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ABSTRACT

Formation of the steady-state potential in a collisionless plasma flow along nonuniform
magnetic field lines terminated at a wall is studied theoretically under the condition that
a particle source in a plasma can be neglected. It is found that the plasma flow is required
to satisfy the generalized Bohm criterion over the whole region for the formation of the
steady-state continuous potential in the divergent magnetic field. A monotonically falling
potential can build up from the inside of the magnetic throat to the wall only if the Bohkm
criterion is marginally satisfied at the throat. Numerical solutions to Poisson’s equation
show that a potential profile outside the throat is strongly dependent upon the particle
density of electrons trapped between the throat and the wall. Controllability of the

potential by increasing the trapped-electron density is discussed briefly.
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I. INTRODUCTION

Potential formation in a plasma flowing to a wall in the presence of a nonuniform
magnetic field is an important problem in various fusion devices as well as in plasma
processing techniques. Knowledge of the electrostatic potential profile in a collisionless
plasma is necessary to understand phenomena in the end region of mirror machines or
in the edge layer of field-reversed configurations!. Moreover, knowledge of the potential
variation is the key to knowing parameters of a plasma for design of a direct energy
convertor and evaluation of its efficiency?~*. This problem is also interest in connection
with high temperature divertor plasma operation of a toroidal magnetic fusion system
aiming at confinement improvement and reduction of the heat load on a plate®.

The control of the potential profile has been a main subject of a tandem mirror in
relation to plasma confinement and thermal transport to the end walls®. Although there
have been several models which consider the axial potential profile in the confinement
region of mirror systems in order to evaluate the thermal barrier depth” and the height
of the plug potential®, there have been few attempts to examine the potential formed in
the region near the outer mirror throat or in the end region. Recently, a plasma flow
along a nonuniform magnetic field to a wall was treated with kinetic analyses®'*. Their
analyses provide an important basis for the study of potential formation in a plasma
mainly preduced by recycling of the neutral gas, such as a plasma in the divertor chamber
of a toroidal system. We, however, know of few attempts to verify characteristics of the
potential formed in a plasma escaping through a nonuniform magnetic field in which

there is no particle source.




In this paper, we theoretically investigate potential formation in a collisionless plasma
flow to a wall in the presence of nonuniform magnetic field. A particle source is assumed
to be negligibly small in the open region. We derive necessary conditions to be satisfy for
formation of a monotonically falling potential in the open region or in the inner region
near the magnetic throat. Moreover, we numerically solve Poisson’s equation {for model
distribution functions to examine the potential formation along magnetic field lines. We
also consider the effect of trapped electrons on the presheath potential and briefly discuss
the controllability of the potential by the combination of a spatially varying magnetic
field and the electron cyclotron heating.

The outline of the paper is as follows. A general description of the presheath po-
tential is obtained from quasi-neutrality in Sec. II. Model distribution functions of ions
and electrons are picked out to obtain the expression of the plasma-sheath equation in
Sec. II1. Results of numerical calculations are presented and discussed in Sec. IV. The

conclusions are snmmarized in sec. V

II. FORMATION OF A MONOTONICALLY FALLING
POTENTIAL

We consider a simple profile of magnetic field strength as sketched in Fig.1. A plasma
coming out through the magnetic throat at z = 0 is neutralized at the wall located at
z = L, which is perfecily absorbing and electrically floating. The ion motion is assumed

to be collisionless on the scale length of the magnetic field variation. We also neglect a



particle source outside the throat, assuming the particle density of a plasma produced

in this region much smaller than the one of the plasma flowing through the throat.
The distribution functions of the ions and electrons satisfy the Vlasov equation. Thus

we can generally express the steady-state distribution function as a function of constants

of motion on the assumption of no particle source. The energy of a particle,

= %mj(vi + )+ g8(c) | (1)

is a constant of motion, where m, is the mass, g, is the charge, v; and v) are the
perpendicular and parallel components of velocity. The electrostatic potential formed in

the plasma, ¢(z), is defined to be zero at z = 0. The magnetic moment,

1,
B= §mJULR(z)/BO , (2)

is taken as a constant of motion, like €, where the mirror ratio R(z) is the ratio of the
magnetic field strength By at z = 0 to the local value B(z) at axial co-ordinate z. The
subscript 0 denotes the value at z = 0 throughout this paper. The particle density n,
of species j is obtained as a function of R and ¢ by integrating the distribution function
f3(e, 1) over the velocity space.

The electrostatic potential is determined, in general, from Poisson’s equation
Vi =e [ne(qb(x), R(z)) -~ Zni(é(z), R(z))]/so . 3)

where Z is the charge number of ions. One can see that, so long as the characteristic

scale length, L., for potential variation is large compared to the Debye length Ap, the



solution for ¢(z) obtained from Eq.(3) is well approximated by the one obtained from
the quasi-neutral approximation Zn; = n.. The two solutions differ by 0(3%/L2) and
the solution to Eq.(3) satisfy charge-neutrality to the same order.

Differentiating Zn; = n, with respect to z, we obtain the differential equation

d$  (Zn;—n,)[0RdR
dz  8(Zni— n.)/0¢ dz (4)

from which we can determine the potential ¢(z) all over the region except the sheath
tegion if there is no singular point. In the presence of an expanding magnetic field,
ions coming out through the magnetic throat are accelerated towards the wall and their
density drops accordingly. Electrons in the open region consist of electrons passing
through the magnetic throat, most of which is reflected by the potential ¢, and electrons
trapped between the throat and the wall by a well of the effective potential pBy/R —
e¢.The trapped-electron density becomes large with increasing the mirror ratio R, while
the reflected-electron density drops inversely as the mirror ratio increases as same manner
as the escaping-ion density. Since the value of dZn, — n,)/OR depends on a ratio of
trapped- to rteflected-electron density, the trapped electrons have considerable effects
upon the potential formation in the plasma. The derivative 8(Zn; — n.)/0R is negative
in the whole range of R for all but very small trapped-electron densities. In this case, we
obtain a monotonically falling solution ¢(z) to Eq.(4) continuing from 2 = 0 toz = L,
if the derivative &(Zn; — n,)/d¢ is negative throughout the open region. This solution
satisfies a necessary condition for the formation of the sheath potential just in front of

the wall, which is expressed by 8(Zn; —n.)/8¢ < 0. The derivative 8{Zn; —n.)/OR can



have a positive value for much small trapped-particle densities, and then a monotonically
falling solution is obtained if the derivative 3(Zn, — n,)/d¢ is positive for z > 0. We,
however, can exclude such a solution because it dees not satisfy the necessary condition
for the sheath formation. The derivative 8(Zn; — n.)/84 is negative, in general, for
z > 0 once it has a negative value at the throat because of rapid decrease of the electron
density with decrease of the potential.

The inequality 8(Zn; — n.)/d¢ < 0 gives the restriction to the ion distribution func-

tion. This is rewritten by using the ion distribution function in the form!?

/ g f,(vu 8ne
'uﬁ Bqﬁ ’ (5)

which becémes the same form as the generalized Bohm criterion presented by Harrison
et al.** when the electron distribution function is a Maxwellian distribution with temper-
ature 7. The ion distribution function f, must be zero at vy = 0 to have a finite value
of the integral in the expression (5). On the other hand, the ion distribution function
in the interior of the throat is expected to be continuous at the separatrix which divides
the trapped from the passing region of velocity space provided trapped ions exist inside
the throat. These facts mean that the passing ions must be accelerated in the inside
region close to the throat before their arrival at z = 0 so as to satisfy the criterion (5).

We can consider the inner region near the throat where the trapped-ion density is
smaller than the passing-ion density, if the criterion (5) is satisfied at z = 0 and the
ion distribution function is continuous at the separatrix in the interior. The electron

distribution function in this region can be expected to approach a Maxwellian distribution



because of relaxation inside the throat. Since the derivative d(Zn; — n.)/0R has a finite
negative value for such a plasma, the sign of 8(Zn; —n.) /8¢ must be opposite to the one
of dR/dz for a monotonically varying potential near the throat. Then it must change
from positive to negative at z = 0 as r increases. Consequently, it is found that a
monotonically decreasing potential, which is necessary to accelerate ions, can build up
in the vicinity of the throat only if the criterion (35) is fulfilled with equality at z = 0.
When we calculate the potential in the inner region of the magnetic throat such as
the plug cell of a tandem mirror sysiem, we must consider trapped ions the distribution
function of which is fimite and continuous at the separatrix in velocity space. In the
inner region at a distance from the throat, where the trapped-ion density is much larger
than the passing-ion density, in general, the derivative &(Zn; — n.)/d¢ is negative and
the derivative 8(Zn; — n.)/OR is positive. On the contrary, 8(Zn; — n.)/8¢ is positive
and d(Zn; — n.)/OR is negative just in front of the throat as mentioned above. One
can see from this fact that there must be a saddle point, at which Zn; — n, = 0,
d(Zn;—n,)/0¢ = 0 and d(Zn;—n,.)/OR = 0 hold true simultaneously, in the intermediate
region where the trapped-ion density becomes comparable with the passing-ion density,
if a monotonically varying potential builds up over the entire region including the inner
region. Distribution functions of the plasma will be very restricted owing to the existence
of such a saddle point. Whether such a continuously varying potential in a steady state
can build up throughout the system or not is an open problem. It is difficult to determine
the spatial distribution of ¢ over the entire region because one must solve the Vlasov-

Poisson equation self-consistently, determining the separatrix in velocity space under the



consideration of ion motion in a nonuniform magnetic field.

III. MODEL DISTRIBUTION FUNCTIONS

We need to express the distribution function of electrons and ions in order to calculate
the axial potential profile between the magnetic throat and the wall and the one in the
vicinity of the throat. The ion dift speed mmst be supersonic at the throat so as to satisfy
the generalized Bohm criterion. Thus we choose a cut-off Maxwellian distribution with

the cut-off energy e, given by

flen) = erfc [(267:;{%?)1/2] (2:12}5)3/2 P (-_ k;) hle = pBo— o) (6)

as a model ion distribution function. Here erfc(y) is the complementary error function

and h(y) is the Heaviside unit function defined by

1 ,y>0
Mw={0 P

Level surfaces of this model distribution function in vy — v, space at B = 2 and
—e¢/kT, = 1 are shown in Fig. 2(a).

Electrons are classified into three groups, that is, passing electrons which can reach
the wall, electrons reflected by the decelerating potential, and electrons trapped between
the throat and the wall by a well of the effective potential uB(z) — ed(x). Since re-
flected electrons are subject to relaxation inside the magnetic throat, we assume their

distribution function to be Maxwellian. The trapped-electron phase space is filled in by




scattering of the reflected electrons due to collisions in velocity space. Thus the distribu-
tion function must be continuous at the separatrix which divides the trapped from the
reflected region of velocity space. We pick a model distribution function for the electrons

in the form

e =ro(gh) o () s ()
ASH =m0 \gr,) PR I\ TR ) (7)
where the function g(y) is defined by

_J1 yy20
g(y)_{ explay) ,y<0

The parameter o describes the degree to which the trapped-ion distribution function is
reduced : o = 0 corresponds to Maxwellian trapped electrons ; and increasing o from 0
to oo describes successively smaller numbers of trapped electrons. Level surfaces of the
model electron distribution function at R = 2 and —e¢/kT, = 1 are shown in Fig.2(b).

The particle density of species j is obtained as functions of R and ¢ by integrating
f, over the velocity space. The resulting expression of the ion density is

1o Ec— 2¢ o 48 "
on= gl o O el |

R—1\? R e —Zed
_( R) EXP(le kT )er{c

and that of the electron density is

o =nelon () - ity (7)o (2haim)]- o




These expressions are continuous and differentiable with tespect to R and ¢.

The ion flux per magnetic flux tube with unit cross section at the throat is given by
1f2 1/2 -1
# (o) {2 () | ()
=—=|— —jerfc |{ — .
=7 (m,-) {e"p k) < |\RT: (10)
The electron flux is similarly given by
_ Ro sze 1z €¢w CX(RL - 1)2 RL 6(;51”
=3 (me) Frew i ) Tram -1\ 13 )| (1)

where Ry is the mirror ratio at £ = L. The wall potential ¢, in Eq. {11), which is

one of two boundary conditions to solve Poisson’s equation, is uniquely determined by

imposing the umbipolarity of the fluxes, ZT'; = T,.

IV. NUMERICAL RESULTS AND DISCUSSION

The inequalities d(Zn; — n.)/0R < 0 and &(Zn; — n,.)/8¢ < 0 must be satisfied
throughout the exterior of the magnetic throat, z > 0, as described in Sec.If in order
to obtain a monotonically decreasing continuous potential. These inequalities restrict
a range of parameters of the model distribution functions given by Eqs.(6) and (7).
Figures 3(a} and 3(b) show domains in o — e, space for any point in which we can obtain
a solution of Eq.(4) continuous from z = 0 to z = L. The cut-off energy of ions, ¢,
has a lower limit resulting from &(Zn; — n.)/8¢ = 0. This means that ions must have
a supersonic drift speed to avoid the discontinuity of the potemtial The cut-off energy
also has a upper limit resulting from @(Zn; — n,)/8R = 0 if the parameter « has a value

lazger than a certain value. The range of ¢, becomes smaller as o becomes larger, that is,
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as the irapped-electron density decreases. Such tendency is remarkable when the ratio
of ion to electron temperatures is small.

Atthough the assumption of quasi-neutrality provides a good approximation for a
smoothly varying potential in the plasma, one must numerically solve Poisson’s equation
to determine a potential profile over the entire region from the throat to the wall. If we
approximate the problem as one-dimensional then we replace V2¢ by d%p/dz?, and an
appropriate set of boundary conditions consists of values of ¢ at the boundaries. The
value of ¢ at the throat is defined to be zero and the one at the wall is determined from
ZT; =T,. Poisson’s equation can be solved numerically by transforming it into a set of
finite difference equations. We use a solution of Eq.(4) to guess an initial set of ¢, and
ensure sufficient resolution near the wall by introducing a nonuniform grid.

Figure 4 shows the numerically calculated potential for the model field R(z) =
1+ (Ry — 1)(2/L)* with Ry = 10, where the hydrogen plasma with T:/T. = 1 and
Apo/L = 0.005 is assumed. The cut-off energy of the model ion distribution function
is chosen as ./kT, = 0.187 so as to satisfy the generalized Bohm criterion mazxginally
at the throat. In this case, the gradient of the potential has a finite value at z = 6
nevertheless the gradient of R(z) is zero at the throat. The solid curves A, B and C in
Fig.4 show solutions for successively smaller ratios of the trapped- to the total-electron
numbers. The sheath potential with the width several times as large as the Debye length
is formed just in front of the wall. The density profiles of trapped electrons, reflected
electrons, and passing ions for a Maxwellian electron distribution (« = 0) are shown in

Fig.5. We see that the trapped electrons remarkably affect the potential profile and the
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presheath potential drop. For much small trapped-eleciron densities, a descent of the
presheath potential is localized near the magnetic throat, and then the presheath po-
tential approaches asymptotically to a constant value as the mirror ratio increases, For
large trapped-electron densities, the presheath has a gradually varying potential profile
and the potential drop increases with increasing of the mirror ratio. The increase of the
presheath potential drop due to the existence of trapped electrons leads to the decrease
of the sheath potential.

In order to satisfy the generalized Bohm criterion at ¢ = 0, ions coming out through
the magnetic throat must have a supersonic drift speed and their distribution function
must be zero at v = 0. This fact implies the existence of the monotonically falling po-
tential to accelerate ions in the inner region near the throat. Figure 6 show the potential
profiles in the vicinity of the throat obtained from the quasi-neutrality approximation
for various values of the cut-off energy .. We ignored ions trapped inside the throat, as-
suming that their density, which vanishes at z = 0, is much smaller than the passing-ion
density in the region near the throat. The results confirm the fact described in Sec.II,
that is, a monotonical potential profile can be obtained only if the generalized Bohm cri-
terion is fulfilled with equality at the throat. For cut-off energies smaller than the critical
value ¢./kT, = 0.187, one cannot obtain a continuous potential. On the contrary, for
cut-off energies larger than the critical value, one can find a continuous potential profile,
but it is not monotonical as indicated in Fig.6.

The contribution of trapped electrons to the increase of the presheath potential drop

suggests the possibility of effective potential control in the open region by increasing
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the trapped-electron density through ECRH (electron cyclotron resonance heating) or
ionization of neutral gas in the region near the wall. Since the ECRH increases the
electron energy perpendicular to the magnetic field, electrons passing through the mirror
throat can be kicked in the trapped region of velocity space by the rf field, and they are
trapped until scattering out from the trapped region. In the open region with a large
mirror ratio, such as the end region of a tandem mirror, almost all electrons produced by
ionization near the wall are trapped in a well of the effective potential uB — e¢. Hence,
the ionization will contribute to the increase of the presheath potential drop provided the
cooling effect of ionization is not so large. The large potential barrier at the presheath
inhibits the inflow of high-Z impurity ions from the wall towards the confined plasma.
Moreover, it will prevent a remarkable increase of convective electron heat loss caused
by secondary electron emission from the wall. It is well known that secondary electron
emission has a negligibly small influence on the presheath potential under the condition of
a fixed electron temperature, while it remarkably reduces the sheath potentialﬁ’ﬁ. Thus,
one can expect that the large presheath potential acts as a thermal insulator in place
of the sheath potential when a large number of electrons are trapped in the open region
of a system such as a tandem mirror, even if the sheath potential is reduced to a small
value due to secondary electron emission. The ECRH power necessary to maintain the
trapped-electron density is expected to be small compared with the convective electron
heat outflow if the collision frequency is much smaller than the one inside the throat. A
precise calculation considering the power balance of a plasma are necessary to make sure

of the possibility of potential control.
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V. CONCLUSIONS

We have studied formation of the steady-state electrostatic potential in a collisionless
plasma flowing out through the magnetic throat to a wall under the condition that a
particle source in a plasma can be ignored. We have expressed Poisson’s equation for a
theoretical model to examine potential formation along magnetic field lines from an inside
point near the magnetic throat to the wall. It is found that satisfaction of the generalized
Bohm criterion is required to avoid the discontinuity of the potential just beyond the
magnetic throat, and then ions passing through the throat must be accelerated before
they arrive at the throat. A monotonically falling potential to accelerate the passing ions
can be formed in the inner region near the throat only if the generalized Bohm criterion
is marginally satisfied at the throat.

Numerical solutions to Poisson’s equation show that trapped electrons in the open
region affect on the potential formation remarkably. For very small trapped-electron
densities, the presheath potential drop is localized near the throat and the presheath
potential approaches asymptotically to a constant value as the magnetic field strength
decreases along magnetic field lines. For large trapped-particle densities, the presheath
potential drop continuously increases with decreasing the magnetic field strength along
field lines. These results suggest the possibility of effective potential control in the open
region by the combination of an expanding magnetic field and the ECRH heating.

Our results obtained from the analysis and the numerical calculation present one of
the bases of the total understanding of the potential formation in the open region of a

mirror system or in the edge layer of a field reversed configuration. The present results
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may also be applicable to a low density and high temperature plasma in a modified

expanding bundle divertor aiming at improving the energy confinement and reducing

the heat load on the wall®.
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Fig. 1 Schematic diagram of the manetic field profile (dotted line) and the electrostatic
potential profile (solid line) in the open region. Typical paths of particles are

schematically shown in the region between the mirror throat and the floating wall.
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Fig. 2(a) Level surfaces at R = 2 and e¢/kT, = ~1.0 for the model ion distribution
function given by Eq.{6) with e./kT, = 0.187. Ratio of f on adjacent contours is

0.79.
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Fig. 2(b) Level surfaces at R = 2 and e¢/kT, = —1.0 for the model electron distri-

bution function given by Eq.(7) with & = 10. Ratio of f on adjacent contours is

0.79.
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Fig. 3(a) Domain in @ — ¢, space where monotonically varing continuous potential
can be formed in the plasma for various ion temperatures. Here « is the reducing
parameter of the model electron distribution function given by Eq.(7) and ¢_ is the

cut-ofl potential of the model ion distribution function given by Eq.(G).
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Fig. 4 Potential profile ¢(z) in the model field By/B(z) = 1+ (R — 1){z/L)? with
R;, = 10 for various values of the parameter « of the model electron distribution
function. Curves A, B and C represent 1esults for parameters pointed in Fig.3(a).
Parameters of the model distribution functions are e./kT, = 0.187 and T3/7T. = 1.
The values of a and the corresponding ratios of trapped- to total-electron numbers
are : (A) @ =0, N}/N, =027 ; (B) o = 1, N!/N. = 013 ; (C) o = 10,
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1.2 I a | 1 l | 1 . 1 6. 0
1.0 \ -4 5.0
0.8 —\ 4.0
= \ )
\\ ﬁ
) ®
\\ nf(m) |
0.4 | N\ -4 2.0
ng(x) "N
CRN
0.2 |- RN 4 1.0
we) Ttelme——
0.0 emmn T ' T h dnbviink I I R
0. 0 0.2 0. 4 0. 6 0.8 1.0
z/L

Fig. 5 Density profile of ions n;(z), reflected electrons n’(z) and trapped elecrons
nt(z), and potential profile ¢(z) for the model distribution functions with e./kT, =

0.187,T;/T. = land ¢ = 0.



l. 0 - e
-
-
-

g.

0.

B(z)/Bo

Fig. 6 Potential profilein the vicinity of the magnetic throat for e /£T, = 0.187,0.2 and 0.5.
Another parameters are 7,/7. = 1 and o = 0. The gereralized Bohm criterion is

marginally satisfied at the throat when ¢,/kT, = 0.187.



NIFS-103

NIFS-104

NIFS-105

NIFS-1086

NIFS-107

NiFS-108

NIFS-109

NIFS-110

NIFS-111

NiIFS-112

NiIFS-113

NiFS-114

NIFS-115

Recent Issues of NIFS Series

A. J. Lichtenberg, K. Itoh, 8. - I. ltoh and A. Fukuyama, The Role of
Stochasticity in Sawtooth Oscillation ; Aug. 1991

K. Yamazaki and T. Amano, Plasma Transport Simulation Modeling
for Helical Confinement Systems; Aug. 1991

T. Sato, T. Hayashi, K. Watanabe, R. Horiuchi, M. Tanaka, N. Sawairi
and K. Kusano, Role of Compressibility on Driven Magnetic
Reconnection ; Aug. 1991

Qian Wen - Jia, Duan Yun - Bo, Wang Rong - Long and H. Narumi,
Electron Impact Excitation of Positive Ions - Partial Wave
Approach in Coulomb - Eikonal Approximation ; Sep. 1991

S. Murakami and T. Sato, Macroscale Particle Simulation of
Externally Driven Magnetic Reconnection; Sep. 1891

Y. Ogawa, T. Amano, N. Nakajima, Y. Chyabu, K. Yamazaki,

8. P. Hirshman, W. |. van Rij and K. C. Shaing, Neoclassical
Transport Analysis in the Banana Regime on Large Helical Device
(LHD} with the DKES Code; Sep. 1991

Y. Kondoh, Thought Analysis on Relaxation and General Principle to
Find Relaxed State; Sep. 1991

H. Yamada, K. Ida, H. Iguchi, K. Hanatani, S. Morita, O. Kaneko,
H. C. Howe, S. P. Hirshman, D. K. Lee, H. Arimoto, M. Hosokawa,
H. Idei, 8. Kubo, K. Matsuoka, K. Nishimura, S. Okamura,

Y. Takeiri, Y. Takita and C. Takahashi, Shafranov Shift in Low-
Aspect-Ratio Heliotron | Torsatron CHS ; Sep 1991

R. Horiuchi, M. Uchida and T. Sate, Simulation Study of Stepwise
Relaxation in a Spheromak Plasma ; Oct. 1991

M. Saszo, Y. Okabe, A. Fujisawa, H. Iguchi, J. Fujita, H. Yamaoka
and M. Wada, Development of Negative Heavy lon Sources for
Plasma Potential Measurement ; Oct. 1991

S. Kawata and H. Nakashima, Tritium Content of a DT Pellet in
Inertial Confinement Fusion ; Oct. 1991

M. Okamoto, N. Nakajima and H. Sugama, Plasma Parameter
Estimations for the Large Helical Device Based on the Gyro-

Reduced Bohm Scaling ; Oct. 1991

Y. Okabe, Study of



NIFS-116

NIFS-117

NIFS-118

NIFS-119

NIFS-120

NIFS-121

NIFS-122

NIFS-123

NIFS-124

NIFS-125

NIFS-126

NIFS-127

NIFS-128

Au Production in a Plasma-Sputter Type Negative lon Source |
Oct. 1991

M. Sakamoto, K. N. Sato, Y. Ogawa, K. Kawahata, S. Hirokura,

8. Okajima, K. Adaii, Y. Hamada, S. Hidekuma, K. Ida, Y. Kawasumi,
M. Kaojima, K. Masai, S. Morita, H. Takahashi, Y. Taniguchi, K. Toi and
T. Tsuzuki, Fast Cooling Phenomena with Ice Pellet Injection in
the JIPP T-1IU Tokamak; Oct. 1991

K. ltoh, H. Sanuki and S. -l. toh, Fast Ion Loss and Radial Electric
Field in Wendelstein VII-A Stellarator; Oct. 1991

Y. Kondoh and Y. Hosaka, Kernel Optimum Nearly-analytical
Discretization (KOND) Method Applied to Parabolic Equations
<<KOND-P Scheme>>; Nov. 1991

T. Yabe and T. Ishikawa, Two- and Three-Dimensional Simulation
Code for Radiation-Hydrodynamics in ICF; Nov. 1991

S. Kawata, M. Shiromoto and T. Teramoto, Density-Carrying Particle
Method for Fluid ; Nov. 1991

T. Ishikawa, P. Y. Wang, K. Wakui and T. Yabe, A Method for the
High-speed Generation of Random Numbers with Arbitrary

Distributions; Nov. 1991

K. Yamazaki, H. Kaneko, Y. Taniguchi, O. Motojima and LHD Design
Group, Status of LHD Control System Design ; Dec. 1991

Y. Kondoh, Relaxed State of Energy in Incompressible Fluid and
Incompressible MHD Fluid ; Dec. 1991

K. Ida, S. Hidskuma, M. Kojima, Y. Miura, S. Tsuji, K. Hoshino, M.
Mori, N. Suzuki, T. Yamauchi and JFT-2M Group, Edge Poloidal
Rotation Profiles of H-Mode Plasmas in the JFT-2M Tokamak ;
Dec. 1991

H. Sugama and M. Wakatani, Statistical Analysis of Anomalous
Transport in Resistive Interchange Turbulence ;Dec. 1991

K. Narihara, A Steady State Tokamak Operation by Use of Magnetic
Monopoles ; Dec. 1991

K. Itoh, S. -I. Itoh and A. Fukuyama, Energy Transport in the Steady
State Plasma Sustained by DC Helicity Current Drive ;Jan. 1992

Y. Hamada, Y. Kawasumi, K. Masai, H. Iguchi, A. Fujisawa, JIPP T-



NIFS-129

NIFS-130

NIFS-131

NIFS-132

NIFS-133

NIFS-134

NIFS-135

NIFS-136

NIFS-137

NIFS-138

NIFS-139

NIFS-140

NIFS-141

U Group and Y. Abe, New Hight Voltage Parallel Plate Analyzer
Jan. 1992

K. Ida and T. Kato, Line-Emission Cross Sections for the Charge-
exchange Reaction between Fully Stripped Carbon and Atomic

Hydrogen in Tokamak Plasma; Jan. 1992

T. Hayashi, A. Takei and T. Sato, Magnetic Surface Breaking in 3D
MHD Equilibria of I=2 Heliotron ; Jan. 1992

K. ftoh, K. lchiguchi and S, -1. ltoh, Beta Limit of Resistive Plasma
in Torsatron/Heliotron ; Feb. 1992

K. Sato and F. Miyawaki, Formation of Presheath and Current-Free
Double Layer in a Two-Electron-Temperature Plasma ; Feb. 1992

T. Maruyama and S. Kawata, Superposed-Laser Electron Acceleration
Feb. 1992

Y. Miura, F. Okano, N. Suzuki, M. Mori, K. Hoshino, H. Maeda,

T. Takizuka, JFT-2M Group, S.-L. ltoh and K. lioh, Rapid Change of
Hydrogen Neutral Energy Distribution at LIH-Transition in JFT-
2M H-mode ; Feb. 1992

H. Ji, H. Toyama, A. Fujisawa, S. Shinohara and K. Miyamoto
Fluctuation and Edge Current Sustainment in a Reversed-Field-
Pinch; Feb. 1992

K. Sato and F. Miyawaki, Heat Flow of a Two-Electron-Temperature

Plasma through the Sheath in the Presence of Electron Emission,
Mar. 1992

T. Hayashi, U. Schwenn and E. Strumberger, Field Line Diversion
Properties of Finite § Helias Equilibria; Mar. 1992

T. Yamagishi, Kinetic Approach to Long Wave Length Modes in
Rotating Plasmas; Mar. 1992

K. Watanabe, N. Nakajima, M. Okamoto, Y. Nakamura and M.
Wakatani, Three-dimensional MHD Equilibrium in the Presence of

Bootsirap Current for Large Helical Device (LHD); Mar. 1992

K. lioh, 8. -i. Itoh and A. Fukuyama, Theory of Anomalous Transport
in Toroidal Helical Plasmas; Mar. 1992

Y. Kondoh, Internal Structures of Self-Organized Relaxed States and
Self-Similar Decay Phase; Mar. 1992



NIFS-142

NIFS-143

NIFS-144

NIFS-145

NIFS-148

NIFS-147

NIFS-148

NIFS-149

NIFS-150

NIFS-151

NIFS-152

NIFS-153

NIFS-154

U. Furukane, K. Sato, K. Takiyama and T. Oda, Recombining

Processes in a Cooling Plasma by Mixing of Initially Heated Gas;
Mar. 1992

Y. Hamada, K. Masai, Y. Kawasumi, H. Iguchi, A. Fijisawa and JIPP T-
U Group, New Method of Error Elimination in Potential Profile
Measurement of Tokamak Plasmas by High Voltage Heavy Ion
Beam Probes, Apr. 1992

N. Ohyabu, N. Noda, Hantao Ji, H. Akao, K. Akaishi, T. Ono, H. Kaneka,
T. Kawamura, Y. Kubota, S. Morimoto. A. Sagara, T. Watanabe,

K. Yamazaki and O. Motojima, Helical Divertor in the Large Helical
Device; May 1992

K. Ohkubo and K. Matsumoto, Coupling to the Lower Hybrid Waves
with the Multijunction Grill, May 1992

K. Itoh, S. -Lltoh, A. Fukuyama, S. Tsuji and Allan J. Lichtenberg, A
Model of Major Disruption in Tokamaks, May 1992

S. Sasaki, S. Takamura, M. Ueda, H. Iguchi, J. Fujita and K. Kadota,
Edge Plasma Density Reconstruction for Fast Monoenergetic
Lithium Beam Probing; May 1992

N. Nakajima, C. Z. Cheng and M. Okamoto, High-n Helicity-induced
Shear Alfvén Eigenmodes; May 1992

A. Ando, Y. Takeiri, O. Kaneko, Y. Oka, M. Wada, and T. Kuroda,
Production of Negative Hydrogen lons in a Large Multicusp lon
Source with Double-Magnetic Filter Configuration; May 1992

N. Nakajima and M. Okamoto, Effects of Fast lons and an External
Inductive Electric Field on the Neoclassical Parallel Flow, Current,
and Rotation in General Toroidal Systems; May 1992

Y. Takeiri, A. Ando, O. Kaneko, Y. Oka and T. Kuroda, Negative lon
Extraction Characteristics of a Large Negative Ion Source with
Double-Magnetic Filter Configuration, May 1992

T. Tanabe, N. Noda and H. Nakamura, Review of High Z Materials for
PSI Applications ; Jun. 1992

Sergey V. Bazdenkov and T. Sato, On a Ballistic Method for Double
Layer Regeneration in a Viasov-Poisson Plasma: Jun. 1992

J. Todoroki, On the Lagrangian of the Linearized MHD Equations,
Jun. 1992



