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Abstract

Lagrangian for the linearized, ideal and resistive, MHD equations is
discussed, by introducing the perturbation of the total pressure. In the
resistive MHD equations, the Lagrangian is expressed in terms of the electric
displacement vector (time integral of the electric current) as well as the
plasma displacement. The NOVA and NOVA-R formulation can be derived by
using the obtained Lagrangian.
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In this paper, the Lagrangian for the linearized resistive magrneto-
hydrodynamic (MHD)} equations is derived. The perturbation of the total
pressure is included as a dependent variable in addition to the displacement
vector and electric displacement vector, in order to separate the operator
associated with the continuous spectrum in the ideal limit.[1,2]

We shall consider the MHD equilibrium, satisfying the following magneto-
static equations

IxB=VP, J=VxB V.B=0, (1)
where P is the equilibrium pressure, B the equilibrium magnetic field, and J
the equilibrium electric current. The simply nested toroidal magnetic
surface is assumed, so that P=P(y). Assuming that the perturbed quantities
have the time dependence of the form exp(qf), we can write the linearized
MHD equations in the following form [3]
q2p§+b><J+Bxbe—-V[§oVP+ysPV-i]=0, 2)

b~Vx(§xB)+%Vx(anb)=0, (3)

where & is the plasma displacement and b, is the perturbed magnetic field,
7g being the ratio of the specific heat, and 7 the resistivity. The boundary
conditions are, assuming the surrounding fixed resistive boundary at y=1,
§-n=0and nxnVxb =0, where nis the outward normal on the boundary.
In the ideal case (7=0) the latter condition has no meaning.

For the ideal case, the perturbed magnetic field can be expressed in
terms of &, and the Lagrangian can be obtained. Its density can be written as

LIEl=gplEf+I0f + I xE - Q+(E-VPV E)+ 1PV Ef, ()

with Q0 = V x(§x B), |§|2 =& & and * denotes complex conjugate. The first
term in eq.(4) corresponds to the kinetic energy, and the other terms to the
potential energy.[4] The eigenvalue q is real (for unstable modes) or pure

imaginary (for stable modes).

When the resistivity is introduced, the self-adjointness of the linearized
operator is lost, and the eigenvalue g becomes to a complex number. We
shall rewrite eqs.(2) and (3) in terms of perturbed electric displacement
a = V x bfg, instead of b.

gPE+@xT+BxVxQ-V[E-VP+ 7,PV -]
-BxVxVx(ney+JxVx(na) =0,
ga-Vx@Q+VxVx(na)=0. (6)

(5)



The adjoint equations are written as
¢PE+@xJ+BxVxQ-V[E-Vp+v,pV-E]
—-BxVxVx(na)=90,
@8-V xQ+VxVx(na)=Vx(JxE), (8)
with @ = V x(E x B). In the ideal case, the set of egs.(7) and (8) are identical
to that of egs.(5) and (6), and the adjoint variables are either the complex

(7

conjugates of the original variables, or the original variables; however, such a
relation does not hold in the resistive case. Hence, we shall introduce the

new variables €, § , a_, and a by the relations

§=8.+%, §=%.-L }

a=a +a, a=a -a (9)
Equations for them can be written in the form
qugi-i-QiXJ+BXVXQt—V[§t-VP-I-}/SPV'(E&]
10
—BxVxVx(nai)+%JxVx(n[a++am])=0, (19)
qai—Vin+V><Vx(nai}=i%Vx(Jx{§+—§_]). (11

Then, it is a easy task to write down the Lagrangian deriving these equation.
The Lagrangian density can be written in the form

Ly = L[E,.a,] - L[ ,a ]+ o, (12)
where

ral6a] = g0 fEf + gniaf +3[(E- VPV £+ (& VPV -E]
(13)

2
+ —

1 1
Q+7J><§—~Vx(na) Z[Jx§]2+ysP|V-§|2,

M=%{Jx§f-Vx(na:)+.l><§i-Vx(na+)

14
—IXE.-Vx(na)-J xE, -V x (na)} )

In the next step, the perturbation of the total pressure
w=-E-VP-yP(V-E)+B-b (15
is introduced as the dependent variable, in order to recover the NOVA/1,5]
and NOVA-R/[6] equations. For this purpose, we introduce the variable
D = V- &, and write the Lagrangian (4) in the form

A~ 2 ~
(&0, 0] =gp|Ef+|@ - Bo| + I xE (@ - BD) + (- VP)D"
+y POl + @ (@2-V &+ B(D -V &),
where @ = B-VE-£.VB, and G is introduced as the Lagrange multiplier.

(16)

Since 2 appears only in algebraic form without derivatives in eq.(16), by

3



carrying out the minimization with respect to it, we can eliminate o from the

Lagrangian. The result is
Lle @)= gple+|0f +IxE-0-a'(V-8)

—w(V-E)- w—B-Q+§-VP|2. 40

1
B* + ysPl
It is easy to see that © satisfies eq.(15).
If we put
B >< \%
ot S g
and define the quantities

O‘E"é—zB, (19)
g wazB-Vx[VWXZB}
[V [Vl
2k-Vy 2Kk-BxVy
yEoo s Kos——m——,
V| B

(18)

(20)

(21

x being the curvature of the magnetic lines of force, the Lagrangian density

can be written in the form

Ef +doBE + —[B-VE[

qp! wl 1
yl ol vyl

B-VE - S¢ [ +0E, (B-VE)+ &, (B-VE)

LE @)= IV

IVw| |

, : By,P
—(PKW+0'S)I§W| t PIK-FM -B V¢

. (22)
_ lel _ B'® { g :l oV F:
B +yP B +yP + +
B'@ .
B +yp [ St } SovEL
where K-§, =K &, +K£,, and
SV (é B x qu)
V& =V | X |4V 22T | 23
gA { |V|'If|2 B'Z ( )
In writing eq.(22) the following relation is used.
B-Vo=pK.. (24)
The part of (22) containing &, and &,
\%
cule )= (e )}
(25)
+q PBZ"Q—bI Bz IB ng




is the Lagrangian{1]describing the continuous spectrum. The essentially
same equations given in Ref.[1,5] can be derived from this Lagrangian: the
difference is that the variable P is used in Ref.{1,5]instead of £,,

¥.P

£, = ﬁ B-VD. (26)

In addition to that, equations in {1,5] do not have Hermitian nature, while
those derived from eq.(22) are naturally Hermitian.

Similarly, we obtain for the resistive case
Ly = L[8,.0,,0,]- L[ @ 0 |+, @27
~ 1 i
L,[& @,a] = gplEf +|@+ 5T xE-Vx(na)| - z1J x &

-0 (V-&) - @(V-E)+gna (28)
1 A 2
- grrplB-0-0-89PB-Vx(naf.

The NOVA-R formulation/6] can be recovered by using the representation for

the electric displacement
AB xVy

Vol
as well as eq.(18) for the plasma displacement. The boundary conditions in
these variables are &, = A, = A, = 0 on the boundary. The resulting

a=AVy+ +AB, (29)

expression is too cumbersome; therefore, we shall discuss only symbolically.
We introduce the vectors

x=(,. 8,6.8). y=(4,.4.4), (30)
where superscript T stands for the transposing, and write the Lagrangian in
the form

L=(x]-A-x)+2 By )+ (y-Coy)+2(x -D-y)

~( -A-x)-2(xI-B-y)-(I-C-y)-2(x]-D-y,), Gb

with operator matrices A, B, C, and D. Operator matrices A and C are

symmetric

AT=A, C' =C. (32)

Especially, operator A is the one appearing in the ideal MHD. Note that the

symmetry relation (32) does not mean Hermitian, since the eigenvalue g is
complex. The derivative in y direction applies only for &,,4,, and A,, for
which the boundary conditions are specified. Then equations are writien in
the form



A x+B y +D-y =0
B x +C.y -D"-x_ =0

A-x +B-y +D.y, =0 (33)
B'-x +C-y -D' -x, =0
For the physical variables, we have
A-x+(B+D}-y=0
(BT—DT)-x+c-y=o}' (34)

Thus, the symmetric and anti-symmetric operators appear in the cross term
between x and y.

In the equilibrium such that any scalar quantity satisfies the symmetry
relation y(0, ¢) = u(-0,-¢), i.e. Fourier expanded in cosine series with respect
to 8 and ¢, variables are divided into two classes according their parity: one
(C} is Fourier expanded in cosine series and the other (S) is expanded into
sine series. The structure of the Lagrangian shows that the variables
(8,.@, A, A) have the same parity and the variables (4,.&,,&,) have the other
parity. However, this fact does not mean the quantities with same parity
have the same phase, because Fourier coefficients are not real. The variables
@.¢,,¢,, and A, can be eliminated algebraically from the Fourier expanded
equations and the 3 second order differential equations for &,.A,, and A, are
obtained.

In conclusion, the use of the Lagrangian simplifies the calculation of the

coefficients in the linearized MHD equations.
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