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Abstract

A thought analysis on the self-organization theories of dissipative MHD plas-
mas is presented to lead to three groups of theories that lead to the same relaxed
state of V x B = AB, in order to find an essential physical picture embedded in
the self-organization phenomena due to nonlinear and dissipative processes. The
self-organized 1elaxed state due to the dissipation by the Ohm loss is shown to be
formulated generally as the state such that yields the minimum dissipation rate of
global auto- and/or cross-correlations between two quantities in 3, B, and A for their

own instantaneous values of the global correlations.
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§ 1. Inroduction

The energy—rela.xétion theory of the resistive magnetohydrodynamic (MHD)
plasma by J. B. Taylor [1,2] has been applied successfully to the relaxation phe-
nomena of magnetically confined plasmas in torcidal devices such as for the reversed
field pinch (RFP) experiment [3-8] and for the spheromak experiment [9-11]. I. B.
Taylor has clarified from his idealized theory that the equation of the force-free field,
V x B = )AB with a constant profile of A, represents "the minimum-energy state”
which is called "the fully relaxed state”, by introducing the conjecture on "the time
invariant” of "the total helicity”. For a cylindrical plasma he derived the well-known
£ = 0 Bessel function model (BFM) configuration from the equation [1,2]. The gross
features of the relaxed plasmas in the experiments of the RFP and the spheromak are
well described by the force-free field equation, V x B = AB with the constant profile
of A [1-11). The detailed experimental measurements show, however, that the relaxed
states of plasmas deviate somewhat from the fully relaxed state of V x B = AB, and
have finite pressure gradient and nonuniform profile of A [3-11]. This deviation is
considered to result from the high resistive boundary plasmas [2]. Taking account
of the experimental RFP plasma which has the finite pressure gradient and satisfies
the boundary condition that the current density j = 0 at the wall, one of the authors
{Y.K.) had introduced the partially relaxed state mode} (PRSM) [12-14] and devel-
oped numerical codes for the RFP equilibria and for the mode transition point of the
relaxed states by introducing the energy principle with partial loss of helicity in the
boundary region [15-20]. It has been shown that the experimental data of the RFP
plasma in the TPE-1RM15 device [7,8] are well fitted by the numerical results of the
PRSM [14,20].

On the other hand, the self-organization process in the resistive MHD plasma

has been investigated in details with use of the three-dimensional MAD simulations




by one of the authors {T.S.} and his co-workers {21-26). R. Horiuchi and T. Sato
have demonstrated by the three-dimensional simulation that there exists some energy
relaxation process where the total helicity is approximately conserved during the rapid
dissipation of the magnetic energy [22,23]. They also have demonstrated by the three-
dimensional simulation that fairly high dissipation of the {otal helicity, up to about
20 percent in one example, accompanies the magnetic energy relaxation which leads
to the force-free field of V x B = AB ( see Fig.3 in ref.[24] }. We notice clearly from
this result of their three-dimensional simulation shown in Fig.3 in ref.[24] that the
total helicity is no longer the time invariant during the magnetic energy ralaxation
and the system still relaxes to the force-free field of V x B = AB. In other words,
the results of the three-dimensional MHD simulation mentioned above make it clear
that the conjecture of the total helicity invariant is not the essential physical condition
necessary for the realization of the relaxed state V x B = AB in the energy relaxation
process. Using a variational method, they also have shown in ref[24] that the relaxed
state of V x B = AB is obtained as the maximum entropy state under {he constraints
of the total helicity invariant, the total energy- and the total mass conservations.

Using the so-called reciprocity of the variational calculus, one of the author (Y.K.)

has shown in re;".[lﬁ] that the maximum entropy state with the global constraints on
the helicity, the energy and the mass is equivalent to the minimum energy state with
the global constraints on the helicity, the entropy, and the mass, and both of them
lead to the same equilibrium equation { if there is no partial loss, the equilibrium
equation becomes the force-free field of V x B = AB ).

Some other energy relaxation theories or self-organization theories have been also
teported, as the modifications of the theory by Taylor [1,2] for the explanation of
experimental plasmas, for example, by using infinit set of global invariant concerning

with helicity [27] or by using the minimun dissipation rate or the minimum entropy



production rate under the constraint of the constant time-averaged rate of supply of
helicity [28] or the assumption of the total helicity invariant [29]. All of these theories
mention above are based essentially on the concept of "helicity”, and lead to the same
force-free field of Vx B = AB.

On the other hand, recent experimental data have clarified that in the ZP-2 device
[30], which is a simple toroidal Z pinch without torcidal coiles for the toroidal flux
and therefore has no initial total helicity, there still appears the relaxation of the field
configuration to lead to the spontaneous generation of the toroidal field within a few
tens of us in the produced torcidal plasma [30-32]. The relaxed state of the plasma
becomes to have finite total helicity and to be close to the state of V x B = AB
that cannot be determined by the initial total helicity [30-32], contrary to the theory
by Taylor [1,2]. The total helicity is not the invariant during the magnetic energy
relaxation in the experiment of the ZP-2 device, just the same as the case of the
three-dimensional simulation shown in Fig.3 in ref.[24] mentioned above. Another
important point to consider is that in the MHD simulations reported in refs.[21}
[26], they do mnot solve any equations for hilicity but they do ouly solve equations
of mass, momentum, and energy ( or equivalently the entropy equation ) together
with Maxwell’s equations and Ohm’s law, where y, j = V x B is used by neglecting
the displacement current. This fact indicates that the quantity of helicity does not
dominate the process of relaxation but is used for a kind of classification or labeling
to describe some part of the process. The both results by the experiments in the
ZP-2 device and the MHD simulations mentioned above suggest that we need a new
theory for obtaining the relaxed state without using "helicity invariant for time”.

The set of general thoughts to find internal structures of the self-organized relaxed
states without using any invariant for time has been reported by one of the authors

(Y.K.), using a thought analysis on relaxation due to nonlinear processes with dissi-




pation itself {33]. Here, the word ”thought analysis” means that we investigate logical
structures, ideas or thoughts used in the objects being studied, and try to find some
key elements for improvement and/or some other new thoughts which involve gener-
ality, by using such as a kind of thought experiments and mathematically reversible
processes [33-35]. The applications of the set of general thoughts to the energy relax-
ation of the MHD plasma, the incompressible viscous fluids, and the incompressible
viscous MHD fluids have been shown in refs.[33] and [36]. A detailed description of
the thought analysis on the self-organization due to nonlinear processes with dissipa-
tion is presented in ref.[37] to clarify that the internal structures of the self-organized
relaxed states are such structures that are hardest to change themselves in their time
evolutions and therefore followed by the self-similar decay phase without significant
change of their internal distributions. Detailed descriptions of the three applications
of the set of general thoughts to the resistive MHD plasmas, the incompressible vis-
cous fluids, and the incompressible MHD fluids are also presented in ref.[37] to lead
to the internal spatial siructures of the self-organized relaxed states and their self-
sirilar decay phases, together with some examples of axisymmetric plasmas such as
the diffused Z pinch plasma, the screw pinch plasma, the RFP plasma in the cylin-
drical approximation, and the field reversal configuration (FRC) plasma. Remarkable
points of the applied theory of the set of general thoughts, summarized in ref.[37], are
the followings:

{a) The relaxed state of the force-free field of Vx B = AB and the mode transition
condition are derived generally as the low 3 plasma limit of the self-organized relaxed
state from the set of general thoughts without using "helicity” and "invariant”, whose
concepts are essential in the theory by Taylor [1,2).

(b) The applied theory permits the quasi-steady energy flow through the boundary

surface, as is indeed the case in most experiments, and leads to a more general relaxed



state of 27 = @A for plasmas having spatially dependent resistivity . This result
leads directly to the e.xperimenta.l fact of j = 0'near the wall, as is indeed the case in
all experiments where 1 goes up to infinity near the boundary wall.

(c) The self-organized relaxed states are proved directly to be followed by the
self-similar decay phase without significant change of their own spatial distributions.

(d) The self-organized relaxed states of flow and/or magnetic field after turbulent
phases with dissipation in the incompressible viscous fluid and/or in the incompress-
ible viscous MHD fluid aze also derived and proved to be followed by the self-similar

decay phase.

We now confront the fact that there exist several different theories, all of which
lead to the same relaxed state of Vx B = AB as a branch, as mentioned above.
This fact itself suggests that there may exist some other theories that lead to the
same relaxed state of V x B = AB. It is interesting to investigate these theories
themselves to find other possible theories leading to the same relaxed state. Overall
investigation on those possible theories on the self-organization would give us some
essential physical picture on the self-organization phenomena.

In this paper, a thought analysis on the self-organization theories ( or the energy-
relaxation theories ) for the dissipative MHD plasma is presented to lead to three
groups of the self-organization theories that lead to the same self-organized relaxed
state of V x B = AB. We also compare and investigate the obtained groups of
the self-organization theories to find their common origin and an essential physical
picture on the self-organization phenomena. In Section 2, a thought analysis on the
self-organization theories { or the energy-relaxation theories ) is presented to find
other possible theories that lead to the same relaxed state. The first group of the

self-organization theories connected to the theory by Taylor [1,2] is shown in the




subsection 2.1. The second group connected to the theory by Kondoh [33,36,37] is
presented in the subsection 2.2, and the third group connected to the theory by T.
Kato and T. Furusawa [29] is in the sebsection 2.3. The comparison among the

obtained groups of theories and some discussion are presented in Section 3.

§ 2. Thought Analysis on Self — Organization Theory

We try to analyze here the logical and the mathematical structures of the self-
organization theory ( or the energy-relaxation theory } in order to find groups of
thoughts for self-organization theories that leads to the same self-organized relaxed
state. For simplicity, it is assumed here that the plasma internal energy is négligibie
compared to the magnetic energy, as is indeed the case in most experiments. In other
word, we are dealing with a self-organization theory due to the magnetic energy-
relaxation. The set of the physical quantities to be used in the self-organization

theory due to the magnetic energy-relaxation is
{As B: j) Es 1, Wy, rl‘}) (1)

where A(t,x), B(t,x), j(t,x), E(t,x), u({,x), wn(f,x), and 5(t,x) are the vector
potential, the magnetic field, the current density, the electric field, the fluid velocity
of plasma, the magnetic energy density, and the resistivity, respectively, and ¢ and x
denote the time and the spatial coordinates, respectively. The resistivity 7 is assumed
to be constant and spatially uniform, for simplicity for a while. The relations among

the physical quantities to be used are the followings:

B=VxA. (2)

‘uoj:VXB. (3)



JB

VXE = “E. (4)

ni=E+uxB Ohm’slaw. (5)
Bz

Wy = 2 (6)

Integrating wy, over the volume of the system, we obtain the total magnetic

energy, Wy, as the global quantities, as follows:

2
Wo = [ 2o (7)
2po
The total helicity, K, is defined by
A-B
K = f TR (8)

Using eqs.(2) and (3) ( Maxwell’s equations }, the vector formula of V - (a x b) =
b-Vxa-a-Vxb, Ohm’s law of eq.(5), and the Gauss theorem, we obtain the time

derivatives of W,,, and K as follows,

W c
%t—=—/{m~J+(JXB)-u}dv—f(Exﬁ)'ds, (9)
dK 1 1
E:_u_O/m-Ba{u—2%}1((53><A+<;sla=)-ds, (10)

where § denotes the surface integral over the boundary, and ¢ is the scalar potential.

In Ref[38], H. Ito developed a theory of helicities in MED by using the termi-
nologies of "autohelicity” and "crosshelicity” for K and W,,. The quantities of W,
and K are in other words, however, the "global autocorrelation” and the ”global
crosscorrelation”, respectively, with respect to B and A [25]. The first term of the
right-hand side of eq.{9) is the dissipation term of the magnetic energy and also, in

other words, the dissipation term of the global autocorrelation with respect to B.



In the same way, the first term of the right-hand side of eq.(10) is the dissipation
term of the total helicity and also, in other words, the dissipation term of the global

crosscorrelation with respect to B and A.

2.1 First Group of Self — Organization Theory

The logical structure of Taylor’s theory on the energy-relaxation of the MHD
plasma consists of the following main set of three thoughts, { [A-1], [A-2], [A-3] }
[1,2): Here, the boundary is assumed to be ideally conducting wall, for simplicity.

[A-1) When the resistivity 7 of plasma is negligibly small or zero, then dW,,/d}
— 0 and dK/dt = 0, as is seen from egs.(9) and (10), and therefore both the total
mangetic energy W, and the total helicity K are the global invariants for motions of
plasmas in the system of the ideal MED plasma.

[A-2] When we introduce very small but finite resistivity into the plasma, then
magnetic energy dissipation and reconnection of magnetic field lines would take place,
and therefore W,,, is no longer the global invariant. It is, however, considered that the
total helicity K would be conserved during the field reconnection. ( This is known as
»Taylor’s conjecture” on the total helicity for plasmas with small but finite resistivity.)

[A-3] The MHD plasmas with the small but finite resistivity would relax to the
state with the minimum value of W,, under this global mvariant of K, which is

expressed by the following form;
the minimum W,, state with K = Kp, (11)

where K is the value of K measured at the time just "before the relaxation phase”.
The set of three thoughts, { [A-1], [A-2], [A-3] } is understood usually as a theory by
"the energy principle” or “the variational principle”. Since K is assumed to be the

global invariant during the relaxation phase, the value of K measured "at the time



of the relaxed state”, Kp, just "after the relaxation phase” is assumed to be K,
1e. Kp = Kp. Here, the word "relaxation phase” means that in this phase some
norlinear processes take place to change the internal spatial siructure so drastically
that the value of W,, decreases very rapidly. This relaxation phase is assumed to lead
the system finaly to the relaxed state with a peculiar internal structure that yields
the minimum value of W,,. The value of W,, takes the minimum value under the
condition of K = K at the time ¢ = £z when the relaxed state is realized.

Using the variational technique with respect to the spatial variable X, the math-

ematical expression for eq.(11) of the thought [A-3] is written in the following forms,

§F = o, (12)

FF > 0, (13)

where F is the functional defined by 7 = W, - AK ; 6F and 6*F are the first and
second variations of F; and X is the Lagrange multiplier. Tt should be emphasized
here that the variations of A(¢,x), B(t,x) and j(¢,x} are taken only with respect to
the spatial vairables x and the time is fixed at £ = £, like as 0A(x), 6B(x) and &j(x),
in the following calculations of the variational technique.

Substituting W, and K in eqs.(7) and (8) into eqs.(12) and {13), and using
eq(2), V-(axb)=b-Vxa—-a-V x b, and the Gauss theorem again, we obtain

the followings,

1

5F:——/5A-(VxB—-AB)dv:0, (14)
o

#F = L [5A-(V x 5B—6B)dy > 0, (15)
Ho

where the boundary condition of §A x ds = 0 for the ideally conducting wall is used

and no singular surface of 6B in the volume of the system is assumed [17,18]. We

10




then obtain the so-called Taylor state from eq.(14) as the Euler-Lagrange equation

for arbitrary vanations of A as follows,
VxB = AB. (16)

Using the associated eigenvalue problem for the critical perturbation 6B that makes
6*Fr in eq.(15) become zero, we can obtain the mode tramsition condition of the
relaxed state, for example from the cylindrical mode to the mixed helical one in the

cylindrical plasma [1,2,18,20,37].

On the other hand, the three-dimensional MHD simulations shows clearly that,
while there exists some magnetic energy relaxation process which keeps the total
helicity nearly constant, fairly high dissipation of the total helicity, up to about
20 percent in one example of Fig.3 in ref[24], accompanies the magnetic energy
relaxation process which still leads to the force-free field of V x B = AB. We notice
clearly from the results of the three-dimensional simulation shown in Fig.3 in ref.[24]
that there exists actually the magnetic energy relaxation process where the total
helicity is no longer the time invariant and the system still relaxes to the force-free
field of V x B = AB. In other words, the results of the three-dimensional MHD
simulation mentioned above make it clear that the conjecture of the total helicity
invariant is not the essential physical condition necessary for the realization of the
relaxed state V x B = AB in the energy relaxation processes. Taking account of
this important fact, we have to reconstruct the thoughts, { [A-1], [A-2], [A-3] }, of
the relaxation theory by Taylor. When we investigate eqs.(9) and (10) more closely,
we notice that the two equations of (9) and (10) indicate only that the dissipation
rate of W, is always greater than that of K which depends strongly on relative
direction between B and j. This fact means that the system of interest will tend to

relax until the time when the magnetic energy W, becomes the minimum for the

11



instantaneously containing value of the total helicity K at each time, even if the total
helicily dissipates finitely during the relaxation process. In other words, the system
will relax to the state with the minimum value of { W, normalized by instantanecus K
}, as is demonstrated by the curve of the energy-to-helicity ratio in Fig.3 of ref.[24].
We therefore come to the following thought [B] to find the relaxed state with the
minimum value of W, which is available for both cases with and without the total
helicity conservation during the magnetic energy relaxation processes:

[B] The relaxation phase continues itself until and terminates itself at the time
when the field distributions of A(t,x), B(¢,x) and j(¢, x} have reached the peculiar
spatial structures such that yield the minimum value of W, for the instantaneous
amount of the containing total helicity K at that instant. The relaxed state of the
MHD plasma after the nonlinear relaxation phase is the state whose internal struc-
tures contain the helicity K = Kz and the minimum value of W, that is expressed

by the following form;
the minimum W, siate with K = Ky, (17)

where Kp is the value of K measured 7at the time of the relaxed state” just after
the relaxation phase. Here, K = Kp” is the necessary condition which must be
satisfied by the internal structure of the relaxed state because of the measured value,
and becomes "the global constraint” for "finding out the objective internal structure
of the relaxed state from the set of various distributions”. The mathematical expres-
sions of eq.(17} in the thought [B] by the variational technique are eqs.(12) and (13)
themselves, and they lead us to the same processes from eq.(14) to eq.(16) and also to
the same condition for the mode transition point of the relaxed state. It is clear that
K need not be the invariant for time in eq.(17) in the thought [B]. This is because,

as mentioned above, that the two eqs.(9) and (10} do indicate only that the resistive
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dissipation tate of W,, is greater than that of K and both of them are equivaleni af
the relaxed state of V x B = )B . We should notice here that the theory by the
thought [B] is no longer ”the energy principle” or "the variational principle” based on
7the invariant” for time, and it still leads to the same relaxed state f VxB = AB.
Essential difference of the relaxation theory by the thought [B] from Taylor’s theory
by the thoughs { [A-1], [A-2], [A-3] } s that the relaxation process in the thought
[B] is recognized clearly to have no concern with the total helicity conservation which
Taylor’s theory bases on. Fven if the relaxation phase of interest contains a finite
dissipation of K itself, like as Kp < Kp, as is indeed the case in most of all exper-
iments and also in the three-dimensional MHD simulations like as shown in Fig.3 of
Ref.[24] and therefore K is no longer the invariant even in the approximate meaning,
the internal structure derived by the thought [B] yields the correct relaxed profile of
V x B = )\B for the relaxed state which has the value of Kp.

Using the so-called reciprocity of the variational calculus, we obtain the following
thought which is equivalent to eq.(17) of the thought [B],

[C] The relaxed state of the MED plasma after the nonlinear relaxation phase is
the state whose internal structures contain the magnetic energy W,, = Wp and the

maximum value of K, that is expressed by the following form;
the mazimum K state with W,, = Wpg | (18)

where Wj, is the value of W,, measured at the time of the relaxed state just after the
relaxation phase, and W, is, of course, not an invariant for time. The mathematical
expression for eq.(18) by the variational technique is written in the following forms,

which are equivalent to egs.(12) and {13),

§F = 0, (19)

i3



8F < 0, (20)

where F is now the functional defined by F = K - (1/\)W,,; 6F and 6°F are the
first and second variations of F; and 1/) is the positive Lagrange multiplier. The
mathematical expressions of eq.(18} in the thought [C] lead us to the same processes
from eq.(14) to eq.{16) and also to the same condition for the mode transition point
of the relaxed state.

Since we have used reversible mathematical processes from eq.(11) to eq.{16),
we can follow back from eq.(16) to eq.(11) in the theory by the thought [B]. Using
this property of the logical and the mathematical structures used for obtaining the
relaxed state of eq.(16), and reconstructing eqs.{14) and (15) themselves, we may find
a group of thoughts for relaxation theories which lead to the same relaxed state of
eq-(16) and the same mode transition condition of the relaxed state in the following
way: Changing the variation of §A in egs.(14) and (15) to a variation of a more general
quantity q, as 6q, we may have the following expressions for the group of relaxation
theories that lead to eq.(16) as the Euler-Lagrange equation from the volume integral
term for arbitrary variations of éq and also lead to the mode transition condition of

the relaxed state,

5F[sq] = ;1-/5q-(vXB_AB)dv -0, (21)

§7F[5q] = -:— [6a:(Vx6B— 2B > 0. (22)

At first, we adopt 6B for 6q in eqs.(21) and (22), and then we obtain the follow-

ings,

§F[sB] = #l/aB-(v x B - AB)dv = 0. (23)

SFsB] = L [ 6B-(V x 6B~ A6B)dv > 0. (24)
o

14




Using eq.(3), V- (ax b)=b-V xa—a-V x b, and the Gauss theorem, we obtain

the followings from eq.(23),

sFism) = |1 %(53'-3 +j-6B) - féB-B}dv

i
+E}£(BX6B)~ds=O. (25)

We see from comparison between the volume integral term of eq.(25) and egs.(10)
and (7) that F in eq.(25) is the fuctional defined by F = - p(dK/dt)/2n - AW,
for the case of the ideal conducting wall. Since the first term of dK/dt in eq.(10) is
the dissipation rate of the total helicity K by the resistivity # and has the negative
value, we therefore come to the following another thought [D] for the relaxed state
that leads to eq.(16):

[D] The relaxed state of the MHD plasma after the nonlinear relaxation phase is
the state whose internal structure yields the minimum dissipation rate of X with W,

= Whp, which is expressed by
dK
the mazimum Ty state with W,, = Wg, {26)

where the functional F is defined by F = - dK/dt - aW,,, and X in eq.(18) is given as
A = 2n0/y, with use of another Lagrange multiplier o to lead to eq.(23). Here, Wy,
is, of course, not the invariant for time. The mathematical expressions of eq.(26) in
the thought [D] lead us to eqs.(23} and (24), and therefore we obtain eq.(16) and also
the same condition for the mode transition point of the relaxed state. The reciprocity
of the variational calculus gives us the following thought [E] equivalent to the thought
[D] given by eq.(26):

[E] The relaxed state of the MHD plasma after the nonlinear relaxation phase is
the state whose internal structures contain the minimum value of W,, with dK/d¢ =

d, K g, which is expressed by

15



the minimum W,, state with %—?— = d;Kp, {27)

where d; Ky, is the value of dK/d¢ measured at the time of the telaxed state just
after the relaxation phase, and dK/dt is, of course, not the invariant for time. The
mathematical expressions of eq.(27) in the thought [E] lead us to egs.(23) and (24),
and therefore we obtain eq.(16) and also the same condition for the mode transition

point of the relaxed state.

Next, we adopt 24,58} for 8q in egs.(21) and (22), and we obtain the followings

in this case,

SF[55]) = 2 / §§-(V x B~ B)dv = 0. (28)

SF[] = 29 / §§-(V x 6B—A6B)du > 0. (29)

Using the same procedure used from eq.(23) to eq.(26), and refering to eqs.(9) and
(10), we come to the following another thought {F] that leads to eq.(16):

[F] The relaxed state of the MHD plasma after the nonlinear relaxation phase
is the state whose internal structures yield the minimum value of | dW,,/dt | with

dK/dt = d;K g, which is expressed by

dw,,

dK
pn | state with — = d,Kp. (30)

the minimum | "
Here, the functional is defined by F = | dW,,/dt | + odK/dt, and X in eq.(16) is
given as A = a/u, with use of another Lagrange multiplier « to lead to ¢q.(28). The
mathematical expressions of eq.(30) in the thought {F] lead us to eqs.(28) and (29),
and therefore we obtain eq.(16) and also the same condition for the mode transition

point of the relaxed state. It is interesting to note here that the theory by the thought

[F] is equivalent to the theory by Montgomery and Phillips [28], where they deal with

16




the state with the minimum dissipation 1ates under the constraint of the constant
time-averaged rate of supply of helicity. The reciprocity of the variational calculus
gives us the following thought [G] equivalent to the thought {F] given by eq.(30):

[G] The relaxed state of the MEHD plasma is the state whose internal structures
yield the maximum value of | dK/dt | with | dW,,/dt | = d:Wng, which is expressed
by

dW,

dt | = IdthR | 3 (31)

: dK .
the mazimum ¥ state with |

where | d;W.r | is the value of | dW,,/dt | measured at the time of the relaxed state
just after the relaxation phase, and | dW,,/dt | is, of course, not the invariant for
time. The mathematical expressions of eq.{31) in the thought [G] lead us to egs.(28)
and (29), and therefore we obtain eq.(16) and also the same condition for the mode
transition point of the relaxed state.

We have obtained a group of thoughts, { from [B] to [G] }, that lead to the
same relaxed state of eq.(16) and the mode transition condition of the relaxed state,
starting from Taylor’s theory. The group of thoughts, { from [B] to [G] }, has no
concern with the conjecture of the total helicity conservation in their physical picture
for the relaxation process. The three thoughts of [B], [E] and [F] may be acceptable as
the theories that can be derived from the relation between eq.(9) and eq.{10) in order
to find the internal spatial structure of the self-organized relaxed state. The thought
of [F] is equivalent to the thought used in the theory by Montgomery and Phillips
[28] dealing with the state with the minimum dissipation rate under the constraint
of the constant time-averaged rate of supply of helicity. The common physical laws
used for the derivation of eq.(16) from the group of thoughts { from [A-3] to [G] } are
eqs.{2) and (3),i. e. {B=V x A, pj=V xB}. Itisinteresting to note here that
the two physical laws of egs.(4) and (5),1. e. { VxE=—-0B/dt, nj=E+uxB},

17



are not used directly for the derivation of eq.(16) from the group of thoughts { from
[A-3] to [C] }.

2.2 Second Group of Self — Organization Theory

We now proceed to the theory by Kondoh [33,36,37] that has quite different logical
structure from Taylor’s theory, and still leads to the same relaxed state of eq.(16) as
the low £ plasma limit, without using the concepts helicity” and *invariant”.

In the thought analysis on "relaxation due to nonlinear processes with dissipa-
tion” {37], we consider a general nonlinear dynamical system with dissipation that
consists of quantities q(t,x), and investigate the internal spatial structure of the self-
organized quasi-steady relaxed state by using a kind of thought experiments. Here, ¢
is time, x denotes m-dimensional space variables, and ¢ represents a set of physical
quantities having n elements, some of which ate vectors such as B and ], and others
are scalars such as the mass density, the energy density, the specific entropy and so
on. Time evolutions of q are given by definite equations such as the equations of
mass, momentum, and energy, and the Maxwell equations or the laws ruling qft, x)
of the nonlinear dynamical system in general sense. Integrating one element, w, such
as the energy density in q over the space volurme, we can define a global quantity of
W (t), such as the energy of the system, as W(t) = [w(q) dx. We can recognize
from this definition of W(t) that the values of both W(¢) and its time derivative
dW/dt depend essentially on the internal structure [Le. the internal distributions of
q(t,x) | of the dynamical systemn. The value of dW/dt represents the loss rate or the
dissipation rate with respect to W of the system. We can also understand that the
relation between dW/dt and W(t) is determined essentially by the laws ruling q(¢, x)

of the nonlinear dynamical system with dissipation.
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The fact that the nonlinear dynamical system of interest is dissipative with re-
spect to W means that the system is an open system with respect o W. If the
internal spatial distribution of the system is unsiable against keeping or sustaining
the instantaneous amount of containing quantity of W, drastic change of the internal
spatial distribution will be induced and develop nonlinearly to release and dissipate
W rapidly, through driving elements of the system. This rapid decay phase of W with
the nonlinear drastic change of internal spatial structure is recognized and called as
”the relaxation phase”. The relaxation phase will continue itself until and terminate
itself at the time when the internal spatial distribution has come to have a pecu-
liar internal spatial structure such that yields the minimum dissipation rate of W
and therefore is hardest to change its own spatial distribution for the instantaneous
amount of the containing W at that instant. The state with this peculiar internal
spatial structure yielding the minimum dissipation rate of W for the instantanious
amount of W at the instant is recognized and called as "the seif-organized relaxed
state”. These thoughts are summarized to the following set of general thoughts, { {I]
and [II] }, to find internal structures of the self-organized quasi-steady relaxed state
with respect to W in the system, where the thought [I} is on the relaxation phase and
the thought [I1} is on the internal structure of the relaxed state [33,37]:

(1] In the relaxation phases, some nonlinear processes with dissipation take place
to change the internal spatial structure of q(t,x) so drastically that the value of
W (t) decreases ( or increases ) very rapidly. The relaxation phase continues itself
until and terminates itself at the time when the internal spatial structure has reached
the peculiar spatial structure such that yields the mimimum dissipation rate of W
and therefore is hardest to change its own internal spatial distribution for its own
instantaneous amount of the containing quantity W at that instant.

[11] The self-organized quasi-steady relaxed state just after each relaxation phase
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is the state with the minimum dissipation rate of W, whose peculiar internal spatial

structure of g{tp, x) has
the minimum wvalue of |[dW/dt| with W = Wy, (32)

where ¢y denotes the time when the self-organized relaxed state has realized after
the relaxation phase of interest, and Wy is the value of W measured at the time
of £z. Here, "W = Wy” is the necessary condition that must be satisfied by the
internal strauctures of the relaxed state because of the measured value and becomes
"the global constraint” for ”finding out the objective internal spatial structure of the
relaxed state from the set of various distributions”, and W is, of course, not the
invariant for time.

Using the variational technique with respect to the spatial variables x for q{¢x, x),
Le. using the variations of §q(x), in order to find out the objective internal spatial
structure and the minimum value of [dW/dt| at the time of the quasi-steady relaxed

state, which is given by the two thoughts { [I], [IT] } with eq.{32), we obtain the

following mathematical expressions [33,37]:

§F = 0, (33)

FF > ¢, (34)

where F is the functional defined by F = [dW/d¢| - «W; 6F and 6°F are the first
and second variations of F; and « is the Lagrange multiplier. When the boundary
values of z; component of some elements g, in q are given such as by the property
of the given boundary materials and/or measurements at the relaxed state, then the

boundary conditions of the variations éq(x) are written as
bgx = 0 at the boundary. (35)
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We should notice here that the present theory shown above is neither ”the energy

principle” nor "the variational principle” based on some ”invariant for time”.

Since the self-organized relaxed state has the peculiar internal spatial structure
such that is hardest to change its own spatial distribution, the relaxed state should ’
be followed by the self-similar decay phase without significant change of the spatial
structure. We should bear in mind, however, that the dissipation and being open of
the system with respect to W will still lead to some gradual deviation from the self-
similar decay. When we observe the time evolution of the system of interest during
long time interval, we come to find that the system behaves as if it is repeatedly
attracted to and trapped in the self-organized relaxed state where the system stays
longest time during one cycle of the time evolution. In this meaning, the internal
spatial distribution q(¢z,x) of the self-organized relaxed state is "the attractor of the
dissipative structure” introduced by Prigogine [39,40]. The set of general thoughts
{ [0, [11] } with eqs.(32) - (35) is useful to find this attractor of the dissipative
structure. In order to find the attractor q{tg,x), we can use, for examples of the
quantity W, the global autocorrelation W,, or the global crosscorzelation W, among
the elements g, in the set of quantities q{z,x), where W,, (¢ = j, k) is defined as
Wit) = [q(t,x)g(t,x) dx . It is because that the dissipation rate dW/;/dt of
the global correlations W,; has the minimum value at the self-organized relaxed state
whose internal structure g{tg,x) is hardest to change its own spatial distribution
against the dissipation process.

When we use instantaneous value of W at each time ¢ in the relaxation phase
instead of Wg in eq.(32), we can obtain a "calculated spatial distribution” such that
yields the minimun dissipation rate of W for the instantaneously containing W, by

using the same variational technique with respect to the spatial variables x from
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eq.(33) to eq.{35). We denote here the "calculated spatial distribution” with the
minimum dissipation 'Iate as q*(W,x), which is the function of W. We further define
a kind of distance, D, of the temporal distribution q{t, x) of the system from q* (W, x)
as D?(t) = [ ¢5(W,x) - ¢(t,x) ] dx . Since the value of W at the time of {5 is
Wr and q(tg,x) = q*(Wp, x), therefore the distance D at { = £z becomes zero, like
as D(tr) = [[¢}(Wg,x) - q,{tr,x) ] dx = 0. Since the Euler-Lagrange equation
obtained for q*(W,x) is the same as that for q(iz,x) by using the same variational
calculus of eqs.(33)-(35), we may say as follows: q*(W, X) is the "attractor” of the
present system. The system of q(t,x) relaxes toward the attractor q*(W, x) during
the relaxation phase, and the self-organized relaxed state is the state whose internal
structure has become to coincide with the attractor q*(Wy,x) which is hardest to
change its own spatial structure during the nonlinear dissipation process.

It is interesting to note the following possibility which can be deduced from the
thought analysis shown above. If the system of interest has plural different laws ruling
the elements q(%, x) to be dissipated, and if there exist plural different functional forms
due to different dissipations in the relations between the dissipation rate dW,;/dt
and the global correlations W;, then the system may possibly have plural different
attractors q*(W;, x) for different global correlations W,;. This kind of system may
be attracted to those plural different attractors q*(W,;,x) at different time during
the time evolutions of the system.

Al of thoughts shown above, including the set of general thoughts { (1, [I1] } with
eqs.(32)-(35) to find internal structures of the self-organized relaxed states, would be
applicable to all dynamical systems including physical systems, chemical systems,
biological systems, and/or economical systems in general. The realization of the
internal spatial structure of the self-organized relaxed state comes essentially from the

fact that the dissipative nonlinear dynamical system of interest is the open system
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with respect to the global quantity W subject to the dissipation. The realization
of the self-organization is a global property that is embedded in the laws ruling the
elements (£, x) in the dissipative, open, and nonlinear dynamical system of interest.

This thought is connected to the well known thought of ”the structure due to the

dissipation” by Prigogine [39,40].

We now apply the set of general thoughts { [I}, I} } with eqgs.(32) - {35) to the
resistive MHD plasma which is described by the foliowing simplified equations with
Ohm’s law of nj = E + u x B,

du .
pqp = ixB - Vp, (36)
= Ux(uxB)- V() (37)

where the viscosity is assumed to be negligibly small. For simplicity, it is assumed
here, as is indeed the case in most experiments, the plasma internal energy and the
mass flow energy are negligible compared to the magnetic energy W,,. We pick up the
magnetic energy W,, of the system and look for the self-organized quasi-steady relaxed
state with respect to W,,. Substituting W,, and |dW,,/d{| with u = § respectively
to W and |dW/d¢] in the set of general thoughts { [I], [IT] }, we obtain the following
thought [II-A] to find the self-organized relaxed state:

[1I-A] The relaxed state of the resistive MHD plasma after the nonlinear relaxation
phase is the state whose internal structures yield the minimum value of | dW,, /d¢ | (

i.e. the minimum dissipation raie of W,, ) with W,,, = W, p, which is expressed by

dWe

dé

the minimum | | state with W, = W,p, (38)

where W5 1s the value of W,,, measured at the time of the relaxed state just after

the relaxation phase, and W, is, of course, not the invariant for time.
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In the quasi-steady relaxed state, we may assume u 22 0, and obtain the following

equilibrium equation from eq.(36),
vp = jR x BR ’ (39)

where the subscript R denotes the quantities at the quasi-steady relaxed state. We
assume here, for simplicity, that the resistivity 5 at the quasi-steady relaxed state has
a fixed spatial dependence like as 7(x), as is indeed the case in all experiments where
11 goes up to infinity near the boundary wall. Substituting W,,, of eq.(7) and |dW,, /d¢|
of eq.(9) with w = 0 respectively into W and |dW/d¢| in the set of general thoughts
{ [ [] } with eqs.(32)-(35) to find the internal structures of the self-organized

quasi-steady relaxed state, we obtain the followings [33,37],

5F = /(zn 53 - ﬂgéB-B)dv =0, (40)

§F = / (20 6)-8) — —6B-§B)dv > 0, (41)
Ho

where the values of the Poynting vector E x H on the boundary surface in dW,, /d¢
are assumed to be given so that the surface integral terms vanish in both §#' and
§?F by the boundary conditions of eq.(35), for simplicity. Using ;8] = V x 6B,
the vector formula of V-(axb)=b-V xa—a-V x b, and the Gauss theorem,

we obtain the followings from eqs.(40) and (41),

§F = 3/53.{VX(qj) - ZB}v —%f(qixé‘ﬁ)-ds: 0, (1)

a

25 3 ) N @ _1 . .
F£F = Ho/:SB {Vx (1)) — 56B}du “o}((najxéB) ds > 0. (43)

We then obtain the Euler-Lagrange equation from the volume integral term in eq.(42)

for arbitrary variations of éB as follows,
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V x () = =B. (44)

When we use fij = V x B instead of p,6j = V x 6B, we obtain the followings
from eqs.(40) and (41), corresponding to eqs.(42) and (43),

GF = /55-(211; — aA)dv —ff(AxéB)-ds: 0, (45)

FF = f §i- (28] — asA)dv — #i f(an §B)-ds > 0. (46)

We then obtain the Euler-Lagrange equation from the volume integral term in eq.(45)

for arbitrary variations of §j as follows [33,37],
n = —A. (47)

Taking the rotation of eq.(47), we obtain eq.(44) again. Since A is finite near the
boundary wall, the present result of eq.(47) leads directly to the experimental fact
that the current density j goes to zero near the wall where 1 goes to infinity, as is
indeed the case in all experiments.

We now have found that the self-organized quasi-steady relaxed state has the
peculiar internal structure which satisfies eq.(44). Taking account of the assumption
1 22 0 for the sel-organized quasi-steady relaxed state, and substituting eq.(44) into

eq.(37), we obtain the following,
— =~ __B. (48)
Equation (48) gives us the following solution
B(x,t) & Bp(x)e (49)

where B(x) is the solution of eq.(44) for the self-organized quasi-steady relaxed

state. We see from eq.(49) that the field profile of B just after the realization of the
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self-organized relaxed state has the self-similar decay phase without significant change
of the spatial structure. The first term of right-hand side of eq.(37) and boundary
conditions such as the ideally conducting wall would, however, lead gradually to finite
deviation from the self-similar decay shown by eq.(49). We may recognize from eq.(44)
for the self-organized quasi-steady relaxed state and eq.{49) for the time evolution
of the relaxed B field that the present nonlinear dynamical system with dissipation
relaxes to the state that has attained such a peculiar internal spatial structure that
yields the minimum dissipation rate of W,, and thereafter leads to the self-similar
decay phase without significant change of the spatial structure.

Chandrasekhar and Woltjer derived already the same equation with eq.(44) more
than thirty years ago as the equation of the state of minimum dissipation for a given
magnetic energy, in order to explain and lead to the constancy of ) of the force-
free fields V x B = AB in the cosmic magnetic fields [41]. The current density j of
experimental relaxed state plasmas, however, goes to zero near the wall where the
resistivity 7 of the plasma goes to infinity, as is indeed the case in all experiments.
Therefore, the value of ) for the experimental relaxed state plasma must be zero near
the wall when B # 0 at the wall, even if the relaxed state becomes to be expressed
approximately by V x B = AB. The present theory by the set of general thoughts
{ [1], {11] } with eqs.(32) - (35) has been motivated rather by this experimental fact of j
= 0 near the wall and includes the key concept of the self-similar decay phase without
significant change of the spatial structure that must be satisfied by the self-organized
relaxed state [33,36,37]. { The set of general thoughts { [I}, [TI] } with eqs.(32) - (35)
can be applicable to other nonlinear dynamical systems with dissipation like as the
incompressible vicous fluids [36,37] }. The state described by eq.(44) and/or eq.(47)
does represent more general self-organized relaxed state that is proved directly to be

followed by the self-similar decay phase, as was shown at eq.(49), and also satisfies
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the experimental fact of j = 0 near the wall, as was mentioned after eq.(47). The
relaxed state of the force-free fields V x B = AB with a constant A is rather one
example of the general self organized relaxed states of eq.(44) that takes place in a
peculiar situation where spatially uniform resistivity profile and low 5 plasma limit
have become to be assumed as a result, as will be shown in the following analytical
examples [37].

In order to show some analytical examples, we now assume the resistivity 1 to be

spatially constant, for simplicity. We then obtain the following from eq.{44) {33,37],

VxVxB = 3B, (50)

ap,
Al= 51

where the Lagrange multiplier & is assumed to be positive. Equation (50) is the same
with the equation used for the classical spheromak [42,43]. According to ref.[42], three

independent solutions of eq.(50) with V - B = 0 are given by

1
L, = grady,,, T, =V x(et,), and §, = ;V X Tr s (52)

where e is a fixed unit vector, and 1, is a scalar function such that
Vi + A, = 0. (53)

Here, the solution of L,, may be excluded from the solutions for eq.(50), because
V x grad 1, = 0. The general solution of eq.(50), B(x), for the self-organized

quasi-steady relaxed state is then written as
BR(X) = leTm + cm?,sm- (54)

Using eq.{54) and u,j = V x B, we obtain the current density of the relaxed state,

ja(x), as follows,
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. A
Ja(%) = —(cSm + cmaTam), (55}

where eq.(52) and V x V x T, = A?T,,, are used. There are three unknown factors of
{A, €m1; Cma} in eqs.(52)-(55). In order to determine the values of the three unknown
factors {, com1, Cma}, it is enough to use three measured values of the magnetic en-
ergy Wp,, the toroidal magnetic flux @ and the toroidal plasma current I inside the
boundary at the time of the relaxed state, which are denoted here respectively by
Wer, ©r, and Tz It is because that we obtain ®f and Iy by integrating eqs.{54)
and (55) respectively across the poloidal cross-section of the toroidal plasma.

Using eqs.(39),(54) and (55), we obtain the followings,

A
Vp = jexBp = —(cns® — cmlz)Tm X S, (56)
Mo

A A
—&p — Ip = —(cmz—cml)/ (S — Tp)-ds, (87)
Mo Fo Sp

where fs denotes the integral across the poloidal cross-section of the toroidal plasma.
It is seen from eqs.(56) and (57) that the difference between c,,; and ¢, yields the
non-force-free component which is balanced with the pressure gradient.

In the limit of the low 3 plasma, we come to have the profiles with ¢y = ¢,y
from eq.(56) because of two independent vector solutions of T,, and S,,, and obtain

the followings from eq.(54),
Ba(x) = cnui(Tm + Si), (58)
which satisfies the following as was shown in ref.[42],
VxB = +)B. (59)

We see from eqs.(58) and (59) that the force-free fields of V x B = +1B, derived

by Taylor based on ”the minimum energy state under the time invariant of the total
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helicity” [1,2], can be derived generally as the low 8 plasma limit of the self-organized
relaxed state which has the minimum dissipation rate profile and therefore is hardest
to change its own profile for its own instantaneous amount of the containing magnetic
energy, in the nonlinear and dissipative MHD system, without using the "helicity”

and the ”"invariant” for time.

We show here some examples of the self-organized relaxed state of axisymmetric
plasmas in the cylindrical coordinates { r, 8, z ). We consider simple cases of the
straight axisymmetric plasmas such as the diffused Z pinch, the screw pinch, and the
reversed field pinch (RFP) in the cylindrical approximation. The z direction is now
the toroidal direction and we use the unit vector along the z direction, e,, for the
fixed unit vector e in eq.(52). In this case, eq.(53) becomes one dimensional problem,
and the solution of 1, is known to be the 0th order Bessel function written as v,
= J,(Ar), by solving eq.(53). Then the vector solutions of T,, and S, in eq.(52) are

obtained respectively as

T = Mi(3)es, (60)

S, = A,(Ar)e; , (61)

where Jy(Ar) is the Ist order Bessel function, and eg is the unit vector of the &
direction. For the first example, we consider the self-organized relaxed state of the
diffused Z pinch. Since the measured velue @5 of the toroidal flux for this Z pinch

is zero, we obtain the followings from eqs.(54), (60} and {61},
®p = / Bp-ds = 27cms) / " JOnrdr = 0, (62)
Sp 0

where 7, is the wall ( boundary ) radius. We therefore obtain ¢,z = 0 from eq.(62}
and find from egs.(54}, (55), (60) and (61) that the configurations of the relaxed state

of the diffuse Z pinch are given by
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BR = leAjl(.)\T)eg s (63)

_t
ip = 1 (e, . (64)
o

The two factors of ¢,,; and X are determined by using the other two measured values of
W and Ig. Substituting eqs.(63) and (64) into the equilibrium equation of eq.{56),
we obtain the pressure gradient that leads to the pressure profile at the relaxed state

as follows,

Cm12A3
Vp = — L(Ar)Ji(Arde, (65)

<

where e, is the unit vector of the r direction. We can expect from eq.(49) and
eqs.(63)-(65) that the obtained profiles of Bg, j; and p at the relaxed state for the
straight diffused Z pinch are followed by the self-similar decay phase. We should bear
in mind, however, that the change of the spatial distribution of resistivity 7 caused
such as by ohmic heating and also the first term of right-hand side of eq.{37) would
result in some gradual deviation from the self-similar decay.

For the second example, we consider the self-organized relaxed state of the straight
screw ptnch. We now express ¢z as Cpyz = ¢y — £Hc. We then obtain the followings

from eqs.(54)-(57) and egs.(60) and (61),

Br = cmiA[ Ji(Ar)ee + J(Ar)e.] — AcrJ,(Ar)e, , (66)

. 1A Ack?

in = T n(res + J(Ar)e, ] — : Ji(Ar)es (67)
A 2alck® frw
2oy — In = — T ()rdr | 68
,uo R R P /0 (Ar)rdr (68)

_ 3
vp = — DdZem — AA T(Ar)(Ar)e, . {69)

[e]
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The three factors of Ac, ¢y, and A are determined by using the three measured
values of W, 5, ®g, and I. The screw pinch is usually operaied at the high {oroidal
field without the field reversal. We see from eqs.(68) and (69) that the value of Ac
depends on the B value of the confined plasma. We find from eqs.(66) and (67} that
the configurations of By and ji at the relaxed state of the screw pinch containes
the force-free field component of the Bessel function model, ie. the first terms of
right-hand sides of eqs.(66) and (67), which would be fairly high compared with the
non-force-free field component that depends on the £ value of the confined plasma.
We can also expect from eq.(49) and eqs.(66)-(69) that the obtained profiles of Bp,
Jp and p at the relaxed state for the screw pinch are followed by the self-similar
decay phase with some gradual deviation, just as the same as the diffused Z pinch
shown above. In the experimental screw pinch plasma, the spatial distribution of
the resistivity 1 would fairly modify the profiles of Bpg, jp and p, especially in the
boundary region.

For the third example, we consider the RFP plasma which has the toroidal field
reversal. The profiles of By, j; and p at the relaxed state for the RFP are also
shown by eqs.(66)-(69), just the same as for the screw pinch. In the limit of the low
B plasma, Ac becomes zero from eq.(69), and we obtain the followings for the 8 =0
RFP plasma from eqs.(66)-(69),

Br = cmA[i(Ar)es + J(Arde. ], (70)
le}\Z
.]R = " [Jl()\T)EQ + JO(AT)GZ], (71)
i% = Ip. (72)
o

We easily recognize that eqgs.(70)-(72) are the well known Bessel function model for

the RFP plasma derived and discussed by Taylor based on the time invariant of the
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total helicity [1,2].

When we consider the finite # RFP plasma with Ac > 0, the pressure profile
would be given basically by eq.(69). However, we notice from eq.(69) that the direc-
tion of Vp reverses across the field reversal point of J,(Ar) = 0. This result suggests
that the RFP plasma outside the field reversal point at the relaxed state, based on
the assumption of 1 = const., is unstable or tends to have uniform pressure profile in
the field reversal region through the interaction between the plasma and the bound-
ary wall. In the experimental RFP plasma, the resultant spatial distribution of the
resistivity 7, affected by the plasma-wall interaction, would fairly modify the profiles

of Bg, jp and p consequently, especially in the boundary region [14,19].

Using eq.(43), we next discuss the mode transition point of the relaxed state, for
example from the cylindrical mode to the mixed helical one in the cylindrical plasma
[1,2,18,37]. We consider here the following associated eigenvalue problem for critical

perturbations 6B that make §F in eq.(43) vanish:

“"20“' 5B, = 0, (73)

V x (nV x §B;) —

with the boundary conditions of 6B -ds = 0, and (78] x §B) -ds = 0 at the boundary,
where o, and 6B, denote the eigenvalue and the eigensolution, respectively. Substi-
tuting the eigensolution §B; into eq.{43) and using eq.{73), we obtain the following:

§BF = i(oe,— — a)]éB;-éBi dv > 0. (74)
Ho

Since eq.(74) is required for all eigenvalues, we obtain the following condition for the

self-organized relaxed state with the minimum |[dW,, /dt|,

0 < a< ap, (75)
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where a; is the smallest of the positive eigenvalues, and a is assumed to be positive,
as was assumed at eq.(51). When the value of & corresponding to W,z goes out of the
condition of eq.(75), like as & < @, then the mixed mode, which has the value of W, 5
and consists of the basic mode by the solution of eq.(44) with & = o4 and the lowest
eigenmode by eq.(73), becomes the self-organized relaxed state with the minimum
value of [dW,,./dt|. By using definitions of n{x) = n,¢(x) and | A | = m ,
the condition of eq.(75) can be rewritten to other form similar to the mode transition
condition shown in refs.[18] and [20], where 7, is the value of 77 at the magnetic axis.
The mode transition condition of eq.(75) is the generalization of the mode transition
condition by Taylor [1,2,18,37].

It is easy to show from egs.(50)-(59) that in the case of the low § plasma limit
with = const., the eigenvalue problem of eq.(73) includes the following eigenvalue

problem as a force-free branch,
V x 5B, = :f:)\,' 5B, (76)

with the boundary condition of 6B - ds = 0 at the boundary, where A; is the eigen-
value, and this eigensolution §B; makes the surface integral term of eq.(43) vanish
automadically. Substituting the eigensolution 6B; into eq.(43) and using eq.(76), we

obtain the following:

§F = %g(/\? - 2 / 6B;-6B;dv > 0, (77)
M

o

where eq.(51) is used. Since eq.(77) is required for all eigenvalues, we obtain the

following condition for the relaxed state with the minimum |dW,,/dt],
Ay < X< A, (78)

where A_; and A; are the largest of the negative and the smallest of the positive eigen-
values, respectively. This mode transition condition is the same as that in Taylor’s

theory [1,2,18].
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We now have shown that the relaxed state of eq.(16) is derived generally as the
low 3 plasma limit of the self-organized relaxed state from the thought [II-A] with
eq.(38). Using the reciprocity of the variational calculus, we obtain the following
thought [II-B] which is equivalent to the thought [I[-A] with eq.(38),

[II-B] The relaxed state of the resistive MHD plasma after the nonlinear relaxation
phase is the state whose internal structures contain the maximum value of W,, and

the dissipation rate of dW,,,/dt = d,W,, r, which is expressed by

dw,
the mazimum W, state with | _dtﬁ | ={dWnzr], (79)

where d;W,,, 5 is the value of dW,, /di measured at the time of the relaxed state after
the relaxation phase, and dW,,/d¢ is, of course, not the invariant for time. The
mathematical expression for eq.{79) by the variational techmique is written in the

following forms, which are equivalent to egs.(33) and (34),

6F = @, (80)

§F < 0, (81)

where F is now the functional defined by F = W,, - (1/a)| d;Wup |; 6F and 6°F
are the first and second variations of F; and 1/a is the positive Lagrange multiplier.
The mathematical expressions of eq.(79) in the thought [II-B] lead us to the same
processes from eq.(40) to eq.(72) and also to the same condition of eq.(75) or eq.(78)
for the mode transition point of the relaxed state.

Since we have used reversible mathematical processes from eq.(40) to eq.(46}, we
investigate another group of thoughts connected to eqs.(45) and (46) in the thought
[[1-A] in the same way as was used at egs.(21)-(31). We assume here, for simplicity,
that the resistivity 5 is spatially uniform. Changing the variation of §A in egs.(45) and

(46) to a variation of the more general quantity q, as §q, we may have the following
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expressions for the group of relaxation theories that lead to eq.{47) [ and eq.(59) in
the low f plasma limit | as the Euler-Lagrange equation from the volume integral

term for arbitrary variations of éq and also lead to the mode transition condition of

the relaxed state:

§Flsq] = ] 5q- (27) — aA)dv = 0. (82)

52 Fléq] = j 5q- (208j — obA)dy > 0. (83)

At first, we adopt 4B for éq in egs.(82) and (83), and then we obtain the follow-

ings,

5F[5B] = / §B - (2nj - aA)dv = 0, (84)

§*F[6B] = / 6B - (206§ — abA)dv > 0. (85)

Using eqs.(2) and (3), V- (axb)=b-Vxa—a-V xb, and the Gauss theorem,

we obtain the followings from eq.(84),

SF[§B] = [{n(éj-B +3-B) - S(6A-B + A-6B)}dv

—f(naaxBJr%AxéA)-ds:o. (86)

We see from comparison between the volume integral term of eq.(86) and eqs.(10)
and (8) that F in eq.(86) is the fuctional defined by F = - p{dK/d¢) - op, K. Since
the first term of d K /dt in eq.(10) is the dissipation rate of the total helicity K by the
resistivity 7 and has the negative value, we therefore come to the following another
thought [II-C] for the relaxed state that leads to eq.(47):

[TT-C] The relaxed state of the resistive MHD plasma after the nonlinear relaxation
phase is the state whose internal structure yields the minimum dissipation rate of K

with & = Kp, which is expressed by
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dK
the minimum | ’ry | state with K = Kp, (87)

where the functional F is now defined by F = - dK/dt - aK, Kg is the value of K
measured at the time of the relaxed state just after the relaxation phase, and X is,
of course, not the invariant for time. The mathematical expressions of eq.(87) in the
thought [II-C] lead us to the volume integral terms of eqs.(84) and (85), and therefore
we obtain eq.(47) and also the sarme condition of eq.(75) for the mode transition point
of the relaxed state. The reciprocity of the variational calculus gives us the following
thought [II-D] equivalent to the thought [[I-C] given by eq.{87):

[1I-D] The relaxed state of the resistive MHD plasma after the nonlinear relaxation

phase is the state whose internal structures centain the maximum value of K with

dK/dt = d;K g, which is expressed by
dK
the mazimum K state with e d:Kg, (88)

where d;Kp is the value of dK/di measured at the time of the relaxed state just
after the relaxation phase, and dK/df is, of course, not the invariant for time. The
mathematical expressions of eq.(88) in the thought [II-D] lead us to the volume in-
tegral terms of eqgs.(84) and (85), and therefore we obtain eq.(47) and also the same

condition of eq.(75) for the mode transition point of the relaxed state.

Next, we adopt 6A for 6q in eqs.(82) and (83), and we obtain the followings in

this case,

§F[5A] = ] SA - (2j— aA)dv = 0, (89)

5 F[5A] = / SA - (265 — abA)dv > 0. (90)
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Using egs.(2) and (3), V-(axb)=b-V xa—a-V x b, and the Gauss theorem,

we obtain the followings from eq.(89),

§F[SA] = /{n(éj-A +j-6A) - %(6A-A + A-6A)}Mv

1
—;—f(éBxA+6AxB)-ds=0. (91)

We consider here the autocorrelation with respect to the vector potential A in the

resistive MHD plasma, and define the following global autocorrelation Z of A,
7z = /A-Adu. (92)

Using Ohm’s law and E = —V¢ — dA /0t deduced from egs.(2) and (4), we obtain
the time derivative of Z as follows,

4z

—dt—:-Zf{nj»A+(AxB)-u}du-fqu-ds. (93)

We see from comparison between the volume integral term of eq.(91) and eqs.(92)
and (93) that F in eq.(91) is the fuctional defined by F = - (dZ/d?)/2 - aZ/2 for
the case of the quasi-steady relaxed state with u 22 0. Since the first term of dZ/dt
in eq.(93) is the dissipation rate of the autocorrelation Z due to the resistivity n and
has the negative value, we therefore come to the following another thought [1I-E] for
the relaxed state that leads to eq.(47):

[TI-E] The relaxed state of the resistive MHD plasma after the nonlinear relaxation
phase is the state whose internal structure yields the minimum dissipation rate of the

autocorrelation Z with Z = Zp, which is expressed by

dZ
the mintmum | r | statewithZ = Zp, (94)

where the functional F is now defined by F = - dZ/dt - aZ, Zg is the value of Z
measured at the time of the relaxed state just after the relaxation phase, and Z is, of

course, not the invariant for time.
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The mathematical expressions of eq.(94) in the thought [II-E] lead us to the
volume integral terms of eqs.(89) and (90), and therefore we obtain eq.(47) and also
the same condition of eq.(75) for the mode transition point of the relaxed state. The
reciprocity of the variational calculus gives us the following thought [II-F] equivalent
to the thought [II-E] given by eq.(94):

[II-F| The relaxed state of the resistive MHD plasma after the nonlinear relaxation
phase is the state whose internal structures contain the maximum value of Z with

dZ/dt = d;Zg, which is expressed by
) N 4
the mazimum Z state with T d&Zp , (95)

where d.Zp is the value of dZ/d¢ measured at the time of the relaxed state just
after the relaxation phase, and dZ/dt is, of course, not the invariant for time. The
mathematical expressions of eq.(95) in the thought [II-F] lead us to the volume integral
terms of eqs.(89) and (90}, and therefore we obtain eq.(47) and also the same condition

of eq.(75) for the mode transition point of the relaxed state.

We now have obtained the second group of thoughts { from [T1-A] to [I[-F] } that
lead to the same relaxed state of eq.(47) [ and eq.(59} in the low 3 plasma limit ] which
1s followed by the self-similar decay phase of eq.(49), and the same mode transition
condition eq.(75) of the relaxed state, starting from the set of general thoughts { [I],
[I1] } with eqs.(32)~(35). From comparison among the three thoughts of [{I-A], [II-C],
and [II-E], we fird that in the thought [II-C] the total helicity K is used instead of
the total magnetic energy W, in the thought [II-A}, and also in the thought [II-E]
the global autocorrelation Z is used instead of W,, in the thought [II-A]. All of the
three thoughts of [II-A], {II-C], and [{I-E] are found to lead to the same self-organized

relaxed state of eq.(47) [ and eq.(59) in the low § plasma limit ] and the mode
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transition condition of the relaxed state, as were shown from eq.(82) to eq.{94). We
easily understand from this fact that we can use any of the three quantities W,,, K,
and Z for W in the set of general thoughts { [I], [IT] } with egs.(32)-(35), and we
still obtain the same self-organized relaxed state and the mode transition condition
of the relaxed state. Since we use all of eqs.(2)-(5) for the derivations of the time
derivatives of W,,, K, and Z, we understand that all of the laws of eqs.{2)-(5) are
embedded essentialty in the relations between dW,,/dt and W,,, between dK/dt and
K, and between dZ/dt and Z. In the calculation of the variational technique with
respect to the spatial variables x in order to find the self-organized relaxed state of
eq.(46), we have used only eqs.(2} and (3). We see from these facts that the essential
things, which lead to the same self-organized relaxed state in the three thoughts of
[II-A], [II-C}, and [II-E], are in the laws with dissipation { eqs.(2)-(5) } which are
embedded in the relation between dW/dt and W { W = W,,, K, and Z ) and used
in the derivation of the self-organized relaxed state by the variational calculus. The
global quantity W,, is, in other words, the autocorrelation with respect to B itself,
and the global quantity K is the crosscorrelation between A and B, as mentioned at
eqs.(7) and (8). The global quantity Z is the autocorrelation with respect to A, as
mentioned at eq.(92). The three global quantities W,,,, K, and Z are the elements of
the global correlations, W,;(t) = [ g;(t,x)q:(t, x) dx , which were discussed generaily
after eqs.(32)-(35). Since the internal spatial structure of the self-organized relaxed
state of interest is hardest to change its own spatial structure through the dissipation
process with respect to Ohm’s loss and therefore yields the minimum dissipation
rate of the quantities of interst, it is reasonable to consider that the state with the
minimurn dissipation rate of all these global auto- and cross-corzrelations due to the
common Ohm loss for their own instantaniously containing values become to be the

same self-organized relaxed state of eq.(47) which is proved directly to be followed by

39



the self-simtlar decay phase of eq.(49) without significant change of its own spatial
structure. The internal structure given and expressed by eq.(47) [ or eq.(44) ] is
the attractor q*(W, x) discussed generally after eqs.(32)-(35), and the self-organized
relaxed state is the state of g*(Wpg, x). Since the self-organized relaxed state is hardest
to change its own spatial structure, when the nonlinear system of interest has come
to this relaxed state, the system behaves like as to be trapped at this self-organized
relaxed state during the time evolution of the system, just like as "the atiractor of
the dissipative structure” introduced by Prigogine [39,40]. These facts indicate that
the set of general thoughts { [I], [lI} } with eqs.(32)-(35) is useful to find the attractor
of the dissipative structure which is the self-organized relaxed state in the nonlinear

dynamical system with dissipation.

2.3 Third Group of Self — Organization Theory

We now proceed to the theory by T. Kato and T. Furusawa [29], where they
deal with the state with the minimum entropy production rate of the irreversible
thermodynamical system under the assumption of the total helicity invariant. Since
the entropy production rate by the Joule heating is given by the term of nj - j in
eq.(9), the relaxed state introduced by T. Kato and T. Furusawa [29] is expressed by
the following thought [III-A},

[ITI-A] The MHD plasmas with small but finite resistivity would relax to the
state with the minimum entropy production rate under the global invariant of the

total helicity A, which is expressed by the following form;
dw,,
the minimum | T | state under K = Kp, (96)

where K g is the value of K measured at the time just "before the relaxation phase”

andun = 0.
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Since the total helicity K is no longer the invariant for time during the relaxation
process, as was discussed in detail in the derivation of the thought [B] with eq.(17) in
the subsection 2.1, the thought [ITI-A] should be recomstructed to the following form
in the same way as the thought [B]:

[I11-B] The relaxed state of the MED plasma after the nonlinear relaxation phase
is the state whose internal structure contains the helicity K = K and the minimum
value of the entropy production raie | dW,,/di |, that is expressed by the following

form;

W,
the minimum | ddtm | state with K = Kp, (97}

where K is the value of K measured "at the time of the relaxed state” just after
the relaxation phase and u = 0. Here, ’K = Kz” is the necessary condition
which must be satisfied by the internal structure of the relaxed state because of the
measured value, and becomes “the global constraint” for *finding out the internal
structure of the relaxed state from the set of various distributions”. The variational
calculus for the thought [ITI-B] with respect to the spatial variable x is equivalent {o
that of the thought [III-A].

Using the similar procedure from eq.(40) to (43), p,0] = V x 6B, the vector
formula of V-(axb)=b-Vxa—a-V xb, and the Gauss theorem, we obtain

the following mathematical expression of the variational calculus for the thoughts
[1T1-A] and {III-B],

2 ] o 2 . o
5F = EfaB.{vX(m) — A}y —;:}((mxaB + JAX5A)-ds= 0,

(98)

§F — 2-]5B-{Vx(n5j) — 25A}dv —lf(nﬁjst)-ds > 0.
Fo 2 Ho
(99)
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We then obtain the Euler-Lagrange equation from the volume integral term in eq.(98)

for arbitrary variations of 6B as follows,
Vx () = ZA. (100)

Taking the rotation of eq.(100), and assuming 5 to be spatially uniform, we obtain
the following expression for the relaxed state which was derived by T. Kato and T.

Furusawa [29],
VxVxVxB = 4B, (101)

where v} = o, /2, and o is the Lagrange multiplier. Solutions of eqs.{101) satisfy
the following lower order differential equaion, as reported by T. Kato and T. Furusawa

29],
VxB;, = wB,, (102)

where w and w? denote the cube root of the unity, and the solution with 7 = 0 expresses
the force-free field of eq.(16) derived by Taylor. The relaxed state of eq.(101) has other
solutions whose real and imaginary parts do not satisfy the equation of the force-free
field [29]. The force-free field of eq.(16) is derived as the low § plasma limit from the
general solution of eq.(101), in the similar way from eq.(50) to eq.(59). However, the
relaxed state expressed by eq.(100) does not lead directly to the self-similar decay
phase by substituting eq.(100) and u = 0 into eq.(37), differently from the case of the
second group of the relaxation theory in the previous subsection 2.2.

Using the reciprocity of the variational calculus, we obtain the following thought
[I1I-C] which is equivalent to the thought [III-B] with eq.(97),

[TII-C] The relaxed state of the MHD plasma after the nonlinear relaxation phase
is the state whose internal structure contains the maximum value of X and the entropy

production rate of | dWy,/dt | = | d;W,,z |, that is expressed by the following form;
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W,
the mazimum K state with | %—tﬂ | =[d:iWr | (103)

where | d;Wp,g | is the value of | dW,,/df | measured "at the time of the relaxed
state” just after the relaxation phase and u = 0, and | dW,/di | is, of course,
not the invariant for ime. The mathematical expressions of eq.(103) in the thought
[II1-C] lead us to the volume integral terms of eqs.(98) and (99}, and therefore we
obtain eqs.(100) and (101).

Since we have used reversible mathematical processes from eq.(97) to eq.(102), we
investigate another group of thoughts connected to egs.(98) and (99) in the thought
[11i-B] in the same way as was used at eqs.(21)-(31) and at eqs.(82)-(95). We assume
here, for simplicity, that the resistivity 7 is spatially uniform. Changing the variation
of 6B in egs.(98) and (99) to a variation of the more general quantity q, as éq, we
may have the following expressions for the group of relaxation theories that lead to
eqs.(100) and (101) as the Euler-Lagrange equation from the volume integral term

for arbitrary variations of éq:

§F[5q] = / sq-{V x (1) ~ SA}v = 0. (104)

§2F[5q] = f sq-{V x (o) — SéAYdv > 0. (105)
We adopt 6A for 5q in eqs.(104) and {105}, and then we obtain the followings,

SFISA] = j SA-{V x (j) — %A}dv — 0, (106)

SFSA] = j SA{ V% (1) - SEA} > 0. (107)

Using eqs.{2) and (3}, V-(axb)=Db-V xa—a-V xb, and the Gauss theo-

rem, we obtain the followings from eq.(106},
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SFIsA] = -;-/{ §65B +6B) — abA-Aldv — f(nsAxj + %5B><B)~ds‘ -
(108)

We see from comparison between the volume integral term of eq.(108) and egs.(10)
and (92) that F' in eq.(108) is the fuctional defined by 2F = - y,(dK/dt) - aZ/2.
Since the first term of dK/df in eq.(10) is the dissipation rate of the total helicity K
due to the resistivity n and has the negative value, we therefore come to the following
another thought [IT1I-D] for the relaxed state that leads to eqs.(100) and (101):
[11I-D] The relaxed state of the resistive MED plasma after the nonlinear relax-
ation phase 1s the state whose internal structure yields the minimum dissipation rate

of K with Z = Zz, which is expressed by
» dX _
the minimum | Ty | state with Z = Zp | (109)

where the functional F is now defined by F = - dK/dt - aZ/2, Zp is the value of
Z measured at the time of the relaxed state just after the relaxation phase, and 7
is, of course, not the invariant for time. The mathematical expressions of eq.(109)
in the thought {III-D] lead us to the volume integral terms of eqs.(106) and (107),
and therefore we obtain eqs.(100) and (101). The reciprocity of the variational cal-
culus gives us the following thought [I1I-E] equivalent to the thought [I1I-D] given by
eq.{109):

[ITI-E] The relaxed state of the resistive MHD plasma after the nonlinear relax-
ation phase is the state whose internal structures contain the maximum value of 7

with dK/dt = d,Kp, which is expressed by
: ., dK
the mazimum Z state with e d;Kp , (110)

where d;Kp is the value of dK/df measured at the time of the relaxed state just

after the relaxation phase, and dK/dt is, of course, not the invariant for time. The
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mathematical expressions of eq.(110) in the thought [I1I-E] lead us to the volume

integral terms of eqs.(106) and (107), and therefore we obtain eqs.(100) and {101).

We now have obtained the third group of thoughts { from [I1I-A] to [III-E] } that

lead to the same relaxed state of eq.(101) { or eq.(16) in the low £ plasma limit ].

§ 3. Discussion and Summary

We have derived three groups of self-organization theories from the thought anal-
ysis in the previous section, i.e. the first group of thoughts { from [B] to [G] }, the
second group of thoughts { from [II-A] to [1I-F] }, and the third group of thoughts {
rom [I11-B] to [III-E] }, all of which lead to the same relaxed state of the force-free
field V x B = & AB. The common hypothesis among all of these three groups of
the self-organization theories is that the system of interest projected in a kind of
functional space, where each point represents internal spatial profiles of the system,
can approach sufficiently close to any point in the functional space through the tur-
bulent relaxation phase like as the ergodic hypothesis, because we use the variational
calculus with respect to the spatial variables x to obtain the self-organized relaxed
state.

In the derivation of the thought [B] with eq.(17), we have pointed out clearly by
using the results of the three-dimensional MHD simulation shown in Fig.3 of ref.[24]
that there exists actually the magnetic energy relaxation process where fairly high
dissipation of the total helicity, up to about 20 percent in one example, takes place
and therefore the total helicity is no longer the invariant for time, and the system still
relaxes to the force-free field of V x B = & AB. This fact by the three-dimensional

MED simulation means that the concept of the total helicity invariant is not the
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essential physical condition necessary for the realization of the relaxed state Vx B =
+ AB and therefore has to be removed from the self-organization theories of interest.

The four thoughts of [B] with eq.(17), [E] with eq.(27), [F] with eq.(30), and [[II-B]
with eq.(97) may be acceptable as the self organization theories that can be deduced
from the inspection of the relation between the two dissipation rate of equations for
W, and K due to the Ohm loss, i.e. eqs.{9) and (10}, in order to find the internal
spatial structure of the relaxed state. These four thoughts of [B], [E], [F] and [[1I-B]
can lead to the correct relaxed state of the force-free fielld V x B = + AB with K =
Kpg at the relaxed state, having no concern with the actural dissipation of the total
helicity during the relaxation phase. These four thoughts of [B], [E], [F] and [I1I-B]
are neither the energy principle nor the variational principle based on the invariant
for time that leads to the state of equilibrium and the stability problems, but they are
the theories to lead to the self-organized internal profiles as the dissipative structure
to be realized during the nonlinear dissipative processes. These four thoughts of [B],
(E], {F] and [III-B] declare simply that after traveling in the functional space through
the turbulent relaxation phase the system may come to the state of Vx B = + AB as
the self-organized relaxed state and it may stay there for longer time compared with
other points because of the relation between the two dissipation rate of equations for
W, and K due to the Ohm loss, egs.(9) and (10).

Experimental MHD plasmas and/or three dimensional MAD simulations are,
however, known to realize the self-organized relaxed state with finite pressure gradi-
ent and nonuniform profile of resistivity n [2-11,44,45]. The four thoughts of (B], [E],
[F], and [ITI-B] are disadvantageous to deal with these more general type of plasmas.
For example, in the case of plasmas with spatially dependent resistivity 7, it is rather
difficult to prove directly that the self-organized relaxed state obtained by these four
thoughts of [B], [E], [F}, and [{II-B] are followed by the self-similar decay phase with-
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out significant change of the spatial structure. This self-similar decay phase is one of
the most important properties of the self-organized relaxed state, as was discussed at
eq.(49) by the thought [II-A]. The disadvantage of the four thoughts of [B}, {E], [F],
and [ITI-B] for the dealing with the more general type of plasmas mentioned above
results from their common origin that is deduced only from the relation between the
two dissipation rate of equations for W,, and K due to the Ohm loss, egs.(9) and
(10), though there is no physical relation between the two quantities of Wr, and K
themselves. As is easily understood from the full set of basic equations for the three
dimensional MHD simulations, i.e. the equations of mass, momentum, and energy ( or
equivalently the entropy equation ) together with the Maxwell equations and Ohm’s
Jaw, the nonlinear, dissipative system of the MHD plasma does evolve completely
by these basic equations themselves without any interaction with the independent
equation for the quantity "magnetic helicity” [21-26,44,45]. This fact means that the
concept of the magnetic helicity is always used to interpret passively the physical
process of interest and the equation of the magnetic helicity does not give any active
effect to the physical process. In other words, it is natural to consider that the essen-
tial physical process for the realization of the self-organized relaxed state through the
turbulent relaxation phase must be embedded in the laws themselves which are given
by the basic equations and ruling the elements of the dissipative, nonlinear dynamical
system of interest.

The set of general thoughts { [I], [I] } with eqs.(32)-(35) comes merely from the
following observation using a kind of thought experiment: The nonlinear dissipation
itself is supposed to induce changes of the internal spatial structure of the system. On
the way of nonlinear, dissipative, dynamical evolution, the system will pass through
and stay longer time ai the state such that receives the least change of its own spatial

structure from the noniinear dissipative processes and therefore yields the minimum
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dissipation rate of the global quantity W for the instantaneously containing value
of W. Such that state must be supposed to be tecognized as the self-organized
relaxed state in the whole dynamical evolution of the system, if the relaxed state has
a peculeiar spatial structure, not like as trivial uniform one. The peculiar spatial
structure of the self-organized relaxed state must result from the laws themselves
which give the functional form of the dissipation and determine the relation between
dW/dt and W, as is seen from the theoretical process from eq.(36) to eq.(49). This
thought that the peculiar spatial structure of the relaxed state must result from the
laws giving the functional form of the dissipation may be confirmed by the fact that
the three thouhts of [II-A], {II-C], and [II-E] {or the different quantities W,,,, K, and Z
with the dissipation due to the common Ohm loss do lead to the same relaxed state
given by eq.(44} and/or eq.(47), as was shown in the subsection 2.2 of the second
group of the self-organization theories.

The state described by eq.(44) and/or eq.{47) does represent more general self-
organized relaxed state that yields the minirmum dissipation rate and is proved directly
to be followed by the self-similar decay phase without significant change of its own
spatial structure, as was shown at eq.(49), and also satisfies the experimental fact of
J = 0 near the wall where the resistivity 7 goes to infinity, as was mentioned after
eq{47). Tt is natural to consider that in experimental devices, the relaxed state of
the force-free fields V x B = AB with a constant ) is rather a special example of
the more general self-organized relaxed states of eq.(44) that takes place in a peculiar
situation where the spatially uniform resistivity profile and the low g plasma lmit
have become to be assumed as a result, as was shown at eqs.{50)-(59) [37]. Since
there exists actually the magnetic energy relaxation process where the total helicity
is no longer invariant for time, we cannot say that the relaxed state is determined by

the initial total helicity, having no concern with the initial spatial profiles. Instead
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of this, we can say that the attractors q*{W,x) of the dissipative structure, which
are derived as the Euler-Lagrange equations and represent the internal structures of
the self-organized relaxed state, are determined essentially by the laws themselves
which give the functional forms of the dissipation rate, having no concern with the
initial spatial profiles. And also we can say that the spatial profiles of the seli-
organized relaxed state are determined uniquely by the Euler-Lagrange equations
and the resultant quantities measured at the time of the relaxed state, such as the
magnetic energy, the toroidal flux, and the toroidal current flux, together with the

boundary conditions, having no concern with the initial spatial profiles.

In conclusion, the thought analysis on the self-organization theories presented
here leads us to the followings: The self-organized relaxed state, as the attractor of
the dissipative structue [39], of the resistive MHD plasma is formulated as the state
such that yields the minimum dissipation rate due to the Ohm loss of the global
auto- and/or cross-correlations of j, B, and A for their own instantaneous containing
values of the global correlations. All of these formulation for the state with the
minimum dissipatin rate of these global correlations due to the common Ohm loss
fead to the same Euler-Lagrange equation of eq.(44) and/or eq.(47) which represents
more general self-organized relaxed state that is proved directly to be followed by the
self-similar decay phase without significant change of its own spatial structure, as was
shown at eq.(49), and also satisfies the experimental fact of j = 0 near the wall where
the resistivity 7 goes to infinity, as was mentioned after eq.(47). In experimental
devices, the relaxed state of the force-free fields V x B = AB with a constant A
must be considered to be rather a special example of the more general self-organized
relaxed states of eq.(44) that takes place in a peculiar situation where the spatially

uniform resistivity profile and the low 3 plasma limit have become to be assumed as
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a result. The formulation to find the internal structure of the self-organized relaxed
state as the dissipative structure is extended to the more general nonlinear, dissipative
dynamical system as follows: The attractors q*(W,;,x) of the dissipative structure
are the states such that yield the minimum dissipation rate dW;;/dt for their own
instantaneously containing values of the global correlations W,,, where W,,{t) =
Jq,(t,x)q.(t,%) dx , as was discussed after eqs.(32)-(35). This formulation is neither
the energy principle nor the variational principle based on the invariant for time
such that leads to the equilibrium state and the stability problems. The attractors
q"(W,,, x} of the dissipative structure are determined uniquely by the laws giving the
functional forms of the dissipation of interest and the relations between dW;/dt and

W, [37].
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