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High-n helicity-induced shear Alfvén eigenmodes
N Nakajima, C.Z.Cheng,! and M.Okamoto
National Institute for Fusion Science, Nagoya 464-01, Japan

ABSTRACT
The high-n Helicity-induced shear Alfvén Eigenmodes ( HAE ) are considered both ana-
lytically and numerically for the straight helical magnetic system, where n is the toroidal
mode number. The eigenmode equation for the high-n HAE modes is derived along the
field line and with the aid of the averaging method is shown to reduce to the Mathien
equation asymptotically. The discrete HAE modes are shown to exist inside the continuum
spectrum gaps. The continuous spectrum gaps appear around w?® = Wwi[N(le — m)/2)?
for N = 1,2,-, where wy is the toroidal Alfvén transit frequency, and I, m, and ¢ are
the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational
transform, respectively. For the same w, and ¢, the frequency of the helical continuum gap
is larger than that of the continwum gap in tokamak plasmas by |l —¢*m|. The polarity
of helical coils [ plays a crucial role in determining the spectrum gaps and the properties
of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the
helical ripple with circular flux surfaces for [ = 1,and > 3 helicals. For [ = 2 helical
systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These ana-
lytical results for the continuum gaps and the existence of the high-n HAE modes in the
continuum gaps are confirmed numerically for the I = 2 case, and we find that the HAE

modes exist for mode structures with the even and the odd parities.
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I. INTRODUCTION

The Toroidicity-indeuced shear Alfvén Eigenmodes ( TAE ) have been discovered
for axisymmetric tokamaks'~®, and the destabilization of the TAE modes by the o-particles
which can result in significant o-particle losses in ignited tokamaks has been theoretically
predicted.*”'® In an axisymmetric torcidal plasma, the magnitude of the toroidal magnetic
field is nonuniform over a magnetic flux surface. This nonuniformity of the toroidal mag-
netic field can cause coupling of neighboring poloidal harmonics and results in the breakup
of the shear Alfvén continuous spectrum into small bands of the continuous spectra.lt~3
Inside of the spectrum gaps discrete TAE modes exist as stable toroidal shear Alfvén
eigenmodes.!™?

In non-axisymmetric toroidal plasmas such as the helical devices, not only the toroidic-
ity but also the helical coils can make the magnitude of the magnetic field nonuniform over
a magnetic flux surface. Thus, the straight helical plasmas can also cause the breakup of
the shear Alfvén continuous spectrum into small bands of the continuous spectra.

In this paper, we study both analytically and numerically the high-n helicity-induced
shear Alfvén eigenmodes (HAE) in a low beta straight helical system. An averaged eigen-
mode equation along the field line for the high-n HAE modes is obtained by using the
averaging method and is reduced to the Mathieu equation’* asymptotically. It suggests
that the spectrum gaps appear around «® = wi[N(le — m)/2] for N - 1,2, -, where
wa = v4/Ris the toroidal Alfvén transit frequency, v, = B, /+/Pm is the Alfvén velocity,
+ is the rotational transform, R is the major radius, By is the uniform toroidal field, and
Pm is the mass density. The frequency of the helical continuum gap is larger than that of
the continuum gap in tokamak plasmas by |l ~ g for the same Alfvén transit frequency
w4 and the rotational transform ¢, where ¢ = ¢! is the safety factor. The existence of the
discrete HAE modes is numerically demonstrated in the ! = 2, m = 10 straight helical
system, where [ and m are the number of helical coils and the toroidal pitch number of
helical coils, respectively. The number of helical coils ! plays a crucial role in determining
the spectrum gaps and the properties of the HAE modes. The spectrum gaps near the
magnetic axis are created by the helical ripple for | = 1,and > 3 helicals with circular




flux surfaces. But for the I = 2 helical system, the spectrum gaps are created by the
ellipticity of the magnetic flux surfaces. In contrast to the TAE modes, not only the even
modes but also the odd modes exist for the [ = 2 helical system.

The organization of this paper is as follows. In Sec.II, the high-n ideal magnetohy-
drodynamic (MHD) Wentzel-Kramers-Brillouin (WKB)-ballooning equation is derived for
a low-{3 straight helical system. Section III gives an analytical treaiment of the eigenmode
equation by employing the averaging method. The results of numerical calculations are

shown in Sec.TV. A summary and discussion is given in Sec.V.

I1. BASIC EQUATION

Following Cheng et. al.,! the high-n ideal MHD WKB-ballooning equation in the
low-/ limit is given by

= Va4 Va |?
LR LT

where p,,, is the mass density, Va is related to the magnetic field by
B=Vy x Va, (2)

and 7 is the magnetic flux function. Va is given by

_Bxvy
AR

and A is obtained by solving the magnetic differential equation'®

+ AV, (3)

- B? .
B-VA:—Ilebw V x (b x ), (4)

where 5 = B/B,and ¢ = Vi/ | Vi |. Note that o is an angle-like, multiple-valued
function of position, and A contributes to the secular behavior of Va.

To consider the high-n HAE modes both analytically and numerically, we use the
straight helical vacuum magnetic field as a first approximation. This is consistent with the

low-3, large aspect ratio approximation. The straight helical vacuum field in cylindrical



geometry (r, 8, z) is given by?®

dli(p)

B, = b——= 7 sin(l6 — m(),

By = 125%)- cos(10 — m(), (5)
B, = By—IbLi(p)cos(lf — m(),

where ( = z/R, p = mr/R, R is the major radius, b represents the helical field strength,
and [; is the [-th order modified Bessel function of the first kind. [ and m are the polarity
of helical coils and the toroidal pitch number of helical coils, respectively. Note that for
even m, ! coresponds to the number of helical coils. From the helical symmetry of the the
magnetic field given by Eq.(5), the magnetic flux function ¢ is given by

ByR
2tm

2lb dIi(p)

b= gl = op g P cos(if =m0}, (©

Solving the equation of the magnetic field line of force with ¢ as the independent
variable, we obtain 7 = r((), 4 = 6(C), and we have B-V = (B,/R) (d/d¢). The initial
point of the field line calculation (rg, 6y, (o) is chosen at the point of the weakest magnetic
field strength in the magnetic flux surface and we set fp = 0and ¢, = 0. A(() is obtained
by integrating Eq.(4) along the field line with A(() = 0. Then Eq.(1) becomes

2
bt s e+ (2] o= (7
where @ = wry, 74 = Rfva, va = Bo/y/pm, and § = B | Va |? /B2 Because of
helical symmetry of the magnetic field given by Eq.(5), the solutions of Eq.(7) can have
either even or odd parities with respect to ¢ = 0. With the transformation ¢ = ¢+/3,
Eq.(7) has the following Schrodinger type of expression:

&
et U@, Op =0, )
where the potential U(0Q? () is given by
2 on o B 1P
U(Q2¢) = 2 (B_c) {2d<,21n,8+[2dglnﬂ] } (9)




I1I. ANALYTICAL TREATMENT

We use the averaging method?” to obtain the averaged equation of Eq.(8), and the
small ordering parameter is b/ By ( € 1). The equations of the magnetic field line of force

are given by’

_ . bdifp)

p=pty ;, os(18 — m), (10)
3 b L(p) .

§ = B- B(,I sin(lf — m¢). (11)

In the above equation, p is the averaged radius of the magnetic field line and is defined by

2lmy
pr=—= 12
ByR’ (12)
and the averaged 8: 8 is given by
b =4, (13)
where the rotational transform ¢ has the following form
1lmd [1d 2}
p) = ~——{ =7 14
) 47 dp{pdp (14
with the helical ripple given by
Ib
e(p) = g-h(@)- (15)

Using Eqs.(10)-(15), we can evaluate the potential U (2%, () given by Eq.(9) in terms
of the averaged coordinates. With accuracy up to the order of b/ Bo,

B} = B = B2{1 — 2¢ cos[(le — m)(T}, (16)
B2p? d’e
|V 2 = ;2 {I—Z—d—?hcos (h—m){]}. (17)
Through long calculations, we can show that
_ 2 2Am d
AP = g | 56~ et () sl = | (18

with accuracy up to the second order in /By, where s is the shear parameter given by

—(p/¢)(de/d7), and the second harmonics of the order of (b/B;)® are neglected. It is clear



from Eq.(18) that the secular term is proportional to the shear parameter s, which can be
shown from Eqgs.(14) and (15) to be of second order in 5/B,. Thus, accuracy up to the
second order in b/Bq is needed in deriving Eq.(18).

Using Eqs.(16)-(18) and retaining leading order in /By, we obtain the averaged
equation given by

%(p + {a — 2ecos(29) — F()}p =0, (19)

where the new variables are given by

a = ( il )2, (20)

le —m
Pe

¢ = 2#—(a+l)eh, (21)
j —

= 2 ng, (22)

(2(ls — m)ss)?
[t — m)2 + (20092

(PE}, d Ep 8 st .
+ {&s [2:@—2 - Eh} + 21m3~1_; (Ta-—) } e —m) T Gesd)? sin{29).  (23)

The averaged equation has the form of the Mathieu equation® in the limit of ¢s89 >

1 because F(¥) tends to 0 with a damped oscillation. For comparison, the eigenmode

equation for the high-n TAE mode is given by

2 .
FrTAd + {ar — 2er cos(297) — Fr(d7)}p = 0, (24)
T

where

ar = (@)2 (25)

+

e = —2arpey, (26)

g
'ﬁT = E, (27)
Fp($7) = (2) (28)

[1 + (25’!91")2]2‘
It is understood that Eqs.(24)-(28) can be obtained from Eqs.(19)-(23) by letting [ = 1,

m = 0,+¢( = 6 e, = 2¢, and by neglecting 2d%;,/dp* — e in ¢ and the second term

in F(#). Note that the factor 2 in the relation &, = 2¢; comes from the difference of




coordinates between a straight cylinder in the helical and a quasi-torus in the tokamak. It
is well known that in the large aspect ratio, low-g tokamak with concentric circular flux
surfaces the discrete eigenvalues of high-n TAE modes exist in the frequency gaps where
the corresponding Mathieu equation has unstable solutions or unbounded solutions ( these
frequency gaps are called the continuous spectrum gaps ). The existence of the TAE modes
is due to the function Fr(dr) given by Eq.(28), and only the even TAE modes have been
shown to exist.! Although the function F(¥) given by Eq.(23) for a straight helical plasma
has a slightly different form from Fr(J7) for the high-n TAE modes, both functions have
similar properties that the function F(J) vanishes as ¢sd » 1, and Eq.(19) corresponds
to the Mathieu equation. Therefore, we expect the discrete HAE modes to exist in the
continmium gaps. In this paper, we shall demonstrate the existence of the HAE modes by
numerically solving the high-n MHD WKB-ballooning equation, Eq.(7). For ¢ < 1 the
continaum gaps can be formed near

N(le = m)

2 _
- |1

2
] for N =1,2,- - (29)

with the boundaries of the gaps given by {for N = 1~ 3 ):*

le = m]? &
0y = [*Zm] {1i2(§—ah)}, (30)

Dyeyy = [Ié - m]2 {1 + (g— +1) ((Q—d-l_;-?- — 55h)/4) } : (31)

[M} {1 + (- 2sh)/6)2 £3((G2- seh)/ﬁ)s} @)

From Fqgs.(29-32), we can see that the continuum gaps in a helical system depend on [, m,

2
QN::ES

¢, €4, and (d®e,/dp?). 1t is clear from the definition of  that for the same Alfvén transit
time 74 and the rotational transform ¢, the center frequency of the continuum gap in a
helical system is larger than that in the tokamak by |l — gm|, where ¢ = ¢~ is the safety
factor and az == N? is used. For a helical device with{ = 2, m = 10,and ¢ = 0.5,
|l —gm| = 18.

It should be noted that the polarity of helical coils I plays a crucial role in creating the

spectrum gap and determining the properties of HAE. This role is understood by expanding



the [-th order modified Bessel function of the first kind, [}, near the geometric center. The
helical ripple ), given by Eq.(15) increases in proportion to 5'. The magnetic flux surfaces
given by Eq.(6) comprise a family of off-center circles, of ellipses, and of circles encircling
the origin accordingto! = 1,1 = 2, and! > 3, respectively.’® The effects of the magnetic
flux surface shapes are reflected in the phase-dependent terms of Eqs.(17) and (18) through
(d%,/dp®) and d(ey/p)/dp. For I # 2 helicals with circular flux surfaces, the phase-
dependent terms disappear near the magnetic axis because (d?e; /dp?) ~ ld{(e,/p)/dp
(! - 1)#*~2. However, for the [ = 2 helical with elliptic flux surfaces, the phase-dependent

terms remain finite. Defining the ellipticity e as the ratio of the long axis to the short axis,

we have
&’ = 7; (33)
-2

(e = 1forl # 2,ande # 1onlyfor{ = 2). Thus, the gap structures for straight
helical devises with { # 2 are similar to those for the large aspect 1atio, low-3 tokamaks in
the sense that the contribution from the helical ripple, 5 and d?c,/dp®, makes dominant
contribution to the spectrum gaps. But for the ! = 2 straight helical, the ellipticity e gives
the dominant contribution through d®; /dp® (d%e/dp? ~ Id(en/p)/dp > €3), which is
finite near the magnetic axis. The situation is similar to that in a straight plasma column
with elliptical cross section.!$~°

In the following we concentrate on the | = 2 helical plasmas. For the ! = 2 straight
helical systems, the ellipticity e or d%¢,/dp® ( ~ ld(ex/p)/dp > e3) significantly affacts
the shear dependent sine term in F(2) given by Eq.(23). Accordingly, as ¢s¥ increases, the
first term of F() given by Eq.(23) decreases rapidly as (¢s9)™* as well as Fr(d7). However,
the second term of F'(##)damps slowly in proportion to (e?—1}/(e?+1)-(¢s9)~* sin(24). This
term is more effective in determining the properties of the HAE modes as the ellipticity e or
d’ep/dp® (= ld(ex/p)/dp > &) increases. Therefore, the properties of the high-n HAE
modes can be significantly different from those of the high-n TAE modes. This conclusion

is confirmed by the numerical calculations presented in Sec. IV.




IV. NUMERICAL CALCULATIONS

We consider the helical magnetic field given by Eq.(5) with [ = 2, m = 10,
aspect ratio R/fa = 8 where @ is the minor radius. b/By is chosen to be 0.45 and 0.68.
We choose five magnetic flux surfaces indicated by case(1) to case(5) for a helical system
with 6/By = 0.45 (shown in Tab.I) and five magnetic flux surfaces indicated by case(6)
to case(10) for a helical system with b/B; = 0.68 (shown in Tab.II). The former has a
moderate ellipticity, and the latter has a large ellipticity. The rotational transform near
the magnetic axis of the former is given by ¢ ~ 0.51, which corresponds to the LHD case.?®
The initial point of each flux surface calculation ry is chosen in the same toroidal plane
and corresponds to the point of the weakest magnetic field strength in each magnetic flux
surface. The averaged quantities in the analytical treatment and numerically calculated
exact iota ¢, and shear sg are also shown in Tables I and II. It is clear from Tables I and
[T that the shear increases with the increase of the averaged radius ¥ = pR/m. We also
note that the magnetic shear computed from the averaging method s is much smaller than
exact magnetic shear sg. This also results from the {runcation error in 5/B,.

Figure 1 shows the variation of | Vo [ / | Va |2, along the magnetic field line for
case (2) with the initial condition A = 0 at { = 0. A increases parabolically along ¢
with fast oscillations corresponding to the helical ripple period. This behavior supports our
averaging procedure. In Fig.2, we show the boundaries of the lowest continuum gap and
the lowest discrete eigenfrequencies of the HAE modes for cases (1)-(5) of the helical system
with b/B; = 0.45. The gap boundaries obtained from both the numerical calculations and
the analytical treatments are shown. The analytical gap boundaries are calculated from
Eq.(36), and the numerical boundaries are obtained by integrating the eigenmode equation,
Eq.(7). It should be noted that the continuum gap still exists near the magnetic axis for
! = 2 helical systems, and the gap width is large because d%¢;/dp is finite and is dominant
over e, Physically, this is because the magnetic flux surfaces are elliptical near the magnetic
axis. In the case of tokamaks, the toroidicity £, vanishes at the magnetic axis, and the width
of the continuum gap is proportional to the minor radius. Furthermore, in contrast to the

TAE modes, the HAE mode frequencies for the { = 2 helical systems decrease from near



the upper gap boundary toward the lower gap boundary with the increase of the averaged
radius, i.e., with the shear. It is noted that although the analytical treatment breaks down
for large b/ By, the analytical estimate of the gap boundaries gives good indication. Similar
conclusions can be drawn for the helical system with 4/B; = 0.68 as shown in Fig. 3.
The analytical estimates of the gap boundaries become worse at smaller 5 for the larger
b/ By case shown in Fig.3 than those for the smaller b/ B; case shown in Fig. 2 due to the
breakdown of the expansion in b/B;. It should be noted that in contrast to the high-n
TAE modes, the HAE eigenmodes with odd parity also exist. Figure 4 shows the even
eigenfunctions of the HAE modes with corresponding eigenfrequencies in the lowest gap
for cases (1)-(5). It is found that the eigenfunctions spread out more along the magnetic
field line as the shear decreases. Note that the HAE mode eigenfrequency increases as the
magnetic shear decreases. This is opposite to the properties of the TAE modes in tokamaks,
where 0 approaches the lower boundary as the shear decreases. Comparing Fig.4 with
Fig.1, we see that the eigenfunctions have oscillations with roughly one half period as the
helical ripples. Similar features are observed for odd parity HAE modes. Figure 5 shows
the odd eigenfunctions of the HAE modes with corresponding eigenfrequencies in the lowest
gap for cases (1)-(5). We have also found discrete HAE modes in the higher continuum
gaps. Figure 6 shows the eigenfunctions and corresponding eigenfrequencies of an even and
an odd HAE mode in the second continuum gap for case (2). Since the fast oscillation of the
cigenfunction ~ "%, the frequency of the oscillation is proportional to the eigenfrequency

or the period is inversely proportional to the eigenfrequency.

V. CONCLUSION AND DISCUSSION

The high-n Helicity-induced shear Alfvén Eigenmodes ( HAE ) are considered both
analytically and numerically for a low beta straight helical system, where n is the toroidal
mode number. An averaged eigenmode equation for the high-n HAE modes is obtained
by using the averaging method. The eigenmode equation reduces to the Mathieu equation
asymptotically which suggests the existence of the continuum gaps. The continuous spec-

trum gaps appear around w? = Wi[N(le —=m)/2P for N = 1,2, wherew, = vs/Ris



the toroidal Alfvén transit frequency, v4 = Bo/./pr, is the Alfvén velocity with the major
radius R, the uniform toroidal field By, and the mass density p,,, and [, m, and ¢ are the
polarity of helical coils, the toroidal pitch number of helical coils, and the rotational trans-
form, respectively. For the same Alfvén transit frequency w, and the rotational transform
¢, the frequency of the helical continuum gap is larger than that of the toroidal continuum
gap by |l — gm|, where ¢ = ¢! is the safety factor. It is found that the polarity of helical
colls { plays a crucial role through the shape of the magnetic flux surfaces in determining
the spectrum gaps and the properties of the high-n HAE modes. The shape of the magnetic
flux surfaces near the magnetic axis is approximately circular for [ = 1, > 3, and elliptic
for | = 2. Consequently, the spectrum gaps are dominantly created by the helical ripple
ep for I # 2. However, for I = 2 the continvum gaps are mainly determined by the
ellipticity of the flux surfaces e or d%¢,/dp* (> e3). For{ = 2 case, these analytical
results and the existence of the discrete high-n HAE modes in the continuum gaps are
confirmed numerically. In contrast to the tokamak case, not only the even modes but also
the odd modes exist in each spectrum gap. This is attributed to the slowly decz;mying oscil-
latory pert of potential given by the second term of F(#) { Eq.(23) ). This term becomes
dominant asymptotically due to the ellipticity e or d%;/dp? (> &) in thel = 2 helical
system. The spreading of the HAE eigenfunctions along the magnetic field line increases
as the shear decreases. In each spectrum gap, many even and odd modes exist and the
eigenfunctions spread more and more along the magnetic field line for larger eigenvalues.
In toroidal helical devises, the toroidicity e, is also present, and the shaping of the
magnetic flux surfaces are easily done by the poloidal coil systems. Since the period of the
toroidal field modulation is much slower than the period of the helical field modulation,
the continuum gaps due to the toroidal field will be separated from those due to the helical
field. Forl = 2 toroidal helical systems such as CHS®, Heliotron-E*, ATF®, and LHD?,
it is expected that the properties of the helical spectrum gaps and the corresponding HAE
modes do not change much from the straight helical case if the ellipticity of the magnetic
flux surfaces due to [ = 2 modes is dominant over the contributions from the helical
ripples of other modes with { # 2. In addition to the HAE modes, we also expect the

existence of the TAE modes in the toroidal continuum gap resuiting from the variation of



the toroidal field over the magnetic flux surface. More detail examination is now being

carried out both analytically and numerically.
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TABLE I. AVERAGED QUANTITIES FOR MODERATE ELLIPTICITY

case To 7 . ¢ SE s e depfdp® | e
case( 1) 0.250 | 0.184 | 0.558 | 0.520 | -0.087 | -0.052 | 0.0060 | 0.231 1.65
case( 2) 0.500 | 0.361 | 0.634 | 0.559 | -0.358 | -0.195 | 0.0232 | 0.248 1.72

case( 3) { 0.750 | 0.520 | 0.782 | 0.620 | -0.891 | -0.390 | 0.0493 | 0.274 1.85
case( 4) | 0.900 | 0.603 | 0.926 ; 0.663 | -1.467 | -0.511 | 0.0671 | 0.291 195
case{ 5) { 0.950 | 0.628 { 0.987 | 0.677 | -1.747 | -0.549 | 0.0730 | 0.298 1.99




TABLE II. AVERAGED QUANTITIES FOR LARGE ELLIPTICITY

case 70 7 g + SE s Ep depfdp® | e

case( 6) | 0.100 | 0.056 | 1.344 | 1.159 { -0.016 | -0.005 | 0.0001 | 0.341 2.30
case( 7) | 0.250 | 0.139 | 1.403 | 1.174 | -0.106 | -0.030 | 0.06051 | 0.345 2.34
case( 8) | 0.500 | 0.262 | 1.642 | 1.219 | -0.520 | -0.105 | 0.0184 | 0.358 2.46
case( 9) | 0.600 | 0.303 | 1.810 | 1.241 | -0.896 | -0.139 | 0.0246 | 0.365 2.52
case(10) | 0.800 | 0.359 | 2.423 | 1.276 | -4.195 | -0.193 | 0.0348 | 0.375 2.64




FIGURE CAPTIONS

FIG.1 | Ve |? /| Va |;_, along the magnetic field line for case (2) with the initial
condition A = 0at{ = 0.

FIG.2 The boundaries of the lowest continuum gap and the lowest discrete eigenfrequen-
cies of the HAE modes for cases (1)-(5) of the helical system with /B, = 0.45 as shown in
Tab.l. The dotied curves indicate the boundaries obtained from the analytical treatments
using Eq.(30). The broken curves designate the boundaries obtained from the numerical
calculations. The open circles and crosses show the lowest even and odd eigenfrequencies,

respectively.

FIG.3 The boundaries of the lowest continuum gap and the lowest discrete eigenfre-
quencies of the HAE modes for cases (6)-(10) of the helical system with /By = 0.68 as
shown in Tab.Il. The symbols are the same as those in Fig.2.

FIG.4 The even eigenfunctions of the HAE modes with corresponding eigenfrequencies
in the lowest gap for cases (1)-(5). The period of the oscillation of each eigenfunction is

roughly one half of the helical ripple period shown in Fig.1.

FIG.5 The odd eigenfunctions of the HAE modes with corresponding eigenfrequencies
in the lowest gap for cases (1)-(5).

FIG.6 The even and odd eigenfunctions of the HAE modes with corresponding eigen-

frequencies in the second gap for case (2).
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CASE(3)
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0° = 19.193
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Fig.5 N.Nakajima et al.
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