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Abstract

Double layers generated by a current-driven instability are usually alive short
time and destroyed by emitting solitons and other nonlinear waves. 1t is analytically
shown that they can be regenerated in one-dimensional Vlasov-Poisson plasma sys-
tem where the upstream velocity distribution is swiftly heated to restore an unstable

condition in the downstream region due to ballistic deformation.
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1 Introduction.

A current-driven double layer (CDDL) in a Vlasov-Poisson plasma system is a well-
known example of nonlinear wave-particle interactions. The CDDL has been studied
extensively during the last two decades (see for example the review! and the references
therein}). Consequently, the physics of CDDL formation is now well understood. The
CDDL can be considered as a BGK-like structure? that occurs in a nonlinear stage of a
plasma instability associated with a shifted Maxwellian distribution. Once having formed,
the CDDL then disappears as a result of ion-acoustic wave and soliton irradiation. At
this moment the electron velocity distribution takes on a stable form, i.e., a monotonically
decreasing function with a plateau formed by an intensive wave-particle interaction. Thus
no “new” CDDLs can arise after the velocity redistribution caused by the primary CDDL
formation in a closed system, i.e. in the system with periodic or any “passive” bound-

38 One can understand it as a manifestation of the LeChatelier-Braun

ary conditions
principle when an initially unstable plasma approaches to a thermodynamical equilibrium
with stable (and small) fluctuations only. The usual scenario of the CDDL formation and
disappearance can be ascribed to a simple tendency of reducing the cause of instability,
i.e., changing the velocity distribution to a stable one. In the process of particle redistri-
bution, of course, any temporal self-organized state such as the CDDL can be realized.
The magnitudes and the total number of CDDLs in a bounded plasma depend on the
peculiarities of the initial condition as well as on the system length®®. But in the closed
system the self-organized state is related only with the unstable initial condition and can
not be reproduced after the velocity redistribution.

In an open system with an “active” boundary condition free energy can be pumped
into the plasma through the boundaries. Thus CDDLs can be reproduced periodically in
the open system ( relaxation type of oscillations). Note, however, that it does not mean
that any certain CDDL can be maintained during long enough (infinitely large) period of
time. The role of the “active” boundary condition is only to reproduce an unstable plasma
condition, i.e. to shift the system away from the thermodynamic equilibrium. Then
regeneration of CDDLs can become possible. One direct way to make the plasma unstable
is to Inject an electron beam, hence a current, into the plasma through the boundary.
The incoming part of the velocity distribution function at the plasma boundary looks

like a shifted Maxwellian, thus it becomes unstable just at the vicinity of the boundary.




Being shifted away from the thermodynamic equilibrium, the system exhibits creation of
electrostatic electron shocks and holes as well as CDDLs and ion bursts in the nonlinear

stage of the beam-plasma interaction® !¢

. Several types of double layers are considered
to take place depending on conditions, namely, monotonic double layers, double layers
with a dip on the low potential side, and double layers with a bump on the high potential
side. As the nonlinear potential structures disappear, the same kind of plasma instability
may reoccur which would eventually lead to reformation of the CDDLs'"!2. Thus the
CDDLs formed through the plasma-beam instability may not be stationary and may be
periodically destroyed and reformed. Of course, the electron current in the plasma has to
be high enough and the electron beam has to be cold enough in order to produce a strong
instability. Injection of an unstable electron beam into the plasma is, however, a Tather
crude method of free energy puﬁping.

In the present paper, another, more soft method of free energy pumping is proposed.
No external sources for plasma instability are assumed inside the plasma body. Moreover,
no unstable boundary conditions, i.., unstable velocity distribution just at the boundary,
are assumed. The property of the unstable plasma, hence, the possibility to form a
nonlinear structure inside the plasma, comes to light even in the case where both the
initial and boundary conditions look like stable ones. The ballistic deformation of the
velocity distribution (see, e.g., Ref 13) can lead to the occurrence of an unstable bump-
on-tail distribution in the deep interior of the plasma. The region where the plasma is
destabilized by a properly chosen time history of the boundary condition is separated
from the boundary region where exists a transit stable plasma with small electric field
fluctuations. The source of the free energy in this case is a plasma inhomogeneity caused
by the non-stationary boundary condition.

This paper is organized as follows. In Sec. 2 a qualitative analysis of the ballistic
deformation of the velocity distribution in the absence of the electric field is presented.
The restrictions on the boundary condition are also discussed here. In Sec. 3 effects of
the electric field are taken into account self-consistenily and the corresponding integro-
differential equation is obtained. The expression for a nonlinear plasma response is found
in terms of the electric field amplitude series. In Sec. 4 a simplified nonlinear equation
for the electric field is obtained for the case of “jumping” boundary condition. The
corresponding WKB-like solution is found which demonstrates the growth of electric field

oscillations caused by a rapid change in the boundary condition. The conclusions are



summarized in Sec.5.

2  Ballistic recreation of unstable velocity distribution.

In an inhomogeneous plasma ( V f # 0) the motion of particles with different velocities
leads to deformation of the velocity distribution by the “convective” term, » - V£, in the
kinetic equation. In some cases a two-stream-like distribution can be formed and persist
during a finite interval of time even if the initial distribution is monotonic.

Let us consider a one-dimensional plasma with a monotonically decreasing electron

distribution, 8f,/8 | v |< 0. We assume that the ions are cold, namely,
+o0 | +oo
T = / EM'uiZdv £ T, = / %mUQdU

( all notations here and below are conventional). Here T} is not a temperature but
rather an averaged energy of j-th component because the distribution is not necessarily
Maxwellian. It is well known that a plasma with monotonically decreasing velocity distui-
bution is stable even if a non-zero total plasma current exists (see, e.g., Ref. 15). Thus we
are able to assume that only electric field fluctuations with small amplitudes, | e¢ |< Tt
exist in a nearly thermodynamically equilibrium plasma. Of course the existence of a
non-zero current means that the plasma is not really at the thermodynamic equilibrium
but only approaches to this equilibrium through the current relaxation. Nevertheless,
the process of current relaxation can be considered as a slow enough process on the ion-
acoustic time-scale, so that the assumption, | e¢ |< T, is reasonable. In this case, as far
as the plasma is stable, only a weak wave-particle interaction in the form of quasilinear
(QL) diffusion can be expected to take place predominantly for the thermal electrons.
Electrons with higher velocities move practically without scattering by electric field fluc-
tuations, i.e. in the ballistic or “free streaming” manner'®. Hence, one can neglect the
electric field effects, at the first approximation, and employ the reduced kinetic equation

for such free-streaming electrons:

a f. d fe

5t v, =0 ()

Eq.(1) is valid as far as the local current of free-streaming electrons stays below the
“chaotic” current ~ n. e (2T,/m)*/2. When and where the current exceeds the threshold,

the plasma becomes unstable and the effects of the electric field become unavoidable (see




Sec.3). Tt is to be emphasized that the plasma is stable initially as well as at the nearest
vicinity of the boundary, but becomes unstable because of the ballistic deformation of the
velocity distribution (see Fig.1).

Eq.(1) is solved separately for negative and positive velocity regions. We consider for

simplicity a semi-infinite plasma, 0£z< L, with the initial condition {spatial homogeneity

is assumed)
fe it:O = feO(v) (2)
and the boundary condition for the incoming part of the velocity distribution function,

te. for v20,
fe =0 = Fe(t) U) (3)

120
and for v < 9,
fe gmlooo Ge(tav) = fe@(v) (4)
u20

Only the left-hand-side (1.h.s.) plasma boundary ( at z = 0 ) is considered to be “active”
with an arbitrary incoming velocity distribution function, F.(¢, v), while the right-hand-
side (r.h.s.} is assumed to be “passive”. This assumption is reasonable until the informa-
tion from the Lh.s. boundary gets to the r.h.s. one. We assume the r.h.s. boundary to
be far enough so that there is a long period of time during which the boundary condition
{4) is valid. Another important point is that the boundary conditions have to obey some
integral relations between the “incoming” and “outcoming” parts of the velocity distri-
bution function (see Sec.3). Even so, there remains much freedom in the choice of the
incoming velocity distribution F.(t,v).
Egs.(1),(2),(3) and (4) can be solved explicitly as

Fe(t—%, v) forv > %—,
fe(t’ I, lU) = (5)
feo(v) forv < %

From Eq.(5) one obtains

d F, z [0 F, z
8f ( U )t—% + ? ( t )t—ﬁ: forv > 2—}
L )
v

afe
uﬂ forv < -‘%




Here { + )i(zfv) means that the value ( - ) be defined at the time ¢ — (¢/v). It is clear
that even for a stable boundary condition with 8f./8v < 0 an unstable distribution with
0fef/0v > 0 can occur at some distance from the plasma boundary if a positive time-
derivative 8F, /0t > 0 takes place during a certain period of time. This conclusion is
qualitatively illustrated in Fig.2 where the time histories of F.{t,v) and f.(t,,v) are
presented. In accordance with the solution (5) the velocity profile at any position, z, is
obtained by scanning the contour F,(t,v) =const (solid line in Fig.2) along a “geodesic”
line (t -2 /v) =const {dashed line in Fig.2) in the (¢; v)-diagram. If there are three or more
intersections between a “geodesic” hyperbola and a contour F. = const, then a bump-
on-tail distribution takes place at a certain position z during a finite interval of time (
tp < ¢ <tip in Fig.2). It becomes possible to achieve this condition if the incoming
part of the distribution is “heated”. A repeated regemeration of the unstable distribution
in the plasma interior, therefore, can be organized through a repeated sequence of a
rapid “heating” and a slow “cooling” of the incoming particles at the plasma boundary.
Regeneration of the unstable distribution inside the plasma does not always guarantee the
CDDL reformation. Nevertheless it can be a strong candidate which provokes the CDDL
reformation , if the heating is rapid enough and strong enough.

Let us consider one specific example that can demonstrate the underlying idea. We

choose the boundary condition at x=0 in the form

F(t,v) = faolv) 9(to —t) + Fo(v) 8(t — o) (1)
where
_ 1 fort>0
o = { 0 fort<0 ®)

and Fy(v), as well as fo(v), is a stable (monotonic, 3F,/8v < 0 ) distribution function.
The incoming distribution functions for ¢ < 3 ( feo{v) , dashed line ) and for t > ¢, (
Fy(v) , dotted line ) are shown in Fig.3. Fy(v) is assumed to be a broader function than
Jeo{v), this indicating that the transition from fio(v) to Fy(v) at t = %, corresponds to
“heating”. From Eq.(5) one easily obtains:

folv) for0<v< -Ir—_%——
flt,z,v) = (9)
Fofv) forv > ngfE



The corresponding distribution is presented by the solid line in Fig.3. As is seen, a
bump-on-tail-like distribution appears at the position, z, satisfying

Vs

where v, is the solution of the equation

feolva) = Fo(v.)

For t > t,, fe(t,z,v) is a monotonically decreasing function, hence, a stable one. Thus
an unstable distribution appears where Eq.(10) is satisfied. Let 4 be the characteristic
growth rate of the instability caused by the beam-like distribution. One can expect that
the instability can occur only in the case where y(t, — #;} > 1. This means that there is
a critical distance from the boundary where the instability and CDDLs could be caused
by the ballistic deformation:

z > ,\D(U*) (“””‘) =z, (11)
vr,) \ v

Here vr, = (2T./m)"?, Ap and w,. are the electron thermal velocity, the Debye length

and the electron plasma frequency, respectively. Generally, v < wp, and v, can be chosen
greater than vr,. Accordingly, the ballistic deformation method allows us to provoke the
CDDL regeneration in a deep interior of the plasma. The optimized time history of the
incoming part of the velocity distribution at plasma boundary, F.(t, v), can be found. But
the optimization is meaningful only in the case when the effects of the electric field (QL
or nonlinear) are taken into account. In the following, therefore, we consider the effects
of the electric field.

3 The equation for the electric field.

Let us now consider the full set of 1-D Vlasov-Poisson equations (j =e,1 ):

af, 0f; | & 08fi _

a T e T e = (12)
oF +00

% = —47rej;m (fe — fi)dv (13)



Here a collisionless plasma is considered. It should be remembered that the first few
moments of the velocity distribution function have a well-known physical meaning: for

example, particle density,

no= | f,dv (14)
and plasma current density,
7= e[ U= Lo (19
From Egs. (12) and (13) one obtains
‘ZTE +drd = oft) (16)

where the time-dependent function (%) can be expressed in terms of the averaged current

value and the applied voltage,

1d 1 fL
aft) = _EE(¢L_¢O)+47TZ/(; Jdz (17)

Here L is the plasma length; ¢; and ¢, are the potential values at z = L and z = 0,
respectively.

By using Eqs.(16), (12) and (15) one obtains the equation for the electric field in the

followiag form:

& E s g 8 e . d o
St @AeRE ane | [- ] = S5 )
Here )
4we® [t
2 =
w, = o [dv (19)

Eq.(18) is a nonlinear integro-differential equation for E because f, depends on E. Nev-
ertheless, the structure, or constitution, of Eq.(18) obviously reveals the main processes
that take place in the Vlasov-Poisson plasma. In order to close this equation one has to
express the electren and the ion distribution function in terms of the electric field E as
well as in terms of the initial and boundary conditions. So, let us iniroduce the initial

and boundary conditions in the form { j = e, ):

fj It:O = fJO(U)a (20)
file=e = F(t,v) forv>0 (21)
Hle=r = G,(t,v) forv<0 (22)



We shall consider, for simplicity, a homogenecus initial distribution function without
any breaking of generality. The boundary conditions, Eqs.(21) and (22), define only the
incoming parts of the distribution in accordance with the nature of the first order partial
differential equation of hyperbolic type.

Eq.(12) consists of two parts: a linear propagator § = 8/8t + v0/8z and a nonlinear
operator N, = (e,/m,)E(8/dv) , ie. (5 + N,)f, = 0. One can solve this equation
iteratively:

fJ = _A_l(ﬁyfj) (23)

57! includes the boundary conditions and a path-integral along

The inverse propagator §

the “geodesic” trajectory. Namely, for v > 0

fltz,v) = F(t—— 1))9(15 — —) + fjo(v)9(~— —1)
_i[)mm[t g {a(E fJ)} t—p 4T (24)

my T —uT
and for v < 0

= filt,z,0) = G,(t,v)8(t) + fo(v)(-1)
e, minlt; :"I' d
M E ) e (29

e T — T
where ¢’ =t+ (L —z)/v. Here {A};—; »—, means that the value A is taken at the moment

of time {{ — 7) and at the position (z — v7), i.e., along the geodesic trajectory for the
velocity v. The expressions (24) and (25) can be substituted iteratively into their r.h.s..
In principle, the solution of Eq.(12) can be obtained in the form of the electric field power

expansion
Aty = £+ /D + & 4 .. (26)
The first few terms have the forms:
Fit — £,0)0(t — Z) + fo(v)8(% —¢) forv>0
f,(o) — (27)
G, (¢ y L=z L )8t 3L L) + fo(v)f(—t — ; Ly forv< 0
_;LJ E(t—Tm—UT){(%—FL) L UT (BF;) }dr for%—(v
=
- :E(t—f,x—w)dr(%ivﬁ) for0<v<?
{28.1)



e f* d fjo z— L
_Fn'% OE(t—r,x—vr)dr (H—é—) for =7= < v <0

f(l) —
’ e L‘%—L oG L oG L
— — _ _L—xtvT T -
ﬁ,f; . E(t—r1,z UT){(TL,U )t, o2 (3t’)t’}dr forv<7—
(28.2)
z
2 _ T 6_5,23F3 /7 _ _ T T T
f_] = H(t U)(m_,) (3’0 )t—%. o E(t T UT)E(t ’U’O) 2 dr
mint; £} minft; £] 2 £(0) (0)
e_J 2 ! _ _ 2 f.? _ A a_ afj
+(mj) 6/ dr ! d'E(t—1,z—v7) (33'02 ) » (r—7" (82: (E 50 .
(29.1)
for v > 0

z— 1L

(2) _ apeng €282 oG, _ B L—2 L—z+4+ o7

= G(t)(mj)(aﬂ Yer 0/ Bt —ne —vn) B+~ )=

min[t;%] min[t;"’:L] 2 #0) (0)

) ./ f &' E(t—1,5— g2 Y A T
i A G ol B Gl b e el D
-7 (29-25.‘—"7

forv< 0

Here ¢ =t + (L — z)/v. The zeroth term, £;(0) , corresponds to the ballistic or free
streaming term that was considered in Sec.2. The first-order term, fj(l), describes the
well-known linear response which arises in the linear stability analysis. Indeed, let us

consider a Fourier-amplitude expansion of the electric field
400  p+oo
E(t,r) o [ j Eorexp(thz — wit)dwdk

If we assume a stationary boundary condition, then it immediately follows from Eq.(28.1),

(1) _e__;r d ij Ewk
Ty % m, (dv)z(w — kv)

for example, that

10




i.e., a familiar expression’®. The second-order term, fj(z) , as well as all other nonlinear
terms, f;”) with n > 3, describe the QL deformation, nonlinear dispersion effects ( the
last term in l.h.s. of Eq.(18) ), nonlinear plasma frequency shift, parametric instability
( the second term in Lhs. of Eq.(18} with a time-dependent w2, ) and so on. Even the
ballistic term, f,(0), leads to a parametric instability if the time history of the incoming
parts of the velocity distribution is properly chosen.

Another important point is that the boundary conditions depend on the time history of
the processes inside the plasma because of the existence of the conservation laws. Indeed,
the natural restriction in the form of the total plasma charge conservation law leads
to a certain relationship between the outcoming and incomiung parts of the distribution

functions.
=L

/+°°(fe~—f,-) = yd = 0

hte =]

or equivalently

[ Fe Ry~ [ (GG = [ R — [ (o F)gri (301)

Here the integrals on r.h.s. of Eq.(30} depend on the time history of plasma evolution. So,
the boundary conditions, i.e. F, and G, , are not arbitrary in the exact sense. Another
restriction is that the total plasma current at the boundary,

I = 6/_+m(fs—fe)

Q0

. zovdv = e/:oo(F,-—Fe)vdu + e/_ooo(fi——fe)

o — g v (302)

depends on the peculiarities of the external electric circuit and, hence, on the time history
of the plasma potential difference, ¢{t, L) — ¢(,0), as well as on the time history of the
plasma velocity distribution. From this point of view the boundary conditions, Eqs.(21)
and (22), have to obey certain integral relations. The fluctuations of the outcoming
distribution influence inevitably upon the fluctuations of the incoming one. There is a
serious difficulty in the self-consistent analytical consideration, but it does not bring any
problem in the case of numerical simulations because the outcoming distributions are
known at each time step. As for the plasma destabilization by the ballistic deformation
{occurrence of the secondary beam), a strong and abrupt deformation of the boundary
condition is desirable. The influence of the CDDL-associated nonlinear fluctuations on the
ballistic mechanism of plasma destabilization can not be so important. This is suppressed

because the boundary conditions must obey Eqs.{30.1) and {30.2) which contain only the

11



low-order moment of the distribution, whereby the main part of the information about
the outcoming distribution profile is lost.
By using the expansion (26), Eq.(18) can be written in the following form:

6;52 E(f“fff—) /_ ’:’ (f§°)+%f,(°)) & + 4weg—$ /_ :’° (F0 = ) v’dy = RO + RO
(31)
where
RO = ‘i—‘: - 47re§—z f_ :O (£~ fO) v (32.1)
R® = — 4” —) / (f<1)+ f-(l))ab ~anel [ e (@ - i vd (32.2)
; 5 = f.

Here only the second-order nonlinear terms are taken into account, R™®. The lh.s. of
Eq.(31) is a linear integro-differential operator that describes the plasma oscillation and
the ion-acoustic wave propagation as well as the corresponding plasma instabiliiies. It
also describes a more wide set of the phenomena ( e.g. parametric instability) because
f;o) is a time-dependent function. The expressions for fj(l) and fj(z) are given in Eqs.( 27),
(28) and (29).

4  The case with “jumping” boundary condition.

The expressions (27), (28) and (29) can be significantly simplified in the case of “jump-

ing” boundary conditions:

F(t,v) = Fuo(v)8(t) + ful(v)d(=t)
Ft,v) = folv)
Ge(t,v) = foolv)
G.t,v) = fuolv)

(33)

We assume that only the left, upstream, boundary, z = 0, is an “active” one (for the
electrons), while the downstream boundary, ¢ = L, is “passive”. This assumption is rea-
sonable for a long enough system where the information from the upstream boundary can
not reach to the downstream boundary during the time of observation. We also consider
the ions to be cold and massive, so that both boundaries are regarded as “passive”. By

using £q.(33) the expressions {27) and (28) can be written in the following form. For the

12



electroms,
Fu(0)8(t — %) + fo(v)6(E —t) foruv >0
[ = (34)
feov) forv<0

, (%‘F_%ﬂ_) &olt, 2, v; Z) for £ < v

[
f,gl) - E< (FeO - feO)é(t - %) [fﬁ'eﬂ(t7 z, U;t) - %Q(tazav;t) fOl‘ v= %‘

\ (%fe_;) eo(t, z,v;1) ford<wv< %-
(35.1)
eolt, z, u;t forTx_L<v<0
(1) e dfe 0( )
50 = L (35.2)
sg(t,z,v;‘T;L) forv(zj_—L-

Here the notations were used:

3
eolt,z,v;6) = /OE(t -7,z —vT)d

(36)
£
eift,z,v;€) = / E(t — 1,2 —vr)rdr
0
For the ions,
12 = fiolv) (37)
[ eo(t, 2, v; Z) for ¥ <
df,
& L) NP S VF £ 5 P (39)
| olt, 7, v Z o L) for v < Tm =

Then, Eq.(18) takes the form:

&*E 2 m T 4me? [8°D ab,
¥+(u§3’) (1+M+p(;))E+ - 6$21 + (%} =CY 4+ P4 ...
(39)
where 5
(O)\z _ dre = 4me j’+°° ’ 40
(wpe/ ™ Nen = __m . JeOdU ( 1)

13



i ™ (Fel} - feﬂ)d) (402)

T
ﬁ(;) = r

Dl = f;w (He‘*' %H,) 61(i,$, v %)C&) + /%-” L (He + ﬁﬂt) 81(t3$: Urt)(ﬁ]
T Tt

(40.3)
z—1
#f T (e B etn e 25
+o0
D, = % [fz (Q — o)e(t, z,v; %)cb}
T
(40.4)
e z 1 z
- (/.’C (FeO - feo)?.la.l!]) [50(t, x, T’t) - f&l(t, &, 'i-,t)]
T
2
c = 2+ drels [Ful$) - ful})] (40.5)
+o0 +o0o0
c®=  amedo | [P - fOpra] - B [0+ O @os)

We also used the notations:

dfo_dl dFyg_d
ol =G and =99 (41)
Since D; and D; are not dependent upon the choice of the arbitrary constants of @ and

IT;, we can choose the following forms;
+oo
QW) = PFolv) + 2 [ FolvWdf
and
+oo
M, = ofu(o) + 2 Lol

where Q(c0) = P,(00) = 0.
The Lhs. of Eq.(39) describes the propagation and Landau damping of the plasma
waves in an unperturbed plasma ( the term with D; ) as well as the effects of the “jumping”

boundary condition ( the terms with p(z /t}) and D, ). A plasma instability that would
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occur as a result of the ballistic deformation (see Sec.2) is described by the Dy-term. In
the r.hs. of Eq.(39) the C®-term corresponds to the ballistic effect, while the c® c®
and so on describe the nonlinear effects.

Eq.(39) is an integro-differential equation because it contains the path-integrals £, and
e1 ( see Eq.(36) ). These integrals depend on the characteristic time- and space-correlation
scales, t. and [, respectively. In the linear regime with infinitesimally small amplitudes
the correlation scales are large enough ( £, oc ™1, where 7 is the instability growth rate),
therefore, there are resonances between the traveling waves, o« exp(—wuwt +1kz), and the
particles, i.e. w/k = v,;. In this case £p and ¢, are the delta-funclion-like functions in
the phase space. In the strongly nonlinear regime with chaotic fluctuations, ¢, and [, are
small enough, t. « w,;' and l. & Ap, so that g o E/wj(,g) and &; o E/(wpe(0))%. In
this case, no resonances between the particles and waves can exist because of the chaotic
phase behavior.

Let us consider a nonlinear regime rather than a linear one because we are interested in
regeneration of CDDLs and because after the previous CDDLs have disappeared, strong
electric field fluctuations would have survived in the system. As the correlation length is
assumed to be small, [, « Ap, we can rely on a “local” approach, namely d/0z acts on
the electric field only , 8E/8z & E/Ap.

Eq.(39) can be written approximately in the following form:

#E 2 OF do 2re npzx .2
-~ _ e (1) Rt P
P + W (1+p)E — wpeu B C & P (t ) (42)

Here wye = (> and m/M — 0 is assumed. We used also the notation:

«(%) = % ;(Feoufeo)m (43)

We have not taken into account the nonlinear effects described by the r.h.s. of the Eq.(39)
as well as the dispersion effects, i.e. the Dy-term ( the last one is important on the ion-
acoustic time-scale ). We assume a “jumping” boundary condition, Eq.(33). It is natural

to demand the total plasma charge conservation in the form:

u(fzo) e R food = 0 (44)

t Neg JO

1t is the only condition that restricts the choice of Fop { of course, Fiy has to be stable, i.e.

monotonic ). In Eq.(42) p and u as well as the r.h.s. of the equation, are slowly varying
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functions on the w '-time scale. Hence, the WKB-approach is reasonable,
E = A(z,t)ezp[—1wB(z,t)] + cc. (45)

where A and B obey the following equations:

(46)

O0BOA | 1,40°B _ 1,804 _ g
ot T 27 g2 2%0z ~

We neglect the forcing term in the r.h.s. of Eq.(46) and assume a nonzero initial amplitude
A. In this case Eq.(46) describes the growth of the amplitude A. Indeed, for small p and
u ( this is a usual situation ) one can approximately write B = t, thus the last equation
in Eqs.(46) can be transformed to

— - —y— =0 (47)

Let us assume that F.q corresponds to a plateau-like distribution in the velocity interval
Umin < ¥ < Umqg, While outside this interval Fq = fyo (see Fig.4). In this case u(z /) is
approximately equal to

. 0 for %7— < Uppin OF Umer < %—
u(y) = (48)
ug (const) for vy, < %— < Uppaz
In Fig.4.c the domain for u = 0 is presented. As can be seen, there is a wide enough

region where the assumption u & up is valid. By using Eq.{48) the solution of Eq.(47)

can be obtained in the general form,

A = A (cc + 22—%) (49)

where Ag(z) is the initial spatial distribution of the amplitude A(t = 0,z). There are
many functions Ag(z) which correspond to the growth of A in Eq.(49). For example,
Ap(z) = sin(kz). In this case Eq.(49) can be transformed to

1 kg kug
A= oy {exp (zk:c— 5 t) — exp (——zkx+ 5 t)]
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The corresponding growth rate of oscillations is

k'u.()

Y %lT (50)

This solution exists during a finite period of time z /v,y < t < /v, at each point z

(see Fig.4). Then, the amplitude amplification factor, /3, is approximately equal to

B =~ exp ['y( ? —i)] ~ ezp(oz) {51)
Umzn vmw
where \
= (P Yo Yo
7= 12(Umin Umaa:) (52)

Thus, a strongly nonlinear regime of the plasma oscillations is expected to occur in the
deep interior of the plasma, while in the vicinity of plasma boundary only stable “thermal”

fluctuations appear.

5 Conclusions.

In a current carrying plasma the presence of strong electric field oscillations can lead to
the occurrence of an anomalous resistance of the plasma and, hence, can provoke a current
driven double layer formation. But the existence of a nonzero plasma current does not
necessarily guarantee that a plasma instability can arise. Free energy of the plasma is
dependent upon the detailed structure of the velocity distribution, i.e., not only upon the
first moment ( current ), but also upon the higher moments. At the nonlinear stage of
the plasma instability, e.g., after the CDDL formation, a strong wave-particle interaction
leads to the velocity redistribution in such a manmner that the plasma becomes stable.
More specifically, after the first generation of CDDLs no new CDDLs can arise because
the plasma free energy is exhausted. Thus one needs to introduce some other sources of
free energy in order to regenerate the nonlinear structures. In the present paper, pumping
of free energy in the form of rapidly varying boundary condition is proposed. The source
of the free energy in this case is the plasma inhomogeneity caused by non-stationary
boundary conditions together with the ballistic deformation of the distribution function
( v - V[ term in the kinetic equation ). The important feature of the ballistic method
of regenerating an unstable distribution is that the growth of electric field oscillations
takes place in the deep interior of the plasma, while the transit plasma in the vicimty

of the plasma boundary is stable. A nonlinear integro-differential equation is obtained
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that describes the electric field evolution. A WKB-like solution is found. This solution
clearly demonstrates regeneration of a plasma instability inside the plasma by means
of the ”jumping” boundary condition with the subsequent ballistic deformation in the
velocity distribution. The growth of the electric field oscillations can probably provoke

CDDL formation in a current carrying plasma.
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Fig.1.

Fig.2.

Fig.3.

Fig.4.

Figure Captions.

A bounded one-dimensional plasma with the incoming velocity distribution func-
tions F.(f,v) at x=0 and G.{t,v) at x=L ( schematically ). Region 1 is a stable
plasma with small electric field fluctuations. Region 2 is the unstable plasma with
a beam-like velocity distribution formed by the ballistic deformation due to non-

stationary boundary conditions ( namely F,(t,v) ).

a). The contours F,=const { solid lines ) and the “geodesic” lines (¢ — z/v)=const
{ dashed lines ).
b). The corresponding velocity distribution function at the moment 15 < #; < t5.

The points A, B and C correspond to the intersections A, B and C in Fig.2.a).

The incoming part of the velocity distribution function at the boundary z = 0 for
t < to ( dashed line) and for ¢ > #; ( dotted line ) as well as the velocity distribution
function f.(£, z,v) inside the plasma ( solid line ) for {y < ¢ < t. =1, + z/v. ( see
the text ).

A particular example of a2 “jumping” boundary condition.

a) feo ( solid line ) and F.q ( dashed line ) profiles;

b) The corresponding u(x/t) profile (see Eq.(42)).

¢) The domain in the (x,t)-diagram where u=0 ( shaded area ). Straight lines:

1t =%/Vnee ;2 —t = X/Vppin-
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