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K-« MODEL OF ANOMALOUS TRANSPORT IN
RESISTIVE INTERCHANGE TURBULENCE

ABSTRACT

A K-¢ anomalous transport model for resistive interchange turbulence is presented and
applied to the transport analysis of ECH plasmas in Heliotron E. In this model, the tur-
bulent, kinetic energy K = £{¢”) and its viscous dissipation rate ¢ characterize the local
turbulence and the anomalous transport coefficient is given by D ~ K?/e, which has some
nonlocal properties not included in the conventional expressions since their temporal and
spatial variations are determined by taking into account the transport of the turbulent
energy itself. In the case of the homogenecus turbulence where the anomalous transport
may be described in terms of the local plasma parameters, the dimensional analysis ap-
plied to our model yields the two types of local parameter expressions of the anomalous
diffusivity in the high and low collisional cases. We find a familiar diffusivity for the re-
sistive interchange turbulence derived in the high collisional case and we have another one
similar to the gyro-reduced Bohm (GRB) diffusivity in the low collisional case. However,
it is shown from the transport simulation using our model that, in the region where the
turbulence inhomogereity is significant, the anomalous diffusivity deviates from the local
parameter expression due to the transport terms in the K-¢ equations. Our model explains
the experimental results consistently in that it gives the GRB or LHD scaling for the en-
ergy confinement time and reproduces the experimentally obtained profile of the anomalous

diffusivity which has large values in the peripheral region in contrast with the GRB model.

1. INTRODUCTION
Conventional treatments for anomalous transport have been based on the local transport
coefficients (D or x) which are expressed as functions of local plasma parameters such as
local density n, temperature T', magnetic field B and a number of gradient scale length L,,,
Ly, Lg,---:
Dory=F(n,T,B, Ly, Ly, L,,--+}.

These treatments assume that the mixing length ! and the time scale 7 of the turbulence

responsible for the anomalous transport are determined by the local plasma parameters.



However it is possible that the turbulence structure has nonlocal nature and the validity
of the expression for the local transport coeflicients as given above is limited.

Here we present a K-¢ type model for the analysis of anomalous transport in the resistive
interchange turbu]encé. A K-¢ model was originally proposed for modeling the turbulent
(or eddy) viscosity of the large Reynolds number turbulent shear flow [1]. In the K-¢ model
the turbulent kinetic energy X' = 2(¢*) and iis viscous dissipation rate ¢ characterize the
local turbulence spectral structure and their temporal and spatial variations are governed
by transport equations. The turbulent transport coefficient is given by D ~ K?/¢, which
has some nonlocal properties not included in the conventional expressions since the mixing
length | ~ K3/ /¢, the turbulent time scale T ~ K /e and the turbulent transport coefficient
D ~ P[r ~ K*[¢ are determined not locally but globally by the solution of K-¢ transport
equations.

The resistive interchange turbulence has been extensively studied as a cause of anomalous
transport in the peripheral region of stellarator plasmas [2,3]. The K-¢ equations for the
resistive interchange turbulence have the turbulent energy production terms, which are
given by the pressure gradient multiplied by the average magnetic curvature, the viscous
and Joule dissipation terms, and the transport terms. In the case of the homogeneous
turbulence, the transport terms vanish and the anomalous transport may be well described
in terms of the local plasma parameters. However, when the turbulence is significantly
inhomogeneous, the anomalous diffusivity deviates from the local parameter expression

due to the transport terms in the A-¢ equations.

2. K-« ANOMALOUS TRANSPORT MODEL

The K-¢ model for anomalous transport in resistive interchange turbulence was derived in
Ref.[4] by applying two-scale direct-interaction approximation (TSDIA) [5] to the resistive
magnetohydrodymamical (MHD) equations. Assuming that the mean velocity vanishes
{v) = 0and that there is the inhomogeneity of turbulence only in the minor radial direction,
statistical analyses of the resistive MHD equations show that the equations governing the

turbulent kinetic energy K = 1(7”) and its dissipation rate € are written as follows,

0K

o =Py —e—e;+ Tk (1)
O¢ € e €€z
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where ¢; denotes the Joule dissipation term and the turbulent energy production term Py,

the transport terms 1% and T, are given by

ey 1 d9
Px = (p9) - o dr (3)
19 K?0K 10 K? B¢
e =1 (’"CKTE) L=y (’"Cf“:a) )

Here p,, denotes the mass density, ¢ the light velocity in the vacuum, 5 the resistivity, B
the magnitude of the magnetic field, and df2/dr the average magnetic curvature. As seen
from (3), the turbulent energy production is in the form of the product of the flux and the
centrifugal force due to the average magnetic curvature. The turbulent pressure flux {pa)
is expressed in terms of the mean pressure gradient dP/dr and the turbulent diffusivity D,

as

- dP K2d4P
{po) = Dy =G (5)

In the same manner as in (5), the turbulent diffusivity for passive scalars in the turbulent
velocity field is given by

K?
Dg = CgT (6)

Cx, Ce, Ca, Ca, C., C,, and C, are non-dimensional constants, which are determined
empirically or theoretically from TSDIA.

With the electrostatic approximation, the Joule dissipation term ¢; = r)jz/pm can
be expressed in terms of K and ¢ as follows. For high collision frequencies such that

Pmov.T, > 7{~ K[¢), we have

B> Kt MeVe
€7 :CJ—""';)TT for Lf T
PmC Ly € e

> T (M

where L, is a magnetic shear length and C; a non-dimensional numerical constant. Here
we used the Ohm’s law J ~ n_lk!l&’ and estimated that K ~ #° ~ (ck ¢/B)? and kyfky ~
1/L;. On the other hand, for low collision frequencies such that Pmov. [T, < 1, we need to
take account of the adiabaticity of electron response to potential fluctuations to evaluate
¢7. From the balance between the time scales of the electron parallel conduction and the
potential fluctuation kT /(meve) ~ 77" with ky ~ k1 A/ L, the width of the non-adiabatic
layer A is given by k2 A% ~ L3(mev./T.)7~!. Therefore, in this low collisional case, A
becomes smaller than the turbulent mixing length { ~ K3/2/c. Using the generalized

Ohm’s law J ~ (T./en)ky(#/no — e¢/T.) and noting that we have the Boltzmann relation



fifng ~ ed/T, outside the non-adiabatic layer and A/ng < ed/T, inside it, we obtain
7~ 7 2(A/L,)*(k1é)?. From these relations, we have

3
1K o Mele

ey =CY for Ls——T—<'r (8)

o e
where C’ is a numerical constant and p, = cv/m;T./{eBy) the ion Larmor radius at the
electron temperature.

If the profiles of the mean pressure gradient dP/dr and the magnetic curvature d2/dr are
given, we can obtain the turbulent diffusivity (6) by solving the K-¢ transport equations
(1) and (2) with proper boundary conditions imposed. The self-consistent model for the
analysis of anomalous transport is obtained by combining the K-¢ equations with the
transport equations for the density and temperature. The profiles of the density and
temperature affect the turbulence through the production and dissipation terms in the K-¢
equations while the turbulence has dominant effects on the transport of the density and
temperature through the anomalous diffusivities. The diffusion terms given by (4) describe
the radial propagation of the turbulence which have not been taken into account by the

conventional anomalous transport model.

3. SCALING IN TERMS OF LOCAL PARAMETERS

Here, we consider the stationary case in which the transport term in the turbulent energy
can be neglected so that the energy production and dissipation terms are balanced with
each other. Even then, the turbulent energy flux does not need to vanish although it should
have a constant value. Then we obtain from (1), (3} and (5),

_ 2
o (i) &

——c—¢;=0 (9)

P dr drj ¢

Tn this case, as seen from (7)—(9), it can be assumed that the turbulence property is charac-

terized locally by two parameters, which are for high collision frequencies (L?m.v. /T, > 1),

—1dPdQ Pmc N L2

o 37 G B2 (10)

and for low collision frequencies ( L2m, 1. /T, < 7),
-14pd y
P dr dr’ P (11)

In the case considered here, the turbulence is regarded as locally homogeneous and these

parameters need to be nearly constant. When the variation of the parameters is large,
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the turbulence can be no longer homogeneous and the turbulent energy transport term
becomes important so that the assumption given above is not valid. The first parameter of
(10) or (11} is written as —P'Q'/p. ~ ¢;/{L,L.} and has a dimension of square {requency,
which gives the characteristic time scale m [c. of the turbulence driven by the pressure
gradient and the magnetic curvature. Here dP/dr = P' = —P/L,, dQ/dr=Q' =1/L, and
¢e = 1/T./m; are used and T, > T; is assumed.

We have the following scaling in terms of the above local parameters from the dimensional

analysis. First, in the high collisional case,

K~ OnP(-PRPPRIB, I K fen ot P(opu POYIL/B,
€ ~ np H—P'QY) L2/ B, o~ Kfen (=P pn) 2 ~ (e fy/LpLe)
Then we obtain the anomalous diffusivity D as
K* 2 p(-Pe)L? L?
D PN — N s NS s o~ D L
€ T Bz d L,L. (13)

where we used the classical diffusivity Dy = ¢*nP/B2. Equation (13) is the same expres-
sion as that of the anomalous diffusivity for the resistive interchange turbulence obtained
from the reduced MHD equations using the dimensional analysis or the scale invariance
technique. Using the time scale 7 ~ \/EE/CS, we can write the condition for the high
collisional case as L:m,v./T. > \‘/EPL_C/C,.

Next, in the same way as above, we obtain the scaling in the low collisional case as

follows
K~ pECE/Lch, Ir I{SIZ/E ~ Psy
€~ chi/(LPLc)slgs T~ Kfer (CS/\/ LyLe)~.
which gives the anomalous diffusivity D as
K? 2 pies

DN——N—N

Ps
~ D 15
I \/Lch 7 \/LPLC (15)
where we used the Bohm diffusivity D = p,c, = cT./(eBy). Equation (15) has the form of

the gyro-reduced Bohm (GRB) diffusivity [6] which is the Bohm diffusivity multiplied by
the factor p,/y/LpL.. The condition for the low collisional case is written as LD’mv. [T, <

f IpLefcs.

4. TRANSPORT SIMULATION OF ECH PLASMAS IN HELIOTRON E

We have combined the K-¢ anomalous transport model with the transport code for

(14)

stellarators [7] to simulate ECH plasmas in Heliotron E (R = 2.2m, a = 0.2m) [8,9].
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The anomalous particle diffusivity D is given by (6). We have assumed that both the
electron and ion thermal diffusivities are given by the same expression y, = y; = %D. In
our simulations, the averaged electron density 7., the ECH absorbed power P, and the
magnetic field strength B were scanned in the following ranges: 1 < 7, < 3 x 10¥%m~2,
96 < Fups < 288kW and B = 0.95, 1.97, respectively. We have done numerically the time
integration of the electron and ion temperatures, 7., T: as well as the turbulent energy
K and its dissipation rate ¢ while the electron density profile was fixed. We gave the
profiles of the electron density and the absorbed power density as n.(r) = n,(0)[0.95 (1 —
(r/a)®) +90.05] and pas{r) = pass(0) (1 — (r/a)*)? which fit the experimentally observed
results. The average magnetic curvature d)/dr was given from the vacuum magnetic field
configuration of Heliotron E since the beta values of the ECH plasmas simulated here
are very low. The neoclassical diffusivities were included in cur simulations although the
effects of the radial electric field and the neutral particles are assumed to be negligible in
order to clarify the effecis of the anomalous transport. In the parameter regime of the ECH
plasmas in Heliotron E, the whole plasma is considered to satisfy the low collision frequency
condition and therefore we employed the Joule dissipation term given by (8). The numerical
constants used here are Cx = 0.09, C, = 0.07, Cy = C4 = C,y = 1.7, Cp, =Cp=0.135
and C; = 0.05.

After adequate time steps, we obtained the stationary states in which the radial profiles
of T, i, K and ¢ did not depend on the initial conditions. Figuzre 1 shows the radial
profile of the anomalous thermal diffusivity obtained by K-¢ model, yX < = 2CeK? e, in
the stationary state for i, = 1 x 10°m™°, Py, = 192kW and B = 1.97. In this case, the
boundary conditions for K" and ¢ were given such that the energy confinement time took the
experimentally observed value. There also shown is the profile of the anomalous diffusivity
expressed in terms of the local parameters as in (15), y'* = ¢ (ps/\/—Lp_Lc) o{T.+T,)/eB,
where the value of the numerical coefficient employed in Fig.1 is C = 0.57. It can be seen
that both of the diffusivities have the same radial dependence in the region 0.1 < r/a < 0.6
while the discrepancy between their profiles becomes large in the other regions. Especially,

K-¢

. Increases in approaching the boundary whereas x*°# de-

in the peripheral region, y
creases. Figure 2 shows the radial profiles of the turbulent energy production, viscous
and Joule dissipations in the same case as in Fig.1. It is found that the production and
dissipation occur mostly near the peripheral region where the average magnetic curvature

becomes lazge. In this case, the inward transport of the turbulent energy appears. The
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ratio of the Joule dissipation to the viscous one increases in the peripheral region due to the
decrease in the temperature, which is correlated with the deviation of x£°¢ from x%** since
the ratio between the production, viscous and Joule dissipations need to be homogeneous
or constant in order to ensure the validity of the scaling by the local parameters. Thus
the local parameter expression poorly predicts the anomalous transport coefficient in the
peripheral region where the inhomogenetties of the local parameters in (11) are significant.

In Fig.3, the experimentally obtained thermal diffusivity x:™ in the case corresponding
to Fig.1is compared with the numerically predicted total diffusivity x©* = x5 e+ yreres 4
XoPe where x2** and x**' denote the neoclassical axisymmetric and non-axisymmetric

total
e

(ripple) thermal diffusivities, respectively. The disagreement between x** and y;* seems

to be within the accuracy of the experimental results although the predicted diffusivity y*
may be relatively smaller than x5 in the inner region r < 0.3a since there the magnetic
curvature is quite small and other turbulence sources are not taken into account in our
model. It is seen that the anomalous diffusivity is a dominant contribution to the whole
plasma confinement although X" is comparable to x*™ at 0.3 < r/a < 0.5 and x2*7**
is the largest at r/a < 0.1.

We have scanned the electron density, the absorbed power and the magnetic field strength
in the ranges mentioned earlier. Since we have seen in Fig.1 that the local parameter
expression (15) is valid in the regions except for the peripheral and central regions, we
adjusted the boundary conditions for K and ¢ in all the simulations in the above ranges
such that the K-¢ anomalous diffusivity coincide with the local expression at r = a/2 :
K <(a/2) = x°(a/2). In Fig4, the energy confinement times 7£ ¢ obtained from the
simulations are compared with the LHD scaling [10]. It is fourd that the simulation results
are in good agreement with the LHD scaling. This seems to be natural since the thermal
diffusivity imposed at r = ¢/2 obeies a type of GRB scaling which gives almost the same
energy confinement time as the LHD scaling. Thus our model predicts the experimental
results consistently in the two aspects: the first is that it gives the energy confinement time
following the GRB or LHD scaling and the second is that it supplements the drawback of
the GRB diffusivity, i. e., it reproduces the experimentally observed profile of the anomalous

diffusivity which has large values in the peripheral region.
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