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ABSTRACT

The difference 8® between toroidal magnetic flux po through the

plasma cross-section and the same flux @, of a vacuum magnetic field
is calculated analytically for "conventional” stellarators with planar
circular axis. It has been done without limitations of aspect ratio, shape
and position of a plasma. The results obtained show weak dependence
of SCD/CD on the geometry of equilibrium configuration. It proves that

dlamagnetlc measurements can be considered as a reliable basis for the
direct evaluation of stored plasma energy at various experimental
conditions.
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1. INTRODUCTION

Diamagnetic measurements are important part of plasma diagnostics
in fusion devices. The measurements themselves and apparatus used are
rather simple. The main physical problem is how to interpret data
obtained.

Existing theory predicts linear dependence of measured diamagnetic
signal 0@ in stellarators on the average E (ratio of plasma and magnetic

pressures) with coefficient —<I>p/2 [1-6]. Here, <Dp 1s the toroidal

magnetic flux through the plasma column, 8® is the difference between
(Dp and the same flux of a vacuum magnetic field. This proportionality

coefficient has been calculated in [1-6] for a straight stellarator with
nonshifted circular averaged magnetic surfaces. Such a model seems to
be inadequate for shifted or elongated configurations which can be
produced in helical systems (stellarators) CHS {7] and ATF [8] with
relatively low aspect ratios A = 5+7. It is necessary, therefore, to
extend the theory, evaluating 8® in more realistic geometry than in Refs
[1-6].

This problem seems to be natural from theoretical point of view, but
it is also of a practical importance. Configurational effects on plasma
confinement in stellarators are now under extensive studies.
Experiments on helical systems Heliotron E [9] and CHS [10] have
shown a strong influence of the geometry of magnetic configuration on
the main plasma parameters. One of them is the stored plasma energy
which is evaluated usually from diamagnetic measurements.

In this paper we calculate analytically 8® for "conventional”
stellarators with planar circuiar geometrical axis. Our aim is to find a
relationship for 3@ through E for a plasma with arbitrary aspect ratio,
shape and position of magnetic surfaces.

In Sec.2 general expression for 3® is derived. It is used to obtain
more clear dependence of 8® on B and plasma geometry in Sec.3. In

Sec.4 we use simplified analytical model to estimate contribution to $®
due to magnetic axis shift. Summary and discussion are presented in
Sec.5. In the Appendix some formulae useful for calculating equilibrium
quantities in stellarator approximation are given.



2. GENERAL EXPRESSION FOR 5@

We are going to calculate a difference between toroidal fluxes of
equilibrivm (B) and vacuum (BV) magnetic fields through the transverse

cross-section 3, of a plasma column:

0 = o) - B, = J'(B—Bv)dsl. (1)
SJ.
With the help of identity

qugdt = Jdivqut = ZEJquS_L + J-Q'qup (2)

Vp vp S, Sp

which is valid for any divergence-free vector g, we can rewrite Eq. (1)
in the form

1 1
50 = EJ(B—BV)VCM - EJQ"(B—BV)dSp. 3)

Vp Sp

Here Vp is the plasma volume, Sp is the plasma boundary surface, { is

the toroidal angle varying from 0 to 27.

Contribution from the helical fields to d® is much smaller than that
from the main toroidal field and can be omitted in Egs (1), (3).
Formally, it corresponds to the neglecting of pressure-induced changes
of the helical field.

Next, we can drop out the last term in Eq.(3). It can be done by
several rcasons. First, it contains the difference between averaged
toroidal field and the same vacuum field at the plasma boundary which
should be small enough. Second, toroidal component n, of the unit
vector n normal to the surface S_ is ny =-nB_, /By, where B_ . is the

p po pol
poloidal field. So, we have an additional small parameter Bpol /B, in the
last integral in Eq.(3):

Bpol

6B, = —0B,

n. (4)
Bt

And, third, n. oscillates over {, which should result in a further

t
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reduction of the integral. Note, that for axisymmetric systems the last
term of Eq.(3) is identically zero.

In conventional stellarators with planar circular geometric axis the
axisymmetric part (B ) of 2 magnetic field can be represented as [1 1]

==

F
= ;ﬂ[V(w Ve + VL (5)

It allows to reduce, finally, general expression for 8@ to the

F-F
50 = —12—".—2bd7: 6)
4r r
Vp

where Fb is the boundary (vacuum) value of F, which corresponds to

the vacuum toroidal field, r is the radius: |V’§’|2 =1/12.

Similar value has been calculated in the above mentioned articles
[1-6] for a straight stellarator. It means that r was considered as a
constant in Eq.(6). This approximation, as can be seen from Eq.(6),
should not lead to significant error. Nevertheless, it can be noticeable
for compact devices such as CHS. So, we shall take into account the
toroidal nature of longitudinal field, which is also important to eliminate
limitations in the previous theories.

Shafranov shift or shift of magnetic surfaces produced by an
external vertical field enters into the Eq.(6) through the F function. It is

clear, that 3P depends not only on the value of {F—FbJ, but also on the
position of its maximum. In outward shifted configurations it is divided
by larger value of r (another r is cancelled with that in dt). As a result,

in this case 3@ dependence on § should be weaker than that for
nonshifted or inward shifted configurations. We can expect it at high

B 'sin low-aspect-ratio systems.
For calculations we shall use another form of Eq.(6):

R

Vp

Here brackets <...> denote averaging over the layer between adjacent
magnetic surfaces,




d
(f} = Ej.fd'[, (8)

V is the volume bounded by a magnetic surface. To reduce Eq.(6) to

Eq.(7), one should remember that F—Fb is a constant on any magnetic

surface. Kruskal-Kulsrud equation
p/VI — _(qu + Fl)q)t (9)

(the direct consequence of equilibrium equation Vp = [ jB]) allows us
to express F'(V) in Eq.(7) via plasma pressure p, longitudinal current J

and rotational transform Q. With its help we get

1 {(dp &\ [ dr
50 = — [— + -—)J'—«iv. 10
2o T Pav)) 2 (10)
vV

Vp

Primes in Eq.(9) denote the derivative with respect to arbitrary “"label”

of magnetic surfaces, @ is the toroidal flux enclosed by a magnetic
surface.
In the following we consider a currentless plasma with J = 0.

3. 8® IN CURRENTLESS STELLARATORS

For currentless plasma Eq.(10) can be written as

Vv
o - 2B ji‘-ﬂ—l _[93 - Yabhy, (11)
Fy dd| 442 J 12 R, dV
A A
where P is the volume-averaged pressure:
_ l
P = V—J‘IXWA (12)
pV
P

The second term in Eq.(11) is much smaller than the first one, ﬁVp / Fb’

because terms in square brackets almost cancel each other. To evaluate it
analytically, we need an expression for ®'(V).

fS_



For any toroidal system with nested flux surfaces this function is
given by

dd 1
Vv E(ng)' (13)

In a stellarator

B =3B + B (14)

with axisymmetric component of a magnetic field given by Eq.(5). So
we have

do F /1 e
N - Z?(?) + E<BV§>' (15)

The contribution of helical field, B, to ®’(V) can be easily calculated
with the help of widely used stellarator expansion. It was originally
proposed by Greene and Johnson [12] for large-aspect-ratio stellarators
(see also Ref. [13]), but its extension for low-aspect-ratio systems is
possible {11, 14}. Simple calculations (see Appendix) result in

(BVe) = —%(QO), (16)

where By is the toroidal field on geometrical axis of a stellarator, R is
the radius of this axis,

Qb - & a7

(>§ stands for averaging over the toroidal angle {. Finally, Eq.(15)
leads to

dd F /1 Qf
E{F = Z—;(r—z - R_2'>, (18)

where the last term is much smaller than the first one, but its
contribution to the varying part of ®’(V) is important.

We can neglect the difference between F and Fy, when we substitute
expression (18) into Eq.(11), to obtain

—§ —



sy — o
so = LB _ Ljﬂﬂvvil @y (19)

Fy ax? ) d® | dv R?
Vp
Here
T 1 {dz
- = ~ (20)
r? VJA 2
v
In a more compact form
v
50 = 2P - 5 + o) 1)
R, S H
where
1 fd T
8 = _iz_— —sz-ii—izdv, 22)
47° PVp dd dVry
Yp
Qf
4r?> PVp Jd® R
Vp

Both terms, g and 8y, are much smaller than unity. The first one,
8y, has a clear geometrical nature. It is directly related with relative
shift of magnetic surfaces. It vanishes for nonshifted configurations

with 1 2=const. This term is positive, when magnetic axis is shifted
outward. It can be due to Shafranov shift at finite B's, or due to
external vertical field which produces nonuniform shift of magnetic
surfaces in stellarators with a shear. For inward shifted configurations
dg should be negative.

The second value, 8y, appeared in &® because we retained (Q(J) in

Eq.(18). At the same time we omitted the term with E—ﬁv in Eq.(3),

which, probably, could give a contribution to 6@ of the same order as
8- In other words, accuracy of our calculations is not sufficient
enough to claim that §; in Eq.(21) should be given exactly by Eq.(23).
Or, to say so, we should add to the right side of Eq.(23) another small
term due to S-induced helical fields. it will not change the structure of
Eq.(21), only small value 8y can be, probably, changed.

_7_



In any case, our calculations show that for a currentless plasma of
any shape in conventional stellarators with arbitrary aspect ratio the 6P
value is related with 8 through Eq.(21), where dg and 8y are much
smaller than unity. In the large-aspect-ratio limit, for a plasma with
nonshifted circular averaged magnetic surfaces it is reduced to the
previously obtained formula [1-6]

; (24)

where (Dp=7rb280 is the flux of toroidal field through the plasma

cross-section, b is its average radius, and f =2p/ B(Z). Eq.(21) shows
that the same equality (with fbp =BpS; ) holds for "noncircular" plasma

also, because Vp /(Dp =27R /By, F=2nRBy.
We shall concentrate, next, on the dependence of 8® on the shift of
magnetic surfaces. We should expect, as was said above, smaller

increase of @ with B-raise in configurations with more outward shifted
magnetic axis. It follows, that Shafranov shift should lead to weak

nonlinearity in 3@ dependence on B at high encugh f's. To investigate
such effects, we shall use simplified analytical model.

4. ANALYTICAL TREATMENT OF 3® DEPENDENCE
ON MAGNETIC AXIS SHIFT

For stellarators with circular shifted averaged magnetic surfaces
(model widely used in analytical studies) we get

@ _ v
r RZ’
v

vV = 2z%’R,, @5)

where a is the minor radius of the cross-section of averaged magnetic
surface, R.= R+A is its major radius (position of its center), A is the
shift of this magnetic surface a=const relative to the geometrical center
of the initial nonshifted configuration. In this case

1 V24T 1A'
4r® Vp dV 2 V' b2RR,

(26)



where b is the minor radius of a plasma. We calculate &g in the lowest
approximation, omitting higher-order toroidal corrections. They are not
important because the term 85 in Eq.(21) is small itself. So, we can
disregard the difference between R and R in Eq.(26) and substitute

®’(a)=2naB; in Eq.(22) to obtain

b
i
= —““fj.pfa @7
p
0
It follows from here that
b A

6 = C——2, 28
S R b (28)

where A,, is the shift of magnetic axis and C is the factor of order of
unity depending on pressure distribution and A(a) profile:

1
pdf 3A(x)
e @

Here x = a/b is the normalized dimensionless minor radius. For peacked
pressure profiles the value of C should be smaller than that for the flat
ones. For

A= Ag(1-x") b = poft -x%) (30)
we have p=py /2 and C = 4/3. For

_ 3.2 _ 2\2
A= A [1—5x +2] p = po(l—x) (31)

we receive C = 0.9,

Calculating C value analytically, one should remember that A(a)
depends on p(a) and boundary (or initial) conditions. Both cases
mentioned here represent self-consistent solutions of equilibrium
problem for shearless stellarators only with nonshifted magnetic
surfaces at B=0. In general, they should be considered as not more than
simple mode! used for estimates. Such estimates show, for example,

that for the CHS torsatron contribution to 3@ due to dg term can be in
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some regimes of the order of 10%.

We can evaluate now 8® dependence on  in shearless stellarators
with account of Shafranov shift. It can be done if we put

p
A, = b (32)
2,
in Eq.(30), where
b
Boy = #QE, 33)

p=const is the rotational transform. In this case we obtain

50 B 2b B
= b - 222 34
By 2[ 3R,3§J G

with EzZﬁ/B%. Even at B close to equilibrium limit the last term in
Eq.(34) could not be larger than 0.7b/R. It means that simple formula
(21) with d¢=0 and Jy=0 can be considered as a reliable basis for
interpretation of diamagnetic measurements at any B. Nonlinear
dependence of 8® on B can be seen in numerical calculations. Qur
analysis explains this phenomena.

In elongated configurations Shafranov shift is suppressed to some
extent. In this case toroidal corrections in Eq.(21) can be also of no
much practical importance. We are not able to discuss here in more
details the contribution to 3® due to helical field. It is clear,
nevertheless, that it should be small. For &y given by Eq.(23) we have

1b mb
5 o . s 35
H TR Hy R (35)

where 4, is the rotational transform at the plasma edge, m is the number

of periods of helical field. Function (QO> in Eq.(23) depends on the

radius measured from the geometrical axis of "nonshifted” vacuum
configuration. As a result, 8y should aiso depend on A,,, which can be
seen in strongly shifted configurations. It means, that in such cases
small deviation of 5®/¢>p from that given by Eq.(24) can be somewhat

different than obtained from &g only.



5. SUMMARY AND DISCUSSION

The difference 5@ between toroidal magnetic flux d)p through the

plasma column and similar flux @,, of a vacuum magnetic field has been
calculated analytically for a conventional stellarator. It has been done
without limitations on aspect ratio, shape and position of a plasma. We
have shown that the ratio Sd)/d)p is not very sensitive to the geometry of

configuration. We confirmed by this that previous result, Eq.(24),
obtained in Refs [1-6] for straight stellarators with nonshifted circular
averaged magnetic surfaces, should not lead to serious mistakes when
applied to real devices at different experimental conditions. At the same

time we found that the ratio BCD/CDP depends on the relative shift of

magnetic surfaces. This effect should be seen in numerical calculations
and, probably, can be of some importance for shifted configurations in
stellarators with a shear. In such systems nonuniform shift of magnetic
surfaces appears when vertical field is applied. As a result, for outward

shift we should have weaker dependence of &I)/CI)p on ﬁ than that given

by Eq.(24), and more stronger one for inward shift. This dependence
can be slightly nonlinear at high 's due to Shafranov shift.

Analytic solutions give physical insight of the problem and reveal
main dependencies. Several questions should be addressed to numerical
simulations for complete clarifying the problem. First, on the plasma
boundary Bn=0, but vacuum field B, can have nonvanishing normal
component. It means that 8@ can be slightly different in different
{=const cross-sections. In general, this effect should be small and can
be disregarded. Nevertheless, the question remains to be opened: in
what cases (maybe, exotic ones) this effect can be noticeable? Second,
fi—f}v is small, but, probably, in some cases its contribution to 6® can
be of the same order than that given by 8y in Eq.(21). It can be easily
checked numerically. Third, in experiments not exactly 6@ value is
measured by a diamagnetic loop, but the change of magnetic flux
through the surface enclosed by the loop. At finite § the helical field in
the gap between plasma and a loop is also not the same as vacuum field
at f=0. So, one can wonder whether it is important or not. The final
answer should be given by the precise numerical analysis. All questions
listed here are kind of theoretical ones, with no much practical
importance. Because the main, largest part (if not the whole) of
measured diamagnetic signal is given by d®.
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APPENDIX

In stellarators flux function ¥ subject to the equation
BVY = 0 (A.1)
can be represented as
¥ o=y o+ W (A2)

where w is the axisymmetric part of ¥ and ¥ is the helical one.
Eq.(A.1) is then naturally divided on two parts:

BVy (A.3)

I
|
———
=
<
=3
e
i

BVy = -BVy - [iiv:p-(ﬁvgf)g). (A.4)

Here and in what follows

2
f={f) = ﬁjfdg, i = f—(f). f= J?dg. (A.5)
0

Usually B/B, and rotational transform over one field period are small.
It allows to drop out last term in Eq.(A.4) and to replace the operator

BV in this equation on BteCV, e; being a unit vector along V{. After
that one gets

7 = —-LBvy (A.6)
B,
and, finally,
¥(r) = vy - Er-l:}Vy/ = y(r-dr), (A7)
t
where
or = Biﬁpol (A8)
t



with Bpol as a poloidal component of B. It is clear from Eqg.(A.7) that
substitution

r = T + 6r (A9

makes ‘¥{r) two-dimensional function of new variables T,Z. It means
that in these coordinates magnetic surfaces W=const are axisymmetric.

Volume element dt is related in linear approximation with d7 = tdrdZd{ as
dr = (1 + divér)dz. (A.10)

So, in the same approximation we have

J.f(r)dr = J‘[f(F) + divfdr|dT (A.11)

\' \

which leads to

BVedr = TC SrdT (A.12)
r

< oy,
<I'—-—-—.

with &r given by Eq.(A.8). Bisa divergence-free vector. So

BB,

C ) B ITEN: 2 ﬁg .
div—=ér = dIV—-(B —Bgﬁg) = BV—= - div e§. (A‘13)
Bt Bt

t

In stellarators f<<! and, as a consequence, B=B, =V¢, B, ~const. In
this approximation

T

2 1 2. dp d 2 -
BVv—_t - _BvV?? - BVo - BVo| (A.14
B, 1B, ¢ rBt(ag ¢ (p] ( )
As a result we have
B 52 5. BB
divfg&' - B + Li(BB) ~ div= geg, (A.15)
I th T‘Bt ag t

and after integration in Eq.(A.12) we obtain Eq.(16).
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