come to the following general description on the internal structure
of the self-organized relaxed state:

?The relaxation phase of interest with the drastic change of the internal structure
continues itself until and terminates itself at the time of ¢p, at which time the internal
spatial distribution has reached the peculiar spatial distribution such that yields the
minimum dissipation rate of W and therefore is hardest to change its own internal
spatial distribution for its own instantaneous amount of the containing quantity W
= W5 at tp. The state with this peculiar spatial distribution at ¢y is called the
self-organized quasi-steady relaxed state.”

This description is rewritten simply as follows:?)

?The internal structure of the self-organized quasi-steady relaxed state” must
satisfy "W = Wpy” and must have also ”the minimum value of [dW/d¢[”.

It should be noted clearly here that the sentence of "must satisfy W = Wg”
shown above does not mean that W is an invariant for time, but indicates that

"W = Wj is the necessary condition as a global constraint” for finding out the



internal structure ( which is the function of the spatial variables x ) at the time of
the relaxed state from various distributions”, and W is never invariant for time.

We may understand that this nonlinear dynamical system just experiences almost
periodically the relaxation phases and the quasi-steady slow decay phases accompa-
nied by the self-organized quasi-steady relaxed state on the way of the time evolution
through essentially the dissipation processes. In other words, the realization of the
self-organization depends essentially on the fact that the present nonlinear dynamical
system is the open system with respect to W and that the dissipation rate of W, i.e.
| dW/dt |, is determined by the internal structures { i.e. the internal spatial distri-
butions of q(¢,x) ). We may also understand that the mechanism of the periodical
realization of the self-organized quasi-steady relaxed state itself is embedded essen-
tially in the laws ruling q(#,x) of the nonlinear dynamical system with dissipation.

The thought analysis on the concept ”relaxation due to nonlinear processes with
dissipation” itself of the general nonlinear dynamical system mentioned above leads
us to the following set of general thoughts, { [I] and [IT] }, to find internal structures
of the self-organized quasi-steady relaxed state with respect to W in the system,
where the thought [I} is on the relaxation phase and the thought {T1] is on the internal
structure of the relaxed state: 2%

[I] In the relaxation phases, some nonlinear processes with dissipation must take
place to change the internal spatial structure of q(t,x) so drastically that the value
of W{t) decreases ( or increases ) very rapidly. The relaxation phase continues itself
until and terminates itself at the time when the internal spatial structure has reached
the peculiar spatial structure such that yields the minimum dissipation rate of W
and therefore is hardest to change its own internal spatial distribution for its own
instantaneous amount of the containing quantity W.

[IT] The peculiar internal spatial structure of q{tp,x) of the self-organized quasi-




steady relaxed state just after each relaxation phase must have
the minimum value of |dW/dt| with W = Wp, (1)

where tgz denotes the time when the self-organized relaxed state has realized just
after the relaxation phase of interest, and W5 is the value of W measured at the
time of tz. Here, "W = Wg” is the necessary condition that must be satisfied by the
internal strauctures of the relaxed state because of the measured value and becomes
“the global constraint” for "finding out the internal spatial structure of the relaxed
state from various distributions”, and W is, of course, not the invariant for time.
Using the variational technique with respect to the spatial variables x for q(fz, x),
i.e. using the variations of §q(x), in order to find out the internal ~spatia.l structure
and the minimum value of |[dW/dt| at the time of the quasi-steady relaxed state,
which is given by the two thoughts { {I}, [II] } with eq.(1), we obtain the following

mathematical expressions:26-9)

§F = 0, )

&F > 0, (3)

where F' is the functional defined by F = |[dW/d¢| - oW; &F and 8°F are the first
and second variations of F'; and « is the Lagrange multiplier. When the boundary
values of z; component of some elements ¢; in q are given such as by the property
of the given boundary materials and/or measurements at the relaxed state, then the

boundary conditions of the variations §q{x} are written as
8g;x = 0 at the boundary . (4)

We should notice here that the present theory shown above is neither ”the energy

principle” nor ”the variational principle” based on some ”invariant for time”.



The set of general thoughts { [T}, [II] } with egs.(1)-(4) to find internal structures of
the self-organized relaxed states would be common for all dynamical systems including
physical systems, chemical systems, biological systems, and/or economical systems,

in general.

§ 3. Application to Resistive MHD Plasmas

We now apply the set of general thoughts { [I], [I]] } with egs.(1) - (4) to the
resistive MHD plasma which is described by the following simplified equations with

Ohm’slaw of 5jj = E + u x B,

du .

p; = ixB - Vp, (5)
B
Esz(uxB)—Vx(qj), (6)

where the viscosity is assumed to be negligibly small. Using Maxwell’s equations and
Ohm’s law, we obtain the time derivative of the magnetic energy W,, = f(B?/2u,)dv

as follows,
dw,, R,
= [(ni-i+(xB) uldv— f(ExH)-ds, (7)

where ¢ denotes the surface integral over the boundary. For simplicity, it is assumed
here, as is indeed the case in most experiments, the plasma internal energy and the
mass flow energy are negligible compared to the magnetic energy W,,. We pick up
the magnetic energy W,, of the system and lock for the self-organized quasi-steady
relaxed state with respect to W,,. In the-quasi—steady relaxed state, we may assume

u = 0, and may obtain the following equilibrium equation from eq.(5),

Vp = ijBﬁa (8)



where the subscript R de;xotes the quantities at the quasi-steady relaxed state. We
assume here, for simplicity, that the resistivity n has a fixed spatial dependence like as
n(x) at the quasi-steady relaxed state, as is indeed the case in all experiments where
n goes up to infinity near the boundary wall. Substituting W,,, and |dW,,/dt| with
u = 0 respectively to W and |dW/d{| in the set of general thoughts { [I}, [IT} } with
eqs.(1)-(4) to find the internal structures of the self-organized quasi-steady relaxed

state, we obtain the followings,

§F = /(2n &3 - féB-B)dv =0, 9)

8F = / (20 8- 6j — #géB-éB)dv > 0, (10)

where the values of the Poynting vector E x H on the boundary surface in dW,,/dt
are assumed to be given so that the surface integral terms vanish in both §F and §2F
by the boundary conditions of eq.(4), for simplicity. Using y,8j = V x 6B, the vector
formula of V-(axb)=b-Vxa—a-V xb, and the Ganss theorem, we obtain

the followings from eqgs.(9) and (10},

2 . o 2 .
§F = Z/513.{V><(m) — B}y —;:f(mx&B)-ds: 0, (11)

2 o 2
2 — - . - _ - _ = - .
§F = #0/513 [V x () — 56Bdo uof(néJxaB) d& > 0.
(12)

We then obtain the Euler-Lagrange equation from the volume integral term in eq.(11)

for arbitrary variations of 6B as follows,
V x (nf) = %B . (13)

When we use p,j = V x B instead of p,6] = V x §B, we obtain the followings

from eqs.(9) and (10), corresponding to egs.(11) and (12),



5F = ]55-(21;5 — aA)dv -i‘if((AxaB)-dF 0, (14)

§2F =/5j-(2n5j — abA)d -;if(m x §B)-ds > 0, (15)

where A is the vector potential. We then obtain the Fuler-Lagrange equation from

the volume integral term in eq.(14) for arbitrary variations of §j as follows %)
. @
= SA. ' (16)

Taking rotation of eq.(16), we obtain eq.(13) again. Since A is finite near the bound-
ary wall, the present result of eq.(16) leads directly to the experimental fact that the
current density ] goes to zero near the wall where n goés to infinity, as is indeed the
case in all experiments.

We now have found that the self-organized quasi-sieady relaxed state has the
peculiar internal structure which satisfies eq.(13). Taking account of the assumption
u = 0 for the self-organized quasi-steady relaxed state, and substituting eq.(13) into
eq.(6), we obtain the following,

B

[0
= - ZB. (17)

Equation (17) gives us the following solution
B(x,t) & Bg(x)e™?", (18)

where Bp(x) is the solution of eq.(13) for the self-organized quasi-steady relaxed
state. We see from eq.(18) that the field profile of B jusi after the realization of the
self-organized relaxed state has the self-similar decay without significant change the
spatial structure. The second term of eq.(6) and boundary conditions would lead to
finite deviation from the self-similar decay gradually. We may recognize from eq.(13)

for the self-organized quasi-steady relaxed state and eq.(18) for the time evolution of



the relaxed B field that the present nonlinear dynamical system relaxes to the state
that has attained such a peculiar internal spatial structure that yields the minimum
dissipation rate of W,, and thereafter leads to the self-similar decay phase without
significant change of the spatial structure.

We now assume the resistivity # to be constant, for simplicity. We then obtain

the following from eq.(13),?®

VxVxB = B, (19)

_ [fare

where the Lagrange multiplier « is assumed to be positive. Equation (19) is the same
with the equation used for the classical spheromak.’%?) According to ref.31, three

independent solutions of eq.(19) with V- B = 0 are given by

Lo = gradin, T =V (ef), and S = 2V T,, (21

where e is a fixed unit vector, and 1y, is a scalor function such that
Vi, + A, = 0. (22)

Here, the solution of L,, may be excluded from the solutions for eq.(19), because
V x grad ¢, = 0. The general solution of eq.(19), Bg(x), for the self-organized

quasi-steady relaxed state is then written as
BR(X) = leTm + Cmgsm. (23)

Using eq.(23) and poj = V x B, we obtain the current density of the relaxed state,

Jg(x), as {ollows,

. by
Ja(x) = ;—(cmlsm + cm2Tm), (24)



where eq.(21) and V x V x T,,, = A?T,,, are used. There are three unknown factors of
{X, em1, Cma} i1 €qs.(21)-(24). In order to determine the values of the three unknown
factors {A, ¢m1, Cmz}, 1t Is enough to use three measured values of the magnetic en-
ergy W, the toroidal magnetic flux ® and the toroidal plasma current I inside the
boundary at the time of the relaxed state, which are denoted here respectively by
Wi.r, ®g, and Ip. It is because that we obtain ®5 and Ip by integrating eqs.(23)
and (24) respectively across the poloida cross-section of the toroidal plasma.

Using eqs.(8},(23) and (24), we obtain the followings,

VP = jR x Bp = i(C'rn22 - lez)T‘m X Sm; (25)
A A
‘u—o¢R - Ig = ,[L—O(CM2 - le) AP(Sm - Tm) : dS, (26)

where |, s, denotes the integral across the poloidal cross-section of the toroidal plasma.
It is seen from eqs.(25) and (26} that the difference between c,; and c,,, yields the
non-force-free component which is balanced with the pressure gradient.

In the limit of the low S plasma, we come to have the profiles with c,;; = ¢, from
comparison between eq.(8) and eq.(25) because of two independent vector solutions

of T,, and S,,, and obtain the followings from eq.(23),
Ba(x) = cm(Tm + Sn), (27)
which satisfies the following as was shown in ref.31,
VxB = £)B. (28)

We see from eqs.(27) and (28) that the force-free fields of V x B = +AB, derived
by Taylor based on ”the minimum energy state under the time invariant of the total
helicity” *%!1) can be derived generally as the low 4 plasma, limit of the self-crganized

relaxed state which has the minimum dissipation rate profile and therefore is hardest



to change its own profile for its own instantaneous amount of the containing magnetic
energy, in the nonlinear and dissipative MHD system, without using the "helicity”

and the ”time invariant”.

We show here some examples of axisymmetric plasmas in the cylindrical coordi-
nates { , 8, z ). First, we consider simple cases of the straight axisymmetric plasmas
such as the diffused Z pinch, the screw pinch, and the reversed field pinch (RFP) in
the cylindrical approximation. The z direction is now the toroidal direction and we
use the unit vector along the z direction, e,, for the fixed unit vector e in eq.(21). In
this case, €q.(22) becomes one dimensional problem, and the solution of ¢, is known
to be the 0th order Bessel function written as %, = J,(Ar}, by solving eq.(22). Then

the vector solutions of T, and S,, in eq.{21) are obtained respectively as

T = AMi(Ar)es, (29)

Sm = A,(Ar)e,, (30)

where Ji(Ar) is the 1st order Bessel function, and e, is the unit vector of ihe ¢
direction. For the first example, we consider the self-organized relaxed state of the
diffused Z pinch. Since the measured velue ®5 of the toroidal flux for this Z pinch

is zero, we obtain the followings from eqs.(23), (29) and (30),

bp = By -ds = 2'Jrcm2)\/Tw Jo(Ar)rdr = 0, (31)
Sy 0

where r,, is the wall ( boundary ) radius. We therefore obtain ¢,,; = 0 from eq.(31}
and find from eqs.(23}, (24), (29) and (30) that the configurations of the relaxed state

of the diffuse Z pinch are given by

Br = e ANi{Ar)ey (32)



le)\z

L]

ir = J(Ar)e, . (33)

The two factors of ¢,,,; and A are determined by using the other two measured values
of Wr.r and Ir. Substituting eqs.(32) and (33) into the equilibrium equation, we
obtain the pressure gradient that leads to the pressure profile at the relaxed state as

follows,

lezf\s

Vp = - J(Ar}Ji(Ar)e, | (34)

where e, is the unit vector of the r direction. We can expect from eq.(18) and
eqs.(32)-(34) that the obtained profiles of By, j; and p at the relaxed state for the
straight diffused Z pinch are followed by the self-similar decay phase. We should bear
in mind, however, that the change of the spatial distribution of resistivity n caused
such as by ohmic heating and also the second term of eq.(6) would result in some
gradual deviation from the self-similar decay.

For the second example, we consider the self-organized relaxed state of the straight
screw pinch. We now express c,,; as Cpya = Gy - Ac. We then obtain the followings

from eqgs.(23)-(25) and eqgs.(29) and (30),

Br = A A(0ee + J(W)e.] — Aehd(Ar)e. , ()

) - A2 A )\2

ja = [ Ah0r)es + JOr)e.] ~ S R(Ar)es, (38)
A Ack® [rw
Aoy -1, = 2TAC / J(Ar)rdr | (37)
Flo Ho 0

- 3
vp = - B2 m BN (e, (35)

Q

The three factors of Ac, ¢, and A are determined by using the three measured

values of W,,g, ®g, and Ir. The screw pinch is usually operated at the high toroidal



field without the field reversal. We see from eqs.(37) and (38) that the value of Ac
depends on the § value of the confined plasma. We find from egs.(35) and (36) that
the configurations of By and jg at the relaxed state of the screw pinch containes
the force-free field component of the Bessel function model, i.e. the first terms of
eqs.(35) and (36), which would be fairly high compared with the non-force-free field
component that depends on the §# value of the confined plasma. We can also expect
from eq.(18) and eqs.(35)-(38) that the obtained profiles of Bg, j; and p at the
relaxed state for the screw pinch are followed by the self-similar decay phase with
some gradual deviation, just as same as the diffused Z pinch shown above. In the
experimental screw pinch plasma, the spatial distribution of the resistivity n would
fairly modify the profiles of By, j; and p, especially in the boundary region.

For the third example, we consider the RFP plasma which has the torcidal field
reversal. The profiles of Bg, jz and p at the relaxed state for the RFP are also
shown by eqs.(35)-(38), just the same as for the screw pinch. In the limit of the low
3 plasma, Ac becomes zero from eq.(38), and we obtain the followings for the 8 =0
RFP plasma from egs.(35)-(37),

Bp = cmA[J1(Ar)es + Jo(Arle. ], (39)

. le)‘2

jr = ” [Ji(Ar)es + Jo(Ar)e. ], (40)
i@ﬂ = Ip. (41)
o

We easily recognize that eqs.(39)-(41) are the well known Bessel function model for
the RFP plasma derived and discussed by Taylor based on the time invariant of the
total helicity,'%")

When we consider the finite # RFP plasma with Ac > 0, the pressure profile

would be given basically by eq.(38). However, we notice from eq.(38) that the direc-



tion of Vp reverses across the field reversal point of J,(Ar) = 0. This result suggests
that the RFP plasma outside the field reversal point at the relaxed state, based on
the assumption of 1 = const., is unstable or tends to have uniform pressure profile
in the field reversal region through the interaction with the boundary wall. In the
experimental RFP plasma, the resultant spatial distribution of the resistivity 7, af-
fected by the plasma-wall interaction, would fairly modify the profiles of B, j g and
p consequently, especially in the boundary region.!%®)

We now consider the self-organized relaxed state of the field reversal configuration
(FRC) plasma, where the toroidal direction is along the 8 direction.®® In the case of
the FRC plasma, eq.(22) becomes two dimensional problem with respect to r and z,
and the solution of 1, will be expressed as ¥, = ¥ (r, z). The two vector solutions

of T, and S, in eq.(21) are then written as follows,

M
Ty = - _é‘)b;._ €, (42)
1 Y 10%m | PYm
S = M a0 &~ (T T e )] (13)

Since the FRC plasma has no toroidal flux usually, we obtain the followings from
eqs.(23),(42), and (43),

ds = 0. (44)

(I’RZ BR'dS=—le/
5, Or

S.P
We therefore obtain ¢, = 0 from eq.(44) and find from egs.(23), (24), (42) and (43)

that the configurations of the relaxed state of the FRC plasma are given by

1. Yy, 18yn | 0%,

BR = szx{ 87‘32 e — » ar + 87’2 )ez ]! (45)
. _ Cm2A albm
g = — o or € . (46)



The two factors of ¢,z and A are determined by using the other two measured values
of W,,p and I'p. Substituting eqs.(45) and (46) into the equilibrium equation, eq.(25),
we obtain the pressure gradient that leads to the pressure profile at the relaxed state

as follows,

2 2
_ Cm2 a'lpm 6 ¢m a’l/)m
Vp = Ho [ or Ordz € or (

10¢n | Y

r Or + or? Je: ) (47)

We can expect from eq.(18) and egs.(45)-(47) that the obtained profiles of By, j5 and
p at the relaxed state for the FRC plasma are followed by the self-similar decay phase,
similarly to the cases of the diffused Z pinch, the screw pinch, and the RFP shown
above. Recently, it was reported that low toroidal field was observed experimentally
in the translated FRC plasma in FIX machine.®® This configuration of the FRC
plasma with low toroidal field is corresponding to the case with finite value of ¢,,; in
eq.(44). By adding the term of this small ¢,; in eqs.(23) and (24), the configurations
of egs.(45)-(47) are rewritten easily for the relaxed state of the translated FRC plasma
with the low toroidal field.>?

Using eq.(12), we next discuss the mode transition point of the relaxed state,
for example from the cylindrical mode to the mixed helical one in the cylindrical
plasma.1%1516) We consider here the following associated eigenvalue problem for crit-

ical perturbations 6B that make §°F in eq.(12) vanish:

V x (3V x §B,) — ”";"5& = 0, (48)

with the boundary conditions of 6B -ds = 0, and (8j X 6B) -ds = 0 at the boundary,
where @, and 6B, denote the eigenvalue and thereigensolution, respectively. Substi-

tuting the eigensolution 6B; into eq.(12) and using eq.(48), we obtain the following;

§°F = "1'-"(05, — a)/éB,éB, dv > 0. (49)
Ho



Since eq.(49) is required for all eigenvalues, we obtain the following condition for the

self-organized relaxed state with the minimum |dW,, /d¢|,
0<ac< ag , (50)

where o is the smallest of the posi-tive eigenvalues, and « is assumed to be positive,
as was assumed at eq.(20). When the value of o corresponding to W,z goes out
of the condition of eq.(50), like as &y < @, then the mixed mode, which has
the value of W,.p and consists of the basic mode by the solution of eq.(13) with
a = o and the lowest eigenmode by eq.(48), becomes the self-organized relaxed
state with the minimum value of [dW,,/dt|. By using definitions of n(x) = 7,9(x) and
[A]l= \/oz;.zo—/Zno , the condition of eq.(50) can be rewritten to other form similar to
the mode transition condition shown in refs.16 and 18, where 7, is the value of 7 at
the magnetic axis. The mode transition condition of eq.(50) is the generalization of
the mode transition condition by Taylor.1%1%:16)

It is easy to show from eqs.(19)-(28) that in the case of the low 7 plasma limit
with 7 = const., the eigenvalue problem of eq.(48) includes the following eigenvalue

problem as a force-free branch,
V x 5B,; = :‘f:/‘\z 5B, (51)

with the boundary condition of 6B - ds = 0 at the boundary, where J; is the eigen-
value, and this eigensolution 6B, makes the surface integral term of eq.(12) vanish
automatically. Substituting the eigensolution éB; into eq.(12) and using eq.(51), we

obtain the following:

2n
£F - ;7()\? _ Az)/éBi.éBi dv > 0, (52)

a

where eq.(20) is used. Since eq.(52) is required for all eigenvalues, we obtain the

following condition for the relaxed state with the minimum |dW,,/dt],



/\_1 < A< A], (53)

where A_; and }; are the largest of the negative and the smallest of the positive eigen-
values, respectively. This mode transition condition is the same as that in Taylor’s
theory,10:1116)

The experimental relaxation pheromena in the simple toroidal Z pinch in the ZP-
2 device® 2% can be explained by the present theory, because of no need of "helicity”
and "invariant”. Furthermore, since the present theory permits the quasi-steady
energy flow. through the boundary surface by the Poynting vector, as is indeed the
case in most experiments, the present result reveals that the relaxations to the state

of VxB = £ AB are more general phenomena that take place in low 5 plasmas

even within nonideally conducting boundary.

§ 4. Application to Incompressible Viscous Fluids

We next apply the set of general thoughts { [I], [1I] } with eqs.(1) - (4) to the
incompressible viscous fluid which is described by the Navier-Stokes equation

p(jl—? =—Vp + vV, (54)
where p, u, and p are the fluid mass density, the fluid velocity, and the pressure,
respectively, v is the coefficient of viscosity, and V-u = 0. We pick up here
the flow energy W; = [(pu?/2)dv of the system and look for the self-organized
quasi-steady relaxed state with to Wj, which is therefore the global quantity W
in the set of general thoughts { I, [H] }. Using eq.(54), the vector formula of
V-{axb)=b-Vxa—a-V xb, V-u=_0, and the Gauss theorem, we obtain the

following,

%:-/uw-wdwf{v(uxw)—pu}'dsv (55)



where w = V x u is the vorticity. We assume here v to be constant, for simplicity.
Substituting W; and |[dW;/dt] respectively to W and |dW/d¢] in the set of general
thoughts { [1], [I1] } with eqs.(1)-(4) to find the internal structures of the self-organized

relaxed state, we obtain the followings,?)

§F = [(21/ $w-w — apéu-u)dv = 0, (56)

§F = / (2 bw-bw — apbu-Su)dy > 0, (57)

where the values of quantities on the boundary surface in dW}/d¢ are assumed to be
given so that the surface integral terms vanish in both §F and 6°F by the bound-
ary conditions of eq.(4), for simplicity. The boundary conditions are given here
as { éu = 0, u-ds = 0; at the boundary }. Using éw = V x éu, w = V x u,
V-(axb)=b-Vxa—a-V xb, and the Gauss theorem again, we obtain the fol-

lowings from eqs.{56) and (57),

_ . _o _
§F = w / bu-(Vx Vxu=Luydv = 0, (58)
§F = 2vf6u- (Vx V x5u-Loujdy > 0, . (59)

where the surface integral terms vanish in both §F and §?F by the same boundary
conditions used at egs.(56) and (57). We then obtain the Euler-Lagrange equation

for arbitrary variations of u from eq.(58) as follows,?®

VxVxu= «u, (60)

el= 2, (61)

where the Lagrange multiplier « is assumed to be positive. Equation (60) is the same

type with eq.{19) which is used for the classical spheromak.3"%?



We now have found that the self-organized quasi-steady relaxed state has the
peculiar internal structure which satisfies eq.(60). Using the vector formula of Ve =

V(V-u)—VxVxu,V-u=90, and eq.(60), we obtain
Vi = —x*u. (62)

Using the vector formula of Vu? = 2ux (V x u) + 2(u- V}u, and substituting eq.(62)

into eq.(54), we obtain the following,

A %y —vp = Pyy? ‘
5 5 U Vp 2Vu + plu x w), (63)

where eq.(61) is used. When we deal with a system where the self-organized relaxed
state has still high flow fields of u, we may assume the following for the right hand

side of eq.(63),

"‘2—”11 > Vp+ ng - p(u x w). (64)

Using eq.(64), we obtain the following from eq.(63),
du

ot

R

—511. (65)

Equation (65) gives us the following solution

- %3

u(x,t) = ug(xje >, (66)

where ug(x) is the solution of eq.(60) for the self-organized quasi-steady relaxed
state. We see from eq.(66) that the flow pattern of u just after the realization of
the self-organized relaxed state has the self-similar decay phase without significant
change the spatial structure. The right hand side of eq.(64) and boundary conditions
would lead to finite deviation from the self-similar decay gradually. We may recognize
from eq.(60) for the self-organized quasi-steady relaxed state and eq.(66) for the time

evolution of the relaxed u field that the present nonlinear dynamical system relaxes



to the state that has attained such a peculiar internal spatial structure that yields
the minimum decay rate of Wy and thereafter leads to the self-similar decay phase
without significant change of the spatial structure.

Using the same procedure from eq.(19) to eq.(24), we obtain the general solutions

of up(x) and wp(x) = V x ug as follows,

ur(x) = caTy + cpSy, (67)

wr(x) = &(cnSs + ¢pTy), (68)

Ty =V x (eyy), and S§; = %V x Ty, {69)
Vi, + Ky = 0. (70)

Three unknown factors of {, cs1, ¢;2} are determined by three measured values of the
flow energy W;p, the torcidal flow flux ®;5 and the toroidal vorticity flux 5 inside
the boundary. It is because that we obtain ;5 and Q5 by integrating eqs.(67) and
(68} respectively across the poloidal cross-section of the toroidal fluids.

Using eqs.(67)-(70}, we obtain

Up X Wr = H(Cfgz — Cflz)Tf X Sf, (71)

H@fR — QR - E(sz—(,‘fl)'/s(s_f - Tf)-ds, (72)
r

where [; denotes the integral across the poloidal cross-section of the toroidal fuids.
When the right hand side of eq.(64) is assumed to be negligibly small, we obtain the
equilibrium equation at the relaxed state which is written by Vp+2Vu® 2 p(uxw).
And further if it is assumed that p = const. and p + (pu?/2) = const. so that Vp

+ eVu? = 0, then we may put csy 2 ¢p; from the comparison of the equilibrium

equation shown above with eq.(71). In this case, we may write eq.(67) as follows,



up(x) = cp(Ty + Sy), (73)
which satisfies the following,*") in the same way at eq.(28),
VXURZﬂ:.‘ﬂlR. (74)

Since eq.(74) has the same form with the force-free field V x B = £AB, it is easy
to show that the Bessel Function model (BFM) for the reversed field pinch (RFP)
plasma is also applicable to the flow profiles of up for eq.(74). Equation {74) may

represent the region of the helical motion after the "turbulent puff?.3*)

We next discuss the mode transition point of the relaxed state, by using eq.(59),
in the same way at eqs.(48)-(53) for the resistive MHD plasma.?®?*182%) We consider
here the following associated eigenvalue problem for the critical perturbation éu that

makes 52F in eq.(59) become zero:

VxVxéu — &26u; =0, (75)

with the boundary condjfion of 5u = 0 at the boundary, where x; and éu; denote
the eigenvalue and the eigensolution, respectively. It is easy to show from eqs.(60)
and (74) that the eigenvalue problem of eq.(75) includes the eigenvalue problem of
V x fu; = =k, 6u; as a branch. Substituting the eigensolution éu, into eq.(59) and

using eq.(75), we obtain the following:
PF = w(x? — &) / Su; - u, dv > 0, (76)

where eq.(61) is used. Since eq.(76) is required for all eigenvalues, we obtain the

following condition for the relaxed state with the minimmum [dW; /d¢|,*

ko1 < K < Ky, (77)



where x_; and x; are the largest of the negative and the smallest of the positive
eigenvalues, respectively. When the value of x corresponding to Weg goes out of
the condition eq.(77), like as 51 < &, then the mixed mode, which has W,z and
consists with the basic mode by eq.{60) with k = &; and the lowest eigenmode
by eq.(75), becomes the relaxed state with the minimun value of |dW,/dt|, in the
similar way to the case of the resistive MHD plasma discussed at eq.(50). Since the
mathematical structures of eqs.(54) - (77) for the fluid flow velocity u are similar to
those of equations for the magnetic field B used in the resistive MHD plasma ( one of
which is the RFP plasma ), some common phenomena are expected to be observed
in the RFP plasma and in the incompressible fluid, like as the saw tooth oscillation
in the former and its corresponding phenomenon such as the turbulent puff®® in the

latter.

§ 5. Application to Incompressible Viscous MHD Fluids

We next show another example of the application of the set of general thoughts
{ 1, [1f] } with eqs.(1) - (4) to the incompressible viscous MHD- fluid which is
described by the following extended Navier-Stokes equation and the equation for the

magnetic field,

p% =jxB — Vp + vV?y, (78)
%:Vx(uxB)—Vx(nj). (79)

We pick up here the magnetic energy, W,,, and the flow energy, Wy, of the sys-
tem and look for the relaxed state with respect to W = W,, + Wy = f(B?/2u,

+ pu®/2)dv. ( If the internal energy is assumed to be negligible compared to this



W, then the relaxed state of W is equivalent to the relaxed state of energy of the
system. ) Using eqs.(78) and (79), Maxwell’s equations, Ohm’s law of j = E +
uxB, V-(axb)=b-V xa—a-V xb, and the Gauss theorem again, we obtain
the following

%Vtzz—j(nj-j+yw-w)dv+f{v(uxw)—pu—ExH}Ads. (80)

Substituting W and |dW/d#| shown above respectively to W and |dW/d¢| in the set
of general thoughts { [1}, {II] } with eqgs.(1)-(4) and using the same procedure used
from eq.(9) to eq.(12) and from eq.(56) to eq.(59), we obtain the followings,

6F = f{_z_aB-[VX(nj) - %B] + 2u6u-(Vxqu—;‘—su) }dv
o

-—%}K(yﬁxas)-dpo, (81)

2 . o ap
2 -_— — - — — . — —
6°F = /{MO(SB [V x (né]) 26B] + 2wéu- (Vx V x éu 2yéu) }v

—%f(najxm)-dw 0. (82)

We then obtain the Euler-Lagrange equations for arbitrary variations of éu and /B

from the volume integral terms of eq.(81), as follows,?®

. o
Vx () = 3B, (53)
VxVxB = 3B (for n=const), (84)
VxVxu = gu, (85)

ap,

A= , 86

3= 2 (%)

ap
| k& l = E ) (87)



Using the same procedure at egs.(62) and (63), we obtain the following from eqs.(78)
and (83)-(85),

0
p%:—%quij—Vp—%Vu2+p(uxw). (88)
When we deal with the system where the self-organized relaxed state has still high

flow fields of u, we may assume the following for the right hand side of eq.{88),

%’gu > Vo + gVu2 — jxB — pluxw). (89)
If the right hand side of eq.(89) is assumed to be negligibly small at the relaxed state,

we may have the following equilibrium equation at the relaxed state,
Vp + gVuz = jx B + puxw). {90)

Equations (88) and (89) lead us to the following,

du  «
5‘? =—§11 (91)

Substituting eq.(83) into eq.(79), we obtain the following,

JB

04
&—=—§B+Vx(uxB) (92)

When we deal with the system where the self-organized relaxed state has still high
enough fields of B and the term of (u x B ) is nearly irrotational or the flow pattern
of u has become almost parallel to B, we may assume the following for the right hand
side of eq.(92),

%B>>Vx(uxB). (93)
In this case, we obtain the following from eq.(92},

— ~_2p (94)

Equations (91) and (94) give us the following solutions,



u(x,t) = uy(x)e (95)

B(x,t) & Bg(x)e 2%, (96)

where ug(x) and Bg(x) are the solutions for the self-organized relaxed state. We
see from eqs.{95) and {96) again that the flow pattern of u and the field profile of
B just after the realization of the self-organized relaxed state have the self-similar
decay phase without significant change of their spatial structures. We should bear in
mind that the right hand sides of eqs.(89) and (93) and boundary conditions would
lead to finite deviation from the self-similar decay gradually. We may recognize from
eqs.(83)-{87) for the self-organized quasi-steady relaxed state and eqgs.(95) and (96) for
the time evolution of the relaxed u and B fields that the present nonlinear dynamical
system relaxes to the state that has attained such a peculiar internal spatial structure,
which yields the minimum dissipation rate of W and therefore is hardest to change
its own spatial structure, and thereafter which leads to the seli-similar decay phase
without significant change of the spatial structure.

We now assume here the resistivity 7 to be constant, for simplicity. Using similar
procedure from eq.(19) to eq.(24) and from eq.(67) to eq.(69), we obtain the general

solutions of ug(x), wr(x), Br(x), and jz(x), as follows,

ur(x) = cnTy + ¢Sy, (97)
wr(x) = k(cuSs + cTy), (98)
BR(X) = leTm + chSﬂn (99)

. A
ia(x) = ;Jl_(cfmsm + em2Tr)- (100)



Six unknown factors of {, ¢s1,cr2} and {A, cpu1, ez} are determined by six measured
values of W,.g, @, Ir, Wig, @z and Qp inside the boundary.

From eqs.(97)-(100), we obtain the followings which are the same as eq.(25) and
eq.(71),

A
jR x By = _(Cm22 - lez)Tm X Sy, (101)

Ho
Up X Wp = E(Cfgz - Cflz)Tf X Sf. (102)

ITit is assumed that p 2 const. and p+ (pu?/2) 2 const. so that Vp + SV 20,
then we may put ¢y ¥ ¢,nz and cf; & g, from the comparison eq.(90) with eqs.(101)

and (102). In this case, we may write eqs.(97) and (99) as follows,
UR(X) = Cfl(Tf + Sf), and BR(X) = le(Tm + Sm), (103)
which satisfy the followings,3") in the same way at eq.(28),

VXUR::‘EEUR, and VXBI:E::EABR. (104)

We can also discuss the mode transition points of the relaxed state for B and u, by
using eq.(82) in the same way from eq.(48) to eq.(53) and from eq.{75) to eq.(77).162
Various solutions for eqs.(97)-(100) are expected to be observed as the field profiles
of B and the flow patterns of u in the relaxed states of energy of the incompressible
viscous MHD fluid, corresponding to the amounts of six measured values of Wonr,
®r, Ir, Wig, ®sr and Qp inside the boundary. Some of them would represent the
field profiles of B and the flow patterns of u realized in the magmas as the result of
the earth dynamo.*® When we consider the flow pattern u of the electron fluid in the
experimental RFP plasma, gross features of B and u in the relaxed state are expected

to be given by eq.(104} with some necessary corrections by the compressibility. One



of the simplest solutions for eq.{104) is the solution for the case with By = vug
with a constant value of «. In this case, the two equations in eq.(104) become to be

equivalent, and there exists a relation of ¢,/ = p/r from eqs.(86} and (87).

§ 6. Concluding Remarks

The thought analysis in Sec.2 on relaxation due to nonlinear processes with dis-
sipation leads us to the followings: The fact that the nonlinear dynamical system of
interest is dissipative with respect to W means that the system is an open system with
respect to W. If the internal spatial distribution of the system is unstable against
keeping or sustaining the instantanious amount of containing quantity of W, drastic
change of the internal spatial distribution will be induced and develop nonlinearly to
release and dissipate W rapidly, through driving elements of the system. This rapid
decay phase of W with the nonlinear drastic change of internal spatial structure is
recognized and called as ”the relaxation phase”. The relaxation phase will continue
itself until and terminate itself at the time when the internal spatial distribution has
come to have a peculiar internal spatial structure such that yields the minimum dis-
sipation rate of W and therefore is hardest to change its own spatial distribution for
the instantanious amount of the containing W. The state with this peculiar internal
spatial structure yielding the minimum dissipation rate of W for the instantanious
amount of W is recognized and called as ”the self-organized relaxed state”. These are
summarized to the set of general thoughts { [I], [I] } with the mathematical expres-
sions of egs.{1)-(4), in order to find out the internal structures of the self-organized
relaxed states. Since the self-organized relaxed state has the peculiar internal spatial
structure such that is hardest to change its own spatial distribution, the relaxed state

should be followed by the self-similar decay phase without significant change of the



spatial structure. We should bear in mind, however, that the dissipation and being
open of the system with respect to W will still lead to some gradual deviation from the
self-similar decay. All of thoughts shown above would be applicable to all dynamical
systems including physical systems, biological systems, and/or economical systems in
general. The realization of the internal spatial structure of the self-organized relaxed
state comes essentially from the fact that the dissipative nonlinear dynamical system
of interest is the open system with respect to the global quantity W subject to the
dissipation. The realization of the self-organization is a global property that is em-
bedded in the laws ruling the dissipative, open, and nonlinear dynamical system of
interest. This thought is connected to the well known thought of "the structure due

to the dissipation” by PrigOgjneS5,36)

In Sec.3, we have applied the set of general thoughts, { [I], [IT] } with eqs.(1)-(4)
to the magnetic energy relaxation of the resistive MHD plasma and have led the self-
organized relaxed state of eq.(13) and equivalent eq.(16), and also the mode transition
condition of eq.(50) in the more general case and eq.(53) in the low 3 plasma [imit with
the spatially uniform resistivity n at the relaxed state, without using ”helicity” and
“invariant”. We have proved that the self-organized relaxed states with the internal
spatial structure of eq.(13) for the more general case are followed by the self-similar
decay phase without significant change of its own spatial distribution, as was shown
at eq.(18). For the simple case with the spatially uniform resistivity n at the relaxed
state, we have shown the general solutions for the field By and the current j, eqs.(23)
and (24), and the equilibrium equation, eq.(25), at the self-organized relaxed state.
We have also shown that the force-free fields of V x B = + AB, derived by Taylor
based on the minimum energy state under the time invariant of the total helicity, 1"

can be derived generally as the low 8 plasma limit of the self-organized relaxed state



from the present theory.

We have shown some typical examples of the axisymmetric plasmas in the self-
organized relaxed state, such as the diffused Z pinch plasma, the screw pinch plasma,
the RFP plasma, and the FRC plasma as were shown at eqs.(29)-(47), all of which
are followed by the self-similar decay phase shown by eq.(18). These typical examples
by the present theory would be supported by the exprimental fact that all of these
plasmas are observed to have the quasi-steady relaxed state phase, 1.e. the self-similar
decay phase without significant change of their own spatial distribution.

The present theory provides various schemes of current driving or current sus-
taining by supplying the magnetic energy to the self-organized relaxed state plasma
directly or indirectly, in order to recover the resistive decay of the magnetic energy;
for example, by the power input through the Poynting vector E x H on the boundary
surface, discussed at eqs.(9) and (10), or by injection of some compact magnetized
plasmas such as the compact FRC plasma, the compact spheromak plasma, or the
magnetized gun plasmas. Several experimental investigations of current drive by the
so-called helicity injection have been reported, some of which failed in obtaining net
current drive and others were successful. The present theory gives us quite usual
and familiar physical explanations for these experimental results as follows; no net
magnetic energy was injected to the relaxed state plasmas in the former, and net
mangnetic energy was successfuly injected in the latter. The present theory takes us
back to rather familiar physical picture of "the transportation of energy”, compared
with "the transportation of magnetic helicity”. At any rate, we cannot deal with any

new quantities agaist the law of the energy equation.

In Sec.4, we have applied the set of general thoughts, { [I], [1I] } with egs.(1)-(4)

to the flow energy relaxation of the incompressible viscous fluid and have led the



self-organized relaxed state flow of eq.(60), and also the mode transition condition of
eq.(77), which have the same form with the case of the resistive MHD plasma with
the spatially uniform resistivity in Sec.3 We have also proved that the self-organized
relaxed state flow with the internal spatial structure of eq.(60) are followed by the
self-similar decay phase without significant change of its own spatial distribution,
as was shown at eq.(66). The solution of eq.(74) for the case of the axisymmetric
cylindrical flow, which is given by the Bessel function model [ the same type of
solution with eq.(39) }, would represent the self-organized relaxed state flow after
the turbulent phase of flow in the incompressible viscous fluid within sach a rotating
cylindrical wall. The common mathematical structures of egs.(55) - (77) for the fluid
flow velocity u and the equations for the magnetic field B used in the resistive MHD
plasma suggest that some common phenomena are expected to be observed in the
RFP plasma and in the incompressible fluid, like as the saw tooth oscillation in the

former and its corresponding phenomenon such as the turbulent puff®®) in the latter.

In Sec.5, we have applied the set of general thoughts, { [I], [II] } with egs.(1)-
(4) to the flow- and the magnetic energy relaxation of the incompressible viscous
MHD fluid and have led the self-organized relaxed state flow and field, eqs.(83) and
(85). The mode transition cordition of the self-organized relaxed state of eqs.(83)
and (85) can be also derived in the same way as for the resistive MHD plasma in
Sec.3 and the incompressible viscous fluid in Sec.4. We have also proved that the
self-organized relaxed state, which has the internal spatial structures of egs.(83) and
(85) and satisfies approximately the equilibrium equation, eq.{90), are followed by
the self-similar decay phase without significant change of its own spatial distribution,
as was shown at eqs.(95) and (96). The mathematical structures of the self-organized

relaxed state for both the flow pattern of u and the field profile of B are shown to



be common. The self-organized relaxed state described by eqs.(83) and (85) [ or
more simply by eq.{104) ] in the incompressible MHD fluid would represent the field
profiles of B and the flow patterns of 1 realized such as in the magmas as the result
of the earth dynamo,*” in and around the magnetized neutron stars, and others in
the universe.

Every nonlinear and dissipative dynamical system may have ”the self-organized
quasi-steady relaxed states”, if the laws ruling the elements of the system yields the
equations which determine peculiar internal structures by applying the set of general

thoughts, { [1], [11] } with eqs.(1}-(4), like as obtained in the present paper.
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